3GPP TSG-SA4 Meeting #95
S4-170789
Belgrade, Serbia, 09 – 13 Oct 2017

Agenda item:
8.7
Source:
Qualcomm Incorporated
Title:
SerInter: Status of MPEG Interactivity Track
Document for
Information and Agreement
1 Introduction
During SA4#94 the “New WID on Service Interactivity” in S4-170738 was agreed and afterwards approved (with minor modification) in by SA plenary #77 in SP-170796.

This objective of this work item is to conduct normative work in TS 26.346, TS 26.247 and TS 26.347 by devising functionality to fulfil the gaps identified in TR 26.953, namely:
· Enable delivery of notifications to interactivity applications, both Native and Web app based, at specific and potentially arbitrary times during the consumption of an affiliated 3GPP User Service, of the occurrence of interactivity events, and which dynamically enable the interactivity application to perform its interactivity-specific tasks. Interactivity features should be supportable in the consumption of:

· live streaming services, e.g., linear TV

· time-shifted streaming services, e.g., Video-on-Demand,

· non-real-time file-based services.

· Devise any necessary but missing functionality at the service layer to support personalization of service interactivity by providing unique and user-specific engagement and presentation experience during the incidences of interactivity events, for example, by making use of known information on the user/associated device such as profile/preference knowledge, current user location, or time-of-day.

· Define the means for the BM-SC to signal, and the MBMS client to unambiguously identify, interactivity-related content items (e.g. HTML pages, Javascript and CSS files, multimedia assets) for delivery/reception over an MBMS or unicast bearer.

· Support the measurement and reporting of interactivity-related usage by the user/device, including the following functionalities:

· Use of MBMS service layer mechanisms to announce the parameters and criteria regarding interactivity consumption reporting.

· Capability for the MBMS service provider to either randomly or selectively control the user/device population to perform such reporting.

· Utilization of existing MBMS service layer mechanisms and architecture (e.g., MBMS reception or consumption reporting)

Definition of a service framework that can ensure the protection of user identity and privacy associated with the interactivity usage reporting.
This document primarily addresses the status in MPEG in order to harmonize the work and avoid unnecessary fragmentation. 3GPP received an LS in document S4-170919 which references the work in SC29/WG11 (MPEG) on a new activity describing the carriage of media synchronized web content, including HTML and “Interactive”, in the ISO Base Media File Format (ISOBMFF, 14496-12). This seems to be closely related with the objectives in SerInter.
2 Discussion

2.1 Background and Discussion from N16795

2.1.1 Earlier Discussion

MPEG issued a document in N16795 in MPEG#118. This subclause summarizes the issue.
2.1.2 Use Cases Summary

It should be possible to package audio/video content and web data so that interactive playback from a regular web browser can be achieved without specific modifications of the HTML logic (no specific code for file loading, tracks handling, etc). In particular, access to an interactive application packaged in MP4 should be transparent to the browser.

One typical use case when consuming an audio/video file is to seek in its time line. Since not all video/audio frames may be individually decodable, file formats typically identify such frames as random access points. If such file contains additional data for page changes or updates (layout, content …), seeking to a given time in the file should also produce the correct page rendering, possibly with random access points into the page changes.

Generally, different types of clients (fully browser based, dedicated media clients with partial web engine functionality, etc.) and services (primarily A/V with overlay, web-based media consumption) exist and it may the desire to provide a service to different types of clients. It may also be that some clients only support a basic functionality, whereas others support advanced functionality.

A main requirement for the service provider the is the ability to send media time synchronized graphics, overlay, interactive data, any type of web data and so on, while not defining the application environment for itself. A redo of LASER, DIMS or FLASH is not considered.

On a file format track level the key aspects are:

· The carriage of web data and their synchronization

· The syntax and semantics of the data for interoperable implementation

2.1.3 Relevant Existing Technologies

2.1.3.1 DASH Events

One considered option to carry synchronized data are DASH events, either inband or as part of the MPD event streams. the common implementations that are supported in browsers may require application intervention. For instance, MPD-carried event streams require that the application handles these events after they are parsed from the MPD. The ‘emsg’ method of carriage is problematic in that many media player implementations may ignore this box all-together (as opposed to passing the data to the application for handling). In addition, Events must be parsed and processed by the DASH client, hence events can not be properly stored in ISO BMFF files. Also, DASH events provide carriage only, but do not describe the processing model of the payload.

2.1.3.2 HTML-5

There are at least two options to provide interactivity and dynamicity in HTML pages, in particular when video and audio resources are also used: either the page changes are provided as part of the main HTML resource (e.g. as part of embedded JavaScript) in which case the synchronization to audio/video is handled specifically by the JavaScript; or as part of additional timed resources, which are synchronized directly by the browser. The two approaches are:

· Progressive parsers: In this case the delivery can schedule the execution of events, but only coarsely synced to media.

· TextTrack elements: In this case, content in the text track can be displayed synchronously and natively by the browser. Text tracks with hidden mode are processed by the browser (i.e. the content of the track is exposed to JavaScript, events are triggered, if used) but its content is not rendered directly on screen by the browser. The content is processed by JavaScript event handlers. TextTracks of kind "metadata" are general-purpose tracks that are used to provide any kind of data to the Web application. Metadata tracks are not meant to provide ready-to-be-displayed data because browsers treat such track as "hidden". Metadata track content is meant to be processed by JavaScript code in the page, and the result may be displayed in the page. HTML 5 defines a basic mapping of some types of ISOBMFF tracks to the TextTrack concept, in particular to tracks of role "metadata". This work is being refined by the W3C Media Resources In-Band Tracks Community Group (https://www.w3.org/community/inbandtracks/).

