
3GPP TSG SA4#92 meeting
(S4-170043
23 - 27 January, 2017, Tallinn, Estonia

	CR-Form-v9.9

	 PSEUDO CHANGE REQUEST

	

	(
	26.347
	CR
	
	(
rev
	-
	(
Current version:
	1.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(
	UICC apps(
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(
	TRAPI: Proposed Updates to TS26.347

	
	

	Source to WG:
(
	Qualcomm Incorporated

	Source to TSG:
(
	

	
	

	Work item code:
(
	TRAPI
	
	Date: (
	17/01/2017

	
	
	
	
	

	Category:
(
	C
	
	Release: (
	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(
	Miscalaneous corrections

	
	

	Summary of change:
(
	 Changes throughout

	
	

	Consequences if
(
not approved:
	That would be bad

	
	

	Clauses affected:
(
	All but 6

	
	

	
	Y
	N
	
	

	Other specs
(
	
	
	 Other core specifications
(
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(
	

Introduction

The present document has been created as part of the MBMS Transport Protocol and API (TRAPI) work item and is based on the conclusions of TR26.852 [6] in order to provide application-friendly methods and interfaces to access 3GPP MBMS User services. The document is primarily targeted for developers of web and user applications and attempts to abstract complex MBMS procedures in simple methods and interfaces. MBMS Client vendors can implement this API and URL to simplify the integration of MBMS User Services.
1
Scope

The present document provides application methods and interfaces between an MBMS-aware application and the UE MBMS Client to access 3GPP MBMS User services. The purpose of the document is the definition of enablers in order to simplify the usage of MBMS in web-centric as well as app-based service environments.

This specification defines several APIs to access MBMS User Services and a URL to access resources available as part of an MBMS User Service. The MBMS User Services are defined in TS 26.346 [5] and are not part of this specification.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".
[3]
3GPP TS 22.246: "Multimedia Broadcast/Multicast Service (MBMS) user services; Stage 1".

[4]
3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description".
[5]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".
[6]
3GPP TR 26.852: "Multimedia Broadcast/Multicast Service (MBMS); Extensions and profiling".
[7]
3GPP TS 26.247: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".

[8]
IETF RFC 2616: " Hypertext Transfer Protocol -- HTTP/1.1".
[9]
Object Management Group: “Interface Definition Language™ (IDL™) 4.0”
[10]
IETF RFC 3066: "Tags for the Identification of Languages".
[11]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
[12]
3GPP TS 29.116: "Representational state transfer over xMB reference point between content provider and BM-SC".
[13]
ISO/IEC 23009-5:2016: "Dynamic Adaptive Streaming over HTTP (DASH): Server and Network Assisted DASH (SAND)."
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [x] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [x].

MBMS-aware Application: an application in the user space that communicates with the MBMS client through APIs as defined in this specification.

Application Service: A service for which all associated resources are delivered through an MBMS User Service including broadcast and unicast. The service may have an entry point document defined in the User Service Description.

MBMS Client: a function that implements functionalities defined in TS26.346 and provides APIs and protocol-related methods to expose relevant functionalities to an MBMS-aware application.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

API
Application Programming Interface

IDL
Interface Definition Language
JSON
JavaScript Object Notation
USD
User Service Description

4
Overview

4.1
Introduction

This specification addresses a specific interface for an end-to-end application service, namely the interface between the MBMS client and the MBMS-aware application as shown in Figure 4.1-1. An application service provider may provide content through xMB (see TS26.346 [5] and TS 29.116 [12]) to the BMSC, but may also provide information directly to an MBMS-aware application. The BMSC uses MBMS User Services as well as MBMS bearer services and unicast bearers to communicate with MBMS client. This specification deals with the interface between the MBMS client and the MBMS-aware application, referred to as Transport Protocol and Application Programming Interface (TRAPI).

