
3GPP TSG-SA4 Meeting #97
S4-180058
Fukuoka, Japan, 05-09 February 2018

	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.973
	CR
	xxx
	rev
	x
	Current version:
	1.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Test Methodology for validating the extended basic operators

	
	

	Source to WG:
	Cadence Design Systems Inc., VoiceAge Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	FS_BASOP
	
	Date:
	2018-02-05

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Addition of the test results of validating the extended basic operators

	
	

	Summary of change:
	Addition of the test results of validating the extended basic operators in Section 4.2

	
	

	Consequences if not approved:
	Missing information in TR

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

******* Change 1 ********

The following paragraphs need to be inserted at the end of the section 4.2 of the TR.

4.2.1
Test Methodology:
In Figure 1 below, we show a block diagram that explains how we validate the extended STL2009 Basic Operators implementation against a reference floating point implementation. A data generator generates floating point notation data values that are then converted into fixed point notation and these are input to the design under test (DUT) implementation of the extended STL2009 Basic Operators implementation. The same fixed point data is converted into floating point notation, and then input to a reference floating point implementation of the extended STL2009 Basic Operators. The fixed point output of the DUT is converted to floating point notation, and then compared against the reference floating point implementation output and an error value is generated and logged.
[image: image1.jpg]Wordé4 /
Word32/
Word16

REF Floating
point
Basicoperator
implementation

Double/Float

Double/float

Absolute /
percentage
/ bits error

—

Double/Float

Figure 1: Block diagram illustrating how the fixed point implementation is validated against a floating point reference implementation of the extended STL2009 basic operators.
In the following sections, we report the test results for an example basic operator, Mpy_32_16_1.
4.2.2
Test results for basic operator Mpy_32_16_1:

We used the setup in figure 1 for testing with four different types of data:

1. Random input numbers

2. A sweep from a negative number to a positive number

3. A piecewise sweep from a negative number to a positive number

4. A custom input where a user can specify an array of size N with custom inputs
Figures 2, 3, 4 and 5 illustrate the results of the test for the above four different data types. The error between the fixed point implementation and floating point implementation are extremely small thereby validating the fixed point implementation.
[image: image2.png]inputl

o 200 200 600 800 1000

0 dut output
83]
8o
-01
33 i i i L
0 200 400 600 00 1000
ref output
83]
o1
09
B ‘ j : ;
"o 200 400 600 800 1000
error

200 200 600 800 1000

Figure 2: Test results for basic operator Mpy_32_16_1 using random input. The error between the fixed point output and floating point output is very small.
[image: image3.png]inputl

o 200 200 600 800 1000

input2

200 200 600 800 1000

dut output

200 400 600 800 1000

ref output

o 200 200 600 800 1000

le-8 error

o 200 200 600 800 1000

Figure 3: Test results for basic operator Mpy_32_16_1 using a sweep input. The error between the fixed point output and floating point output is very small.

[image: image4.png]inputl

11
Sbdoooo
s

o 200 200 600 800 1000

input2

Sbdocoo
sy

o 200 200 600 800 1000

dut output

o 200 400 600 800 1000

ref output

200 200 600 800 1000

error

200 200 600 800 1000

Figure 4: Test results for basic operator Mpy_32_16_1 using a piecewise sweep input. The error between the fixed point output and floating point output is very small.

[image: image5.png]0 200 200 500 200 000
dut output

0 200 400 600 00 1000
ref output

0 200 200 500 200 000

le-8 error

F S B

E | ' H 1 L H 1

0 200 400 600 00 1000

Figure 5: Test results for basic operator Mpy_32_16_1 using a user defined custom input. The error between the fixed point output and floating point output is very small.

4.2.3
Test Results:
For a complete report of the framework used, as well as the results of the test, please see the attachment “TestResultsAndTestFrameworkOfExtendedBASOPValidation.zip”
This attachment has four zipped files as described below:

· “Baseop_tst_frmwork.zip” – Test framework package. For details of this package, and how to run it, please see the README file in the zipped package. For a summary of the results and the details of the test setup, please see the excel file “Tst_framework.xlsx” available inside the “doc” folder of this zipped package.
· “precision_abs_err_report.csv” details the test results and reports the average and bits-in-error summary for all the 67 basic operators.

· “W_mult_32_32.xlsx” shows the details of the test for this example basic operator.

· “Mpy_32_16_1.xlsx” shows the details of the test for this example basic operator.

4.2.4
Test Results Conclusion

Based on the results reported in “precision_abs_err_report.csv”, we conclude that the fixed point implementation of the extended basic operators all pass against the reference floating point implementation of the same extended basic operators.

******* End of Change 1 ********

******* Change 2 ********

Introduction

The last major update to the ITU-T Basic Operators was in 2005, with a follow on update in 2009. These basic operators serve as a foundation for reference software of codecs specified by 3GPP. During the last several years, processors with wide accumulators, and support for single-instruction-multiple-data (SIMD), and very long instruction word (VLIW) features have become prevalent. The basic operators of 2009 now need to be extended to leverage these capabilities of modern processors so that implementations with lower mega-cycles-per-second (MCPS) and lower-power may be realized.