2.1.3.3 File Format Technologies

ISO/IEC 14496-12 defines the storage of timed data using tracks. Several types of tracks are defined, using first a 4-character code called "track handler" and then a second 4-character code called the "sample description format". The track handler identifies the expected general processing associated with the track (e.g. audio processing vs. text processing vs. video processing …). The sample description format identifies the specific format of the media samples in the track. 'meta' indicates that the associated decoder will process data that is not meant to be displayed directly but processed by the application, possibly for display.

The ISOBMFF 'meta' track handler indicates that the track content is not meant for direct display. It can also be used in the content of the HTML 5 TextTrack API. There are several sample description formats available for a track of handler 'meta'. The URIMetadataSampleEntry (identified by the sample description format 'urim') is used when the data is binary. A URI identifies the format of each sample and some initialization information can be provided.

The URIMetadataSampleEntry can be used for web interactivity if the input data is binary data, not text-based. A specification using this format would have to define a URI value, and the associated binary sample format and initialization format. It would have to indicate also which samples are sync samples. In an HTML 5 environment when consumed via the TextTrack interface, such track would typically be mapped to a TextTrack with DataCues. The HTML page and in particular the JavaScript needed to process the binary cues are delivered out-of-track, possibly using the simple text track approach or as an item in a 'meta' box.

ISOBMFF defines the "meta" box which allows for storing untimed data in box-structured files, possibly together with audio and video sequence. Hence, when the interactivity data is not timed or does not need to be stored as timed chunks of data, interactive data can be stored in items. Such items can be stored by giving them an optional name and a MIME type.

For web data, it is possible to store the HTML page and associated resources such as CSS, JS using different items, with the HTML page being the primary item, and with audio/video resources as regular tracks. "meta"-unaware players would simply play this file as if it would be a simple audio/video file, while "meta"-aware player would start by loading the HTML and associated resources and then would load the audio/video in the context of this page.

2.1.4 Open Issues

In many cases the interactivity needs to be provided not only in a browser, but also in stand-alone apps. There is expected benefit to provide an interoperable solution on ISO BMFF track level.

A possible solution may be provided by enabling the carriage of HTML-5 data, as well as JavaScript and other dynamic web data in a consistent manner in the ISO BMFF that would support different use cases and provide broader interoperability. The basic idea is shown in Figure 4. The track would be encapsulated in the file format and would terminate in a Web Engine. The events would be provided to the web engine in order to enable synchronization of the events to the media.

[image: image1.png]
Figure 1 Web Interactivity Track

The track would contain an HTML-5 entry page (something like RAP/sync sample) and possibly dynamic events that are synchronized. The figure shows one possible implementation to handle this. In another implementation, ISO BMFF may terminate in the browser. A Javascript based parser would extract the HTML-5 data and provide the dynamics, whereas the video and audio track are handled by the video and audio tag. Usage with DASH and CMAF would only rely on providing a fragmented/segmented version of the Web Interactivity track.

The track would be limited to HTML-5 and JS data and the model would be that at a certain media time, either the HTML-5 page is rendered or the results of the JavaScript code are executed. Each event is assigned a presentation time and the time is associated to when the DOM modifications are active. It also means that the HTML-5 environment does not have to be launched, you may do video and audio only if you do not support the Web Interactivity. A standalone player would have to add a Web Engine in order to process. A limited set features and APIs would certainly be sufficient.

A couple of issues that need to be considered:

1) There needs to be a binding between the Web page and the video, i.e. you need an HTML-5 video and (audio) tag in the web page and a linkage to the video track. It may be done by track references preferably. For example we need to say <video src=”trackid://<trackid>”>.

2) How can we add an MSE buffer, i.e. in case you work fragment by fragment. Well generally this is up to the application, but somehow the binding needs to work such that you can append ISO BMFF fragments from a file to MSE buffer.

3) Can there be multiple HTML-5 tracks? Maybe, you may have some dedicated to different functionalities, so a separation may make sense. But then the type needs to be described as well. So we should not prevent this.

4) What are the required functionalities and capabilities of the web engine. One approach is for the HTML-5 track to use different APIs and functions along with there should be signalling of the required web engine capabilities to render the interactivity track.

5) Typical ISO BMFF functions such as sync samples and random access points, etc. should be defined.

6) The above example is restricted to visual aspects, but it interactivity with audio elements based on HTML-5 control APIs are also possible.

7) The environment should be defined. There are two models: playing in a browser, and playing in an application that includes web tools. There are practical and coordination limits (e.g. MSE insists that presentations with unrecognized tracks be ignored).
8) There should be a way to provide resources used by the Javascript, and a normative way to be able to reference them. Inline resources are a possibility, but can increase the track size.
9) There should be a means of indicating the desired viewport for the interactivity. As an example, the interactive HTML/JS elements may be overlaid on the video. However, the interactivity may also appear in parts of the display other than over the video itself.
2.2 Data Processing Model

In order to address the web track, this clause defines a receiver data processing model. Figure 2 provides a data processing model for a web/html-5 track. Assume that an audio, video and htm5 track are provided in an ISO BMFF file, a CMAF presentation or a DASH Media Presentation. This means that the tracks are time-aligned and may be presented in a “synchronized manner” using the decode times as well composition and presentation time information in the “Presentation”. For all tracks, the information in the movie header and the track headers is used to initialize the appropriate track handlers and media decoders and processors. For audio and video, the regular processes are applied. By initiating the decoder, a “socket” is enabled that enables to provide a sample at the announced decode time to the decoder. The decoder uses the scheduling of the decode time to decode the sample and the information on presentation and composition times can be used for accurate presentation of the media. Note that the presentation describes all times in media times and the playback and mapping to real-time is up to the presentation environment. The processing model is guided by the media time that is included in the ISO BMFF.