[image: image1.emf]BM-SC

MBMS-

GW

MME

E-UTRAN

SGi-mb

SGmb

Sm

M1

Application

Service

Provider

xMB

M3

MBMS-aware

Application

UE

Modem

MBMS

Client

TRAPI

Application Service Discovery

TS26.346 including broadcast and unicast

Figure 4.1-1 End-to-end Architecture for Application Service Providers using MBMS for Delivery
4.2
Network Architecture and MBMS User Services (Informative)

According to TS26.346 [5], three distinct functional layers are defined for the delivery of an MBMS-based service:
1) Bearers: Bearers provide the mechanism by which IP data is transported. MBMS bearers as defined in 3GPP TS 23.246 [4] and 3GPP TS 22.146 [3] are used to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of MBMS-based services. MBMS bearers may be used jointly with unicast PDP contexts in offering complete service capabilities.

2) Delivery Method: When delivering MBMS content to a receiving application one or more delivery methods are used. The delivery layer provides functionality such as security and key distribution, reliability control by means of forward-error-correction techniques and associated delivery procedures such as file-repair, delivery verification. Three delivery methods are defined, namely download, streaming, and group communication. This specification does not address group communication.

3) User service:
The MBMS User service enables applications. Different applications impose different requirements when delivering content to MBMS subscribers and may use different MBMS delivery methods.
MBMS User Service architecture is based on an MBMS client on the UE side and a BM-SC on the network side. Details about the BM-SC functional entities are given in figure 4 of TS26.346 [5].

1. The BM-SC and UE may exchange service and content related information either over point-to-point bearers or MBMS bearers whichever is suitable. Among others, the following MBMS procedures are defined in TS 26.346 [5]:
--
2. -
User Service Discovery / Announcement providing service description material to be presented to the end-user as well as application parameters used in providing service content to the end-user.
3. -

4. -
MBMS-based delivery of data/content from the BM-SC to the UE over IP multicast or over IP unicast.
5. -
Associated Delivery functions are invoked by the UE in relation to the MBMS data transmission. The following associated delivery functions are available:
-
File repair for download delivery method used to complement missing data.
--
-
Delivery verification and reception statistics collection procedures.
4.3
MBMS Application Services

4.3.1
Introduction
The MBMS system may provide services to an application for which all associated resources are delivered through an MBMS User Service including broadcast and unicast. The services may be made accessible through APIs defined in this specification. This specification defines an initial set of application services.
The specification may be extended to add other application services.

The MBMS Application Services that are covered
 by this specification are defined in this clause.

4.3.2
File Delivery Application Service

The File Delivery Application Service API provides MBMS Aware Applications with interfaces to manage the reception of files delivered over File Delivery Application Services. Some of the interfaces defined allow an application to get information on the available MBMS File Delivery Application Services and possibly on the files scheduled to be carried on these services; to start and stop the capture of files on these services; and to allow the MBMS Client to provide notifications associated with the reception of files. Clause 6.2 provides a complete description and the associated uses for the interfaces in the File Delivery Application Service API and includes an abstract IDL definition for these interfaces.

4.3.3
DASH-Over-MBMS Application Service

The DASH Streaming Service API defined in clause 6.3 provides MBMS Aware Applications with interfaces to manage the reception of DASH streaming content (as defined in TS 26.247 [7]) delivered over DASH Streaming Services (as defined in TS26.346 [5], clause 5.6). Some of the interfaces defined allow an application to get information on the available DASH Streaming Services; to start and stop the reception of DASH streaming content on these services; and to allow the MBMS Client to provide notifications associated with the receptions of DASH streaming content. Clause 6.3 provides a complete description and the associated uses for the interfaces in the DASH Streaming Service API and also includes an abstract IDL definition for these interfaces.

4.3.4
RTP-over-MBMS Streaming Service

RTP-over-MBMS Streaming Service provides the application with interfaces to access RTP eMBMS Service. The application may request start or stop any available RTP streaming service. Application will receive information about the RTP data.

6.
4.4
Specification Outline

The following aspects are defined in this specification:

· The definition of different interfaces as part of client reference architecture in clause 5.

· A set of control APIs (C-API) for each application service as defined in clause 4.3
. The definition provide the ability to independently develop MBMS-aware applications and MBMS clients, even for different operating systems and execution environments, but rely on the service APIs to communicate with the MBMS client and to make use of the MBMS functionalities. This is defined in clause 6.

· A set of user plane APIs (U-APIs) in case a service includes communication through HTTP interfaces, as for example DASH or other application services
. This is defined in clause 7.