Enhanced Voice Services (EVS) is one of the recent codecs defined by 3GPP that can leverage these features of modern processors. The existing EVS reference software would have to be appropriately modified to leverage these extended basic operators without changing the underlying algorithm. We refer to this as an alternative EVS implementation using the extended basic operators.

This alternative EVS implementation would have to be evaluated to ensure that inter-operability is maintained in addition to ensuring that voice quality is not impacted.
******* End of Change 2 ********

******* Change 3 in section 5.2 ********

/* Example 2 - A: Implementation in 2 slots VLIW architecture */.

/* Since truncation and saturation is not required, Acc1 and Acc2 executed in 1 cycle in two different slots */

/* Final result in Acc does NOT match acc in regular implementation */

/* This 2-slot implementation is not bit-exact with regular implementation and therefore the need to define alternate set of bit-streams */

/* Therefore the reference code has to be changed to take benefit of 2-slot architecture */

Int_64 Acc1, Acc2, Acc;

Acc1 = a[0]*b[0]; /* slot 0, cycle 1 */

Acc2 = a[1]*b[1]; /* slot 1, cycle 1 */

Acc1 = Acc1 + a[2]*b[2]; /* slot 0, cycle 2 */

Acc2 = Acc2 + a[3]*b[3]; /* slot 1, cycle 2 with VLIW supported */ /* Alternatively, this can be slot 0, cycle 2 if 2-way SIMD is supported as illustrated in Example 2-B */

Acc = Acc1 + Acc2; /* slot 0, cycle 3. This will be done outside the loop, only once */

/* Total cycles for 4 elements = 3 */

/* For N elements it will take (N/2 + 1) cycles */

******* End of Change 3 ********

******* Change 4 in Annex A.3 ********

Remove comment for CL_move (CL_var)

******* End of Change 4 ********

******* Change 5 ********

5.1
Merits of an alternative EVS implementation using the extended basic operators

EVS [2] is a sophisticated hybrid audio-speech codec with several modes of operation. As such it has a large number of functions. Manually optimizing this large set of functions is prohibitive from an effort (and therefore time) perspective. Implementers will have to rely on computer assisted tools and compiler to get them as close to a final implementation as possible, and spend the last mile in manual optimization to reach the final target performance. It is therefore imperative that the basic operators are defined in such a manner that they lend themselves to better leverage the features and capabilities of modern DSP architectures. Data types need to be mapped to match the processor registers or operand widths of data used in SIMD (Single Instruction Multiple Data) processing; basic operators need to be mapped to processor instructions. A standard reference C code written with these aspects in mind will result in an implementation that leverages SIMD and VLIW (Very Long Instruction Word) features of the processor better and results in an out-of-the-box (OOB) performance that is quite close to the final desired performance. The compiler can optimize the code across all the files and functions thereby significantly reducing manual optimization effort. Implementers can go to market faster.

Figure 6 shows the benefits of creating an alternate reference C code for EVS using the updated basic operator:
1)
Reduced hand-optimization efforts lead to reduced total engineering effort, and hence improved time to market.

2)
Improved MCPS numbers in OOB and final hand-optimized code.

3)
Reduced code size. Reduced MCPS and memory reduces overall power used. This should facilitate extended battery life.

[image: image6.png]Benefits of Proposal

cocrr) [Complerioon IARHMEST)
inpreves Reduced Engg,eflorteads toimproved TTH

-

ime

Btz e 3
Improved EvsRer
atary o
Gt oo [IEILLF
Srcon
enent FFTMofeatn & Inoducton of Conirl Codo Base-0ps

memory (Reduced code-size)

Figure 6: Benefits of proposed alternate reference C for EVS

Using the existing standard EVS Reference code version 14.0.0 as a starting point, an alternative C code that leverages the proposed basic operators has been created. During this creation process, step by step, we have monitored several key parameters such as the engineering effort spent expressed as time (days, weeks, months), and corresponding reduction in MCPS.

Figure 7 shows the optimization level achieved versus engineering effort measured in units of time. As the figure shows, the OOB performance of the existing reference C is at 269 MCPS, while the OOB performance of the proposed alternative EVS reference C code is at 162 MCPS. This is a gain of 1.66x achieved in matter of a few days of engineering effort. Next, we spend time restructuring the code and hand optimizing. The final hand-optimized version is at 61.9 MCPS compared to 77.5 MCPS for the existing EVS reference implementation. This is a gain of 1.25x.

[image: image7.png]wers Nustration of the different engineering implementation phases

10 ® 2 2 2
Refc
NOT Changed

1922

1748 RefC Changed

19

eosngris

ﬁ\ 775

re— 619

days weeks months

toon r Fomrg
Outef-the-box(008] Hondoptimization
phase phose

Figure 7: Impact of alternate reference C at different phases of the implementation process

******* End of Change 5 ********

Page: 1/9

Page: 2/9