The audio and video track may be used stand-alone as a regular AV presentation, ignoring the htm5 track. However, the htm5 track may be used as well. According to the discussions in section 2, different player and service models may be considered, i.e. the AV presentation is launched and htm5 track is added later, or the HTML-5 track is used at launch and integrates the AV tracks. The description in the ISO BMFF is independent of this, but for simplicity it is assumed now that the HTML-5 presentation is the master track, is launched first and provides an association to all included AV tracks by using video and audio elements in the HTML-5. Based on the discussion we need an identification of the track as htm5 including a sample entry. We also need the ability to provide a binding of the AV tracks to audio and video elements in the HTML-5. Note that there may be additional track bindings for multiple audio and video sources as well as other media elements such as subtitles, etc.

For the use cases above, basically three different data types are of interest for the web track:

1) An initial launch of an HTML-5 page, potentially including dynamic aspects such as JavaScript and so on. This information may be static (non-timed item) or may be considered a sample at presentation time 0. Note that the video and audio presentation may for example be started in a media time delta fashion later than HTML-5 page. This may require for example adjustment of the presentation of audio and video through an edit list.

2) Any data that is “pushed” at a specific media time into the HTML-5 processor based on the content authors schedule. This may for example trigger changes in the DOM synchronized with the playback of the media. Such data pushed at a specific media time may be considered as a “sample” with the “specific media time” being the decode time.

3) Data that is available for processing in the HTML-5 processor, but may be “requested” by the processor only based on dynamic DOM updates or by interactivity. Such data may typically only be requested within a specific media time period (or multiple periods) in the presentation. Outside these media time periods such data may be considered irrelevant.

In order to retrieve such data in an HTML-5 processor, different types of HTML-5 processes and APIs may be considered. The launch page (1) is launching the HTML-5 processor. Such information should be available in the track header as non-timed items or as an initial random access sample. Data following the model of (2) is most easily pushed by using a WebSocket API. The "HTML-5 processor" may act as a WebSocket Client, and the client side API may be as simple as:

var exampleSocket = new WebSocket("ws://ExampleLocalWebSocketServer");

exampleSocket.onmessage = function (event)

{

/* handle event ...*/;

}

The track handler may emulate a web socket server which is accessible through a dedicated web socket address "ws://ExampleLocalWebSocketServer" socket using e.g. "send" method, the function above is called to handle it on the client side. The binding between the HTML-5 page and the WebSocketServer on the device needs to be handled properly.

Data following the third category is not “pushed” on the WebSocketAPIs, but is made available from a specific time onwards through a well-defined http:// label. By using an http-label, the HTML-5 processor can access the data using XHR APIs. The data is considered as a sample that is accessible by the HTML-5 processor from decode time onwards at the identified label. Note that this is similar to the FLUTE operation documented in 3GPP, with the exception that the availability of the sample is instantaneous, i.e. after the object is delivered. The FDT provides information on the label as well as on other information such a content type and so on. Similar information may be provided.

The conceptual approach is discussed based on media timing, i.e. the data is stored in a file. However, such timing concepts may be put on a real-time timeline if data is streamed as for example done in DASH. In the following the focus is on track processing, assuming that all data is available to the track handler. Delivery specific aspects are discussed later.

[image: image2.png]
Figure 2 Processing Model

In summary, three types of sample data should be provided in one track or multiple tracks may be generated and differentiated.

1) Initial launch data as well as “full” and “redundant” random access data. Such data launch the HTML-5 processor or can be used at a later media time to randomly access the HTML-5 track. Random access should be redundant in order to avoid reloading the DOM. However, to solve “error cases” pushing a launch data and forcing a page reload not using the WebSocket connection may be considered in the design.

2) Samples that are pushed at decode time into an established WebSocketClient that is part of the initially launched HTML-5 processing data. The samples need to be identified to be pushed. It may be that multiple WebSockets are generated, so each of the WebSockets may have to be generated. If multiple ones are provided, the binding needs to be provided.

3) Samples that are made available as objects from decode time onwards at a well-defined http:// label as this allows that the browser uses existing XmlHttpRequest APIs to gather the objects. Additional metadata may be provide to optimize the caching. Note that the samples may be included in the file or external data references may be used. In the latter case the XHR request will not terminate in the “file” but will be forwarded into the network.

Note that generally only “redundant” sync samples should be provided in order to avoid complete DOM reload.

If the delivery is included, then the sample decode time serves as a delivery indication as well as providing the information by what latest time (on the media timeline) the object needs to be received. The video and audio element no longer may just point to a single resource, but use MSE and track buffers to append the media segments to the track buffer.

2.3 Implementation Considerations

The diagram in Figure 2 is one possible implementation if for example the HTML-5 Track Handler is natively available. This may for example interesting for Type 1 clients for which simple HTML-5 information is sent, possibly only a launch page and interactive data accessible through XHR w/o the push mechanism. In another implementation, the HTML-5 Track Handler may be implemented in Java script entirely and the make use of the data in the track to launch the service. In this case the Java script does parsing of the ISO BMFF data and uses the track data to launch the presented page as well the dynamic metadata. The object and socket binding may be implemented in one client without using XHR or WebSocketAPIs. The same is true for the binding of the track to the media element. However, in both cases the same track data is used, just the implementation on the client is different.

[image: image3.png]
Figure 3 HTML-5 track handler in Javascript

The important aspect is that all data is regular HTML-5 data and no special media processing is added beyond what is available in HTML-5. Also the receiver is a regular HTML-5 processor w/o any special modules.

Also relevant is the content generation. An HTML-5 session with AV may for example be “recorded”/”generated” by just dumping the different pieces (launch page, request samples and push samples) into a file format with a non-timed launch page as well as the request samples timed when they get available (or are first referenced in the HTML-5 scene in media time) and the push samples are assigned a decode time when they were pushed on the network.