· The mapping of the functionality to a URL handling and abstraction of the services in such environments. This is defined in clause 8.

5
Reference Client Architecture

5.1
Architecture

As an example, Figure 5.1 shows a service architecture for DASH-based streaming services over MBMS as defined in TS26.346 [5]. On the network side, an application and content provider uses DASH formats and provides these formats to a BM-SC, typically through the xMB interface. The BM-SC is controlled by an eMBMS provisioning system. The lower layers support the physical delivery of the data through regular LTE unicast as well as MBMS broadcast bearers.
The MBMS client receives the data and provides the data to the DASH client, but also communicates with an application in the device. The application may for example be a native application running on the operating system, a web browser and the application is controlled by JavaScript.
In addition, the MBMS client exchanges the information with the DASH client.

In TS 26.346 [5] the interface between the BMSC and the MBMS client for both unicast and broadcast related services and functions are defined. The interface between the MBMS client and the application are not specified. However, for quite many cases the application and the MBMS client are independently developed and deployed and interoperability is desired in order for applications and MBMS clients to exchange information.

The focus of this specification is to define app-developer and web-friendly interfaces and programming structures to enable such an application to interact with the MBMS client.

An application that communicates with the MBMS client through APIs and/or protocol handlers
as defined in this specification is referred to as MBMS-aware Application. The MBMS Client is a function that implements functionalities defined in TS26.346 and provides APIs and protocol-related methods to expose these functionalities to an MBMS-aware application.

[image: image3]

Figure 5.1 Reference Architecture for Client
The DASH client may be viewed as part of the MBMS-aware application, or it may be considered as a separate entity. In order to address the common use case that the DASH client is separate to the MBMS-aware application
, and as 3GPP defines interfaces into a DASH client in TS 26.247 [9] also interfaces to the DASH client function are in focus of this specification.
This specification addresses among others the definition of Control-APIs (C-API) between the MBMS client and the MBMS-aware Application and User Plane API (U-API) between the MBMS client and the DASH client.
5.2
Interface Overview

5.2.1
Application Control APIs (C-API)
Control APIs are used for service discovery, registration, notifications, state changes and other control messages between the MBMS-aware application and the MBMS client and for other control messages. Control APIs are primarily defined in clause 6.
5.2.2
User-Plane APIs (U-API)

The User-Plane APIs (U-APIs) are used to provide content delivered through MBMS User services to the MBMS Application. However, the data is using formats and APIs that are primarily MBMS independent such that for the applicaton the delivery over MBMS is obscured. User-Plane MBMS Client to Applicaion Interfaces are primarily introduced in clause 7.
7
User-Plane MBMS Client to Application Interfaces
7.1
Introduction
The following section defines potential interfaces between the MBMS client and the MBMS-aware application. The interfaces are typically within the device, but may also be supported over the network. The interfaces may used by implementations referring to the capabilities of the interfaces defined in this section.
7.2
File Copy Interface
The MBMS client may copy files delivered by MBMS User Services to a local file storage that is controlled by the MBMS aware application. The application is responsible for the management of the storage.
7.3
HTTP Interface
The MBMS client may provide an HTTP server such that the MBMS-aware application can access the files delivered over the MBMS User services by using regular HTTP Methods.
MBMS-aware applications communicating with the MBMS client over HTTP should support partial-file-accept requests and partial file responses as defined in TS26.346 [5], clause 7.9.2.1.

Without excluding other response options, as a response to a partial-file-accept request using a regular HTTP GET request an MBMS aware application may typically receive one of the following responses:

1. 200 OK with Content-Type set to the Media Type of the requested object

2. 200 OK with the Content-Type set to application/3gpp-partial and the message format according to the definition in clause 7.9.2.2 of TS26.346 [5].

3. 416 Requested Range Not Satisfiable with the additional information according to the definition in clause 7.9.2.2 of TS26.346 [5].

4. 404 Not Found

Case 1 is the regular response.

Guidelines for handling request responses according to case 4 from above are provided in Annex A.7 of TS26.247 [6].

Guidelines for handling request responses 2 and 3 from above are provided in Annex A.9 of TS26.247 [6].
7.4
DASH Robustness and SAND for DASH Servers and Clients
7.4.1
Introduction

The MBMS client acting as a DASH server may implement functions of a DASH server as defined in TS 26.247 [6].