2.4 Alternatives Options

2.4.1 Event-based Option

Figure 4 provides and event based alternative to the track model. In this case DASH App events are extracted from a track and event handler and passed to the appropriate application. The issue is that the application and web page need to be downloaded with an original page that is outside of the Media Presentation. One could also define dedicated WebSocket events or XHR events, but they miss the details on binding and so on. The ISO BMFF presentation or DASH/CMAF are not complete.

[image: image4.png]
Figure 4 Event-based alternative

Based on the lack of support of this environment and the missing functionality in browsers, this is not encouraged to be used.

2.4.2 Non-media time scheduling using delivery

In yet another approach the FLUTE concept is used.

· The XHR samples are easily solved with FLUTE, but timing is not aligned with media and this limits the applicability. In no case the data presentation is complete.

· The WebSocket approach needs broadcast of web socket push data with labelling which is not supported today.

2.5 Strawman Track Design

Based on the discussion, as a starting point, we propose the following strawman design of ISOBMFF tracks for web content carriage. We suggest to start a WD either at this or next MPEG meeting.

The strawman design is summarized as follows:
· Use a text track, with handler type ‘text’, and MIME type ‘text/htm5’.
· Sample entry design

· The sample entry type is ‘htm5’.

· An HTML5ConfigurationBox is defined, which is mandatory to be included into the sample entry and contains the following information:

· Basic HTML-5 and JavaScript (including JSON) information, such as the versions of the respective specifications, required and optional APIs, and so one.

· An array of JavaScript codes that may be referred to in the samples.

· Sample design

· Sample definition: A sample is either

· 1) an HTML-5 page plus some JavaScript codes as the launch page. This serves as a launch sample and may also be used a full sync sample (reloads the page). The HTML-5 page may also be provided as redundant sync sample.- This sample is referred to as “launch” sample

· 2) some binary objects that are pushed to a specific websocket API at decode time (synchronized to media playout). It is the responsibility for the launch page to provide a proper binding between the binary object and the websocket API in the launch page. Such samples are no sync samples as they depend on the existing of the launch page. This objects are referred to as “push” samples.

· 3) objects that can be accessed through HTTP requests (XHR would be the API) in order to react to interactivity or also load objects based on execution. The binding between launch page and the object is through an http URL. The sample may contain additional information on the management of the object, for example cache directives and so on. Examples are if the sample can be removed from the track handler buffer after being requested or is needs to maintained, etc. Such samples are referred to as “pull” samples.

· The launch page may be provided as non-timed item in the track header or it may be provided as regular sample in the track, timed with decode time 0.

· The decode time is interpreted depending on the sample type

· For “launch” samples, the decode time is the time at which media time the page needs to be loaded into the HTML-5 engine.

· For “push” samples, the decode time is the time at which the sample is pushed into the WebSocketAPI.

· For “pull” samples, the decode time is the earliest time at which the sample may be requested by the HTML-5 processor, i.e. the time at which the contained object is available.

· Samples may be embedded in the track or external referencing may be done. In particular for the case of pull samples, external referencing may be done.

· The JavaScript syntax is extended to be able to refer to a track in the file by using the track ID as well as an index to the array of JavaScript codes in the sample entry. For clients that rely on exiting standard JavaScript syntax, the file parser needs to translate the new referencing mechanism to what is compliant with the exiting standard JavaScript syntax.

· Media type for htm5 in the track that permits to also add configuration information into the media type, for example on required APIs, etc.

· Track binding between media tracks in the same presentation (ISO BMFF, DASH presentation, etc.) needs to be carried out. There are a few options:
· Usage of the source element and provide a binding through a well defined new URI. For example a track://<tracknumber> may be defined to refer to a track. The resolution is up to the browser.

· Alternatively an http binding may be done, similar to track contained resources. However, then there needs be indication for external binding.

· Yet another alternative is to use of MSE such that the byte streams of the track can be sent to the browser. This option seems to be most suitable. This may for example be done by an implementation that uses the track URI to use MSE and JavaScript to load the media files in a synchronized manner.

· A new track reference type, 'mdtk', is defined, for an HTML/XML (and here specifically, an HTML-5) track to refer to the media tracks that are tagged in at least one of HTML/XML documents contained in the samples of this track.

· Multiple HTML-5 tracks are allowed. When multiple HTML-5 tracks do exist in a file, a differentiation between the tracks needs to be signalled. One example could be different display resolutions or devices. For this purpose, we can add a field of target display resolution into the HTML5ConfigurationBox. Alternatively, a single launch may always be used, but then multiple tracks may be in the file that are dependent and only specific tracks are accessed.

2.6 Demonstrating the Framework

2.6.1 Overview

Demonstration of the framework based on the data processing model is facilitated by the fact that its significant part relies on existing technologies with existing stable implementations. On the receiving side of things, only the HTML track handler needs to be implemented. Similarly, on the content generation side, HTML track packager would need to be implemented. Once these modules are implemented, a real-time interactive prototype is realized for demonstration using an existing browser, e.g. Chrome browser, Open Source socket- and HTTP-Servers.

2.6.2 Demonstration Scenario

A user launches the browser to access an interactive stream of a scientific documentary on the internet using the HTTPS URL of the stream: https://example.com/InteractiveStream.mp4 . Upon accessing this URL, a fully featured web-page appears with two video stream thumbnails presenting 2 options: play the feature or play behind the scenes track. Upon clicking one of them, the movie plays in the full browser window with thumbnail images of the presenters for the next 30 seconds. Clicking one of the thumbnails opens the presenter profile in a new window.

2.6.3 Realization Architecture
All the data for presenting the demo is embedded in the interactive file except the presenter profile which is accessed from the open internet. If service worker is needed (since there is no support for HTML track decoding via MSE for the expected timeframe; we may need to demultimplex the stream also because of lack of current support for HTML track natively), its realization needs to be seen: it can either be pre-loaded, facilitated by accessing a glue URL, or by server-side scripting. A simplification could be done if the HTML track is offered separately from audio/video, this however will reduce the impact of the demo.
3 Status MPEG from N16944 (also attached)
3.1 Carriage of Web data in ISOBMFF

3.1.1 Overview

ISO/IEC 14496-12 specifies a format for the storage of timed resources such as media streams and resources for which no timed stream structure exists or when the timed stream structure does not need to be exposed.

The following specifies how this format can be used to store Web resources, and defines associated brands. It also specifies how references from these Web resources to the file that carry them are handled.

The specified storage enables the delivery of synchronized media and web resources as supported by ISO/IEC 14496-12: file download, progressive file download, streaming, broadcast, etc.

Editor's note: We should probably discuss the different handling of sparse metadata, which probably should rather be delivered as non-timed assets rather than timed-assets. This would avoid issues with fragmented tracks having no samples for a long period of time. This would mean using MetaBoxes in movie fragments, with clearer semantics than the EventMessageBox.

Editor’s note: In all cases, it should be ensured that the file/presentation contains sufficient information such that the file can be played back in a regular browser. This may for example require a dedicated launch page that is used by browsers.

Editor's note: We should make sure that the file describes the required capabilities to process the file. This could be done by referencing Web profiles defined by other organizations, through the MIMEBox, similarly to how it is done in 14496-30.

3.1.2 Timed Web Assets

3.1.2.1 Overview

Storage of web resources (HTML, JavaScript …) can be done using tracks when timed decoding and presentation is desired, including operations such as seeking, fast forwarding, trick play, etc. In such case, it is assumed that a Web resource carried in a sample is to be processed (e.g. parsed and interpreted) by the web resource processor (e.g. web browser) at the sample presentation time. This allows Web processing (e.g. rendering or JavaScript execution) to be synchronized with other tracks such as audio/video/subtitles tracks. More details on the processing of these tracks are given in the hypothetical processing model in Annex XXX.

Several types of tracks are defined for different purposes:

· Tracks delivering HTML content that may be used as overlay when playing the other media tracks and that may change over time. Such tracks should not reference the other media tracks (audio, video). HTML content carried as specified in 2.3 should rather be to the other media tracks (audio, video…). This kind of track may also be used to simply provide advanced image overlay.

· Tracks delivering JavaScript code. This code is to be evaluated in the context of an HTML document, previously loaded either by the application prior to the loading of the ISOBMFF file, or by the loading of a sample from the previous type of track, or by the loading of an item as described in 2.3.

· Tracks delivering metadata, as specified in HTML
, to be used by internal page JavaScript code, previously loaded either by the application prior to the loading of the ISOBMFF file, or by the loading of a sample from the previous type of track, or by the loading of an item as described in 2.3.

Note: This specification defines the storage and delivery of resources referenced by the content one of the above tracks using mechanisms for the delivery of non-timed resources as specified in 2.3 in combination with the use of movie fragments.

Editor's note: We should make sure that in environment where only single track files are used (e.g. CMAF) the use cases are still satisfied. In particular, one can still put JS in the HTML track.

Editor's note: Should we include a type for tracks that contain multiple samples with HTML content and that reference the video. This type of track might be problematic, especially in terms of flashing at sample boundaries and of video playback continuity.

Editor's note: We probably should indicate the dependency of the JavaScript track to any other track (e.g. the HTML track) or items (normally possible since track ids and item ids share the same scope) when possible (i.e. when the HTML context on which the JS depends is not provided out-of-band). This probably needs a new track reference (e.g. 'ovly').

Two models for the dependencies of the tracks can be envisaged:

a) the track is self-contained, and has no dependency to any parent HTML. For example, it is an HTML track that can be rendered on its own; or it is a JavaScript track that does not dispatch any event, but executes code. This can be for example the case if the JS creates an overlay using the Canvas API, but also if it does not assume any specific HTML (but only an empty HTML <html><body></body></html>) and creates all the HTML elements. In this case, no HTML entry point is required.

b) The track has dependency on some outer context. For example, it is a JavaScript track and only contains calls to functions defined somewhere else (see example 4.3). Alternatively, it is a WebVTT track and the associated processing is contained in a JavaScript file. In that case, the track cannot be used without the surrounding context, the HTML and JavaScript. Therefore, an HTML/JS entry point is required and should be in the same ISOMBFF file.

A single file may contain multiple Web-based tracks. The processing of some tracks (e.g. JavaScript) may be required by some other tracks (e.g. HTML track). The selection of which sets of independent tracks to play is implementation specific. It may be done based on metadata also given in the file (profile capabilities, language information) or based on user input (e.g. through a GUI).

3.1.2.2 Track Layout

As specified in ISO/IEC 14496-30, unless specified by an embedding environment (e.g. by an HTML page delivered out-of-band or delivered in-band and identified as the file entry point as specified in 2.3), the layout of tracks, including of overlay HTML tracks and images, is specified using the TrackHeaderBox of the different tracks.

3.1.2.3 Overlay HTML Tracks

The brand 'htmt' is used to signal the presence of tracks with the following constraints:

· The track handler type is 'text'
· The sample entry format is 'stxt' and:

· its mime_format field is set to 'text/html' or 'application/xhtml+xml',

· its content_encoding field contains either an empty string or a value allowed in HTTP's Content-Encoding header

· Each sample contains HTML code, and has the following constraints:

· it is marked as a sync sample (either using the 'stss' box or using the sample_depends_on flag set to 2)

· it may be marked as redundant with the sample_has_redundancy flag set to 1

Editor's Note: Maybe, we should mention that loading of a new HTML sample is equivalent to navigating to the document contained in the new sample. It is necessary? Browsers maintain information associated to the document such as navigation information. Would this create problems?

Editor's Note: We should mention that seeking into a sample is meant to be equivalent to seeking at the beginning of the sample (no interpolation of inner animations like CSS or JS-based)

3.1.2.4 JavaScript Tracks

The brand 'hjst' is used to signal the presence of tracks with the following constraints:

· The track handler type is 'meta'
· The sample entry format is 'stxt' and:

· its mime_format field is set to 'application/javascript' or 'text/javascript',

· its content_encoding field contains either an empty string or a value allowed in HTTP's Content-Encoding header

· Each sample contains JavaScript code and has the following constraints:

· it may be marked as a sync sample (either using the 'stss' box or using the sample_depends_on flag set to 2)

· it may be marked as redundant with the sample_has_redundancy flag set to 1

Editor's Note: We should warn the user that marking JS sample as sync sample might be tricky because you need to make sure that the application JS state is indeed the same as if you did start from the beginning. We should also discuss that redundant samples should not be loaded twice because this could possibly give a wrong result.
Editor's Note: We should also probably discuss security issues with these types of tracks.

3.1.2.5 WebVTT Metadata Tracks

The brand 'hvtt' is used to signal the presence of tracks with the following constraints:

· The track handler type is 'meta'
· The sample entry format is 'wvtt', as specified in ISO/IEC 14496-30 and:

· its config value is "WEBVTT\r\n"
Editor's note: Should the config contain the header "kind: metadata"
· The KindBox is present in a UserDataBox in the TrackBox with the following values:

· schemeURI: about:html-kind, as specified in HTML

· value: metadata, as specified in HTML

· Each sample contains text cues and has the following constraints:

· it may be marked as a sync sample (either using the 'stss' box or using the sample_depends_on flag set to 2)

· it may be marked as redundant with the sample_has_redundancy flag set to 1

3.1.2.6 Image Overlay Tracks

Images are important Web resources. Image tracks, as specified in ISO/IEC 14496-12 or ISO/IEC 23008-12, can be used to provide image overlays. Overlay HTML tracks as specified 2 may also be used to provide advanced image overlays, without interactivity, when the HTML content reference images (either in tracks or as items).

3.1.3 Non-timed Web Assets

3.1.3.1 Overview

Web resources can be stored as items, when there is no specific time associated to the loading of that resource (entry point CSS, HTML, JS). Items are declared in MetaBox which can be placed in initialization or media segments.

Editor's note: make sure that this is clear that the MetaBox can be used in initialization segments and in movie fragments.

3.1.3.2 Web Items

The brand 'htmi' may be used to signal the use of a MetaBox with the following constraints:

· it is present at the file level

· it uses a HandlerBox with the handler_type set to 'html'
· it contains a PrimaryItemBox which declares as primary item a resource of type 'text/html', or 'application/xhtml+xml',

· it does not use any DataInformationBox, ItemProtectionBox or IPMPControlBox
· it uses a ItemInformationBox with the following constraints:

· its version is either 0 or 1

· each item is described by an ItemInfoEntry with the following constraints:

· its version is set to 0

· its item_protection_index is set to 0

· if the item is referred to by a URL in the content of another item, its item_name is equal to that URL.

· it uses an ItemLocationBox with the following constraints:

· its version is set to 1 or 2

· each item is described by an entry and values 0, 1 or 2 may be used for the construction method

· it may use any other boxes (such as ItemReferenceBox) not explicitly excluded above

Editor's note: Should the content of the item be the body of an HTTP response? This could help with providing cache directives. This raises the question of the time associated to cache directives: real time or media time. The processing model in the package is typically on media time.

Editor's note: Do we need to allow other packages as primary items, in particular W3C packages?

Editor's note: Should we allow Track level MetaBoxes for resources are used only by a Track?

Editor’s note: Such non-timed items may still be important, for example they may serve as an entry point and they may change, if random access is needed.

3.1.4 URLs to Web resources embedded in ISOBMFF files

If Web resources are embedded in an ISO/IEC 14496-12 file (either in track samples or items as described above), and if any of these resources contains URLs to other resources also embedded in the same ISOBMFF file (including to the ISOBMFF file itself (e.g. in a video tag)), the following constraints apply on the file:

· A MetaBox shall be present at the file level with the following constraints

· For each URL to a resource embedded in the ISOBMFF file, the item_name for the item corresponding to that resource shall be set to that URL

Editor's note: This probably should cover URI. But, are URI used to reference resources in Web content?

Editor's note: Should we make any difference between relative and absolute URL?

· If a resource embedded in the ISOBMFF file uses a URL to that same ISOBMFF file, an additional item shall be added whose item_name is set to that URL and the item location describes the entire file (offset: 0, length entire)

Editor's note: Should the offset/length point rather to the 'moov' ? or 'ftyp' + … + 'moov' ? or the entire file ? Probably not the entire file for the fragmented, streaming case.

NOTE: Because items store the same URL that is used in the Web resources, the Web content can be consumed when it is embedded in the ISOBMFF file without editing compared to when it is not embedded.

3.2 Hypothetical Processing Models

In this document, it is assumed that players/readers will process the media and web resources according to the hypothetical models below.

The first model applies when a media player integrates a Web engine. In that case, the ISOBMFF file is processed by the media player, stream samples and items are extracted, and stream samples are processed synchronously. The HTML overlay tracks are processed by instantiating a web engine. The video decoding and web engine rendering are then combined for final display, with frame accurate rendering. It is depicted in Figure 1.

Editor's note: Frame accurate synchronization is a goal but may be hard to achieve given that model assumes instantaneous processing of the sample content while in practice it may require a lot of processing. The current model guarantees synchronization at the decoding side and gives the intention to the application that presentation should be synchronized as well, but this is left to the implementation. Maybe profile should limit the complexity of the samples.

[image: image5.png]
Figure 1 – Hypothetical Processing Model for Media Player integrating a Web engine

Editor's note: Figure 1 and Figure 2 should be oriented in the same direction (rendering on the right).

The second model, depicted in Figure 2, applies when the Web engine is initiated, by loading some Web content (e.g. an HTML page) and when that page loads the media content (e.g. using a video or audio tag).

[image: image6.png]
Figure 2 - Hypothetical Processing Model for Web Engine including Media Engine

Conceptually, all resources stored as items in the ISOBMFF file are extracted from the file and placed in the cache of the Web engine, using the item_name as URL. These resources can then be available for downloads initiated by the Web engine (such as using the XmlHttpRequest or Fetch APIs). This applies even in the case of streaming using ISOBMFF fragments, when items are delivered progressively by placing MetaBoxes in segments.

Editor's note: add a description about the possible combination of the models.

It should be noted that both models assume that the results of the execution of the JavaScript code contained in a sample of a JavaScript track are available at the presentation time of that sample, and similarly that the rendering of HTML contained in an HTML overlay track sample is done at the presentation time of that sample. Concrete implementations might have to take into account processing delays to achieve synchronization and might have to prefetch resources that are not embedded in the file.

Editor's note: We should probably discuss if the model for media samples assumes that they are "delta-functions" that happen at the sample presentation time or if they document a state that is valid during the sample duration. It may dependent on the track type: on the one hand, unless the JavaScript code in a sample is idem-potent, calling it twice (after splitting a sample into two samples) will not result in the same thing; on the other hand, WebVTT metadata dispatched twice with the same value should not create problems.

3.3 Worked Examples of the use cases

3.3.1 Embedded HTML entry point playing the video content

Assuming the Web content is composed of the following HTML document:

<!doctype html>

<html>

 <body>

 <video src="file.mp4"></video>

 </body>

</html>

The ISOBMFF file can be structured as follows:

· track 1: audio track

· track 2: video track

· one top level MetaBox with the following

· handler: html

· primary item: 1

· items

· id: 1, content_type: text/html, name: (any name), location: offset O1, length L1, item content is the HTML file

· id 2: content_type: video/mp4, name: file.mp4, location: 0, offset: entire file length, item content is the entire ISOBMFF file

If played by a non-web-aware media player, only the audio-video tracks are played.

If played by a web-aware media player, first the HTML page is loaded and then the audio/video tracks are played within the HTML page.

3.3.2 Embedded HTML entry point playing the video content with additional JavaScript embedded static file

Assuming the Web content is composed of the following HTML document and of a JavaScript file:

<!doctype html>

<html>

 <head>

 <script src=file.js">

 </head>

 <body>

 <video src="file.mp4"></video>

 </body>

</html>

The ISOBMFF file can be structured as follows:

· track 1: audio track

· track 2: video track

· one top level MetaBox with the following

· handler: html

· primary item: 1

· items

· id: 1, content_type: text/html, name: (any name or no name), location: offset O1, length L1

· id 2: content_type: video/mp4, name: file.mp4, location: 0, offset: entire file length

· id 3: content_type: application/javascript, name: file.js, location: X2, offset: L2

3.3.3 Non-embedded HTML playing video content and JavaScript track from an ISOBMFF file

Assuming the Web content is the following HTML code (not contained inside the ISOBMFF file but delivered out-of-band):

<!doctype html>

<html>

 <head>

 <script>

 function render(param) {

 // some logic to alter the page rendering based on a parameter

 }

 </script>

 <script src=file.mp4#trackID=3">

 </head>

 <body>

 <video src="file.mp4"></video>

 </body>

</html>

The ISOBMFF file can be structured as follows:

· track 1: audio track

· track 2: video track

· track 3: JavaScript Track, with the following samples:

Sample: presentation time: 0, sync sample

render(0);
Sample: presentation time: 1s, sync sample

render(0.5);
Sample: presentation time: 5s, sync sample

render(2);
In this example, the content of Track 3 is loaded and executed at the given presentation time and synchronized with the audio video content.

3.3.4 Delivery of non-timed resources required by web tracks

Assuming there is an HTML overlay track, with multiple samples as follows:

Sample 1: presentation time: 0, sync sample

<!doctype html>

<html>

 <body>

 </body>

</html>

Sample 2: presentation time: 1s, sync sample

<!doctype html>

<html>

 <body>

 </body>

</html>

Sample 3: presentation time: 5s, sync sample

<!doctype html>

<html>

 <body>

 </body>

</html>

The different image files required by the HTML documents can be stored in one MetaBox as follows:

· handler: pict

· primary item: 1

· items

· id: 1, content_type: image/jpeg, name: file1.jpg, location: offset O1, length L1

· id 2: content_type: image/jpeg, name: file2.jpg, location: offset: O2 length: L2

· id 3: content_type: image/jpeg, name: file3.jpg, location: offset: O3, length: L3

The MetaBox should be placed at the Track level, but may be placed at the file level if the JPEG images are meant to be used by other tracks or items. Additionally, the content of the MetaBox may be split into several MetaBoxes. Assuming the file is segmented with a segment length of 1s, the composition of the segments would be:

Segment 1:

· sample 1

· a MetaBox with item 1 only

Segment 2:

· sample 2

· a MetaBox with item 2 only

Segment 3 / Segment 4 / Segment 5:

· sample 2, marked as redundant

· a MetaBox with item 2 only

Segment 6:

· sample 3

· a MetaBox with item 3 only

The track can be marked as dependent on the item 1, 2 and 3 using 'dpnd' track references. Samples in the track may also be marked with a SampleToMetadataItemEntry sample group 'stmi' to indicate the sample dependency to the items.

3.3.5 Track layout using HTML entry point

Assuming the file 'file.mp4' contains only audio/video and that the file 'overlay.mp4' contains only a HTML overlay track. The following HTML file could be provided to indicate that the overlay track is meant to be displayed as a subtitle track.

<video src="file.mp4">
<track src="overlay.mp4" kind='subtitles'>
</video>

Note: the 'graphics' kind does not currently exist in HTML.

Similarly, assuming that the file 'file.mp4' contains an audio track (id 1), a video track track (id 2), and one overlay HTML track (id 3), the HTML providing the track layout could be the following:

<video src="file.mp4">
<track src="file.mp4#trackID=3">
</video>

Note: the HTML could be embedded in the file as an item.

3.3.6 Track layout using ISOBMFF Track headers

Assuming that the file 'file.mp4' contains an audio track (id 1), a video track track (id 2), and one overlay HTML track (id 3), and that there is no HTML providing the track layout, a media player can rely on the track header information:

track 1 (audio): width: 0, height 0

track 2 (video): width: 3840, height: 2160, layer: 0

track 3 (HTML overlay): width: 3840, height: 2160, layer: -1

In this case, the HTML track will be rendered on top of a the video track with a rendering window size equal to that of the video track.

3.4 Annex – Possible architectures in Web Browsers

3.4.1 Overview

There are several possible ways to implement the above processing models in Web Browsers. This annex introduces several options.

Editor's note: We should add a discussion about the use of Media Source Extension that it should be extended to handle the track types defined here.

3.4.2 Using ServiceWorkers

A Service Worker is a JavaScript piece of code that runs in a Web browser outside of the context of a web page but associated to a domain. A Service Worker can intercept all request made by all web content coming from that domain. In the context of this document, a Service Worker can be used to extract items and place them in a cache; and to extract the JavaScript samples and forward them to the script tag.

3.4.3 Using TextTrack cues

HTML defines the TextTrack API. This API can be used to trigger the processing of HTML or JavaScript code at media presentation times. This requires the HTML, JavaScript code, or WebVTT metadata cues to be extracted and placed into cues whose time is the sample presentation time.

3.4.4 Using WebSocket

An implementation may also decide to use a Web Socket connection between the HTML page in the browser and the media player JavaScript extractor. The extractor would provide the JavaScript code to be executed at the sample presentation time.

3.4.5 Using MSE

It should be possible to consume ISOBMFF files with the tracks defined in this document with the MediaSource API. In particular, currently MSE insists that presentations with unrecognized tracks be ignored.

4 Relation of MPEG work to SerInter

· Enable delivery of notifications to interactivity applications, both Native and Web app based, at specific and potentially arbitrary times during the consumption of an affiliated 3GPP User Service, of the occurrence of interactivity events, and which dynamically enable the interactivity application to perform its interactivity-specific tasks. Interactivity features should be supportable in the consumption of:

· live streaming services, e.g., linear TV

· time-shifted streaming services, e.g., Video-on-Demand,

· non-real-time file-based services.
This aspect is covered by the use of a Web Track as designed by MPEG. The key issue is that the track synchronizes with media time in file format tracks and therefore are applicable to all the three use cases, in the exact same manner. The Web Track is treated as any other media track.
· Devise any necessary but missing functionality at the service layer to support personalization of service interactivity by providing unique and user-specific engagement and presentation experience during the incidences of interactivity events, for example, by making use of known information on the user/associated device such as profile/preference knowledge, current user location, or time-of-day.
HTML-5 and web technologies provide such features in general, for example by the use of cookies, authentication, geolocation and so on. If 3GPP requires specific APIs or functionalities, this may have to be added, for example by extending with the 3GPP HTML-5 profile.
· Define the means for the BM-SC to signal, and the MBMS client to unambiguously identify, interactivity-related content items (e.g. HTML pages, Javascript and CSS files, multimedia assets) for delivery/reception over an MBMS or unicast bearer.
By the use of the MPEG web track, the delivery is identical to audio and video segments and can be fully integrated in MBMS and unicast PSS.
· Support the measurement and reporting of interactivity-related usage by the user/device, including the following functionalities:

· Use of MBMS service layer mechanisms to announce the parameters and criteria regarding interactivity consumption reporting.

· Capability for the MBMS service provider to either randomly or selectively control the user/device population to perform such reporting.

· Utilization of existing MBMS service layer mechanisms and architecture (e.g., MBMS reception or consumption reporting)
In a cleanly layered architecture, the web interactivity track would not be different to any other means. What may be necessary that in contrast to a simple DASH interface in the MBMS client case, also consumption reporting is added to the MBMS-API in TS 26.347.
Definition of a service framework that can ensure the protection of user identity and privacy associated with the interactivity usage reporting.
5 Proposal

Based on the discussion in this document, the following is proposed:

· 3GPP should review the document from MPEG carefully and consider the MPEG web interactivity work as a potential candidate in the context SerInter
· Respond to MPEG to the LS with a clear description of the relevant use cases and invite MPEG to coordinate the work between SerInter and MPEG web track
� � HYPERLINK "https://html.spec.whatwg.org/multipage/media.html" \l "best-practices-for-metadata-text-tracks" �https://html.spec.whatwg.org/multipage/media.html#best-practices-for-metadata-text-tracks�

� � HYPERLINK "https://html.spec.whatwg.org/multipage/media.html" \l "identifying-a-track-kind-through-a-url" �https://html.spec.whatwg.org/multipage/media.html#identifying-a-track-kind-through-a-url�

� � HYPERLINK "https://html.spec.whatwg.org/multipage/media.html" \l "text-track-model" �https://html.spec.whatwg.org/multipage/media.html#text-track-model�

- 25/25 -