The MBMS client acting as a DASH server may implement functions of a DASH-Aware Network Element (DANE) as defined in ISO/IEC 23009-5 [13].
Relevant functions are introduced in the following.
7.4.2
MPD rewrite

The MBMS client may rewrite the MPD to offer a valid service based on the data received in the DASH-over-MBMS service. This option may be used to support different functionalities.
7.4.3
Cache Status

For the application to query the cache status, the MBMS client may provide DaneResourceStatus messages delivered from the DASH Aware Network Element (DANE) to the application.

7.4.4
Unicast Broadcast Handoff

To support the handoff between unicast and broadcast, the MBMS client may offer the following options.
-
The usage of DaneResourceStatus in MPEG SAND [13].

-
The usage of the ResourceStatus in MPEG SAND [13].

-
The usage of identical and alternative content as available in TS 26.346 [5].

7.4.5
Adjustment of AvailabilityStartTime

To support adjust of the availability start time in the Media Presentation is provided by MPEG Server and Network Assisted DASH (SAND) using the ResourceStatus messages delivered from the DASH Aware Network Element (DANE) to the application.
7.4.6
Time Synchronization
The MBMS client if providing the content as a DASH server should offer the Time Synchronization as defined in clause 11.5.2 of TS 26.247 [6].

The DASH client of the MBMS aware application should support the Time Synchronization as defined in clause 11.5.3 of TS 26.247 [6].

7.4.7
Robustness
The MBMS client if providing the content as a DASH server should implement the Robustness Tools on the server as defined in clause 11.6 of TS 26.247 [6].

The DASH client of the MBMS aware application should support the the Robustness Tools on the client as defined in clause 11.5.3 of TS 26.247 [6].
8
MBMS URL Handling

8.1
General
The position of the MBMS URL Handler, and its interfaces are illustrated by the logical model shown in Figure 2, In that figure URL usage is shown as an alternative to an application written to use MBMS services using the MBMS API (left side of the diagram, described elsewhere in this specification).
The MBMS URL handler is positioned within the logical model of a system that has library support for fetching resources (files) referred to by URLs. In the model an (unchanged) existing, or new, application supports URLs that address 'file' resources. That application uses a generic URL resolution library ('Generic URL Resolution' in the diagram) to return the identified resource when the application needs the resource identified by a URL.
The logical model is that the the generic handler supports returning the resource given a URL of any type. That generic handler is supported by a set of protocol-specific handlers; by inspecting the scheme part of the URL (e.g. "http:") the generic handler in turn requests the resource of the appropriate protocol-specific handler. The request and response interfaces to the generic handler, and the protocol-specific modules are defined by the library (e.g. they may be object-oriented, function-based, or message-based). This specification defines the behaviour of the MBMS URL handler; however its request interface is defined by the library and environment which it fits into. The MBMS protocol-specific handler decomposes the URL form, and, possibly using the existing MBMS APIs, initiates the acquisition of the MBMS service that permits access to the identified resource, and acquisition of the indicated resource from that session, and returns that resource. The behaviour of the MBMS protocol handler is specified in this section.

Note that this logical model may be optimized and collapsed as desired in real deployments (e.g. many web browsers do not use a general URL library but instead support key protocols with built-in code, and the MBMS function may also act as an MBMS URL handler).

The "file" resource may be an entry point to a service (e.g. an MPD for DASH, or the root HTML for a web service), and it may be the case that there is a default resource defined for a service (just as done today when an HTTP server will, for example, return "index.html" when no file name is specified in the URL).

[image: image4.emf]

FTP URL
handler

MBMS
Application (Existing) Application

(Existing) Generic URL
Resolution handler

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 8.1: MBMS URL Handler

Annex A (informative):
Documentation Guidelines for APIs

A.1
Introduction and
MotivationAs this specification is primarily targeted at developers that use the MBMS function a few principle agreements were made.
1. The specification should set good practices for future API definition in 3GPP
2. The specification requires clear definitions of interface, function/element, messages, API, resource, etc.

3. The interfaces should be documented in the following manner:

a. Consistent graphical presentation

b. IDL for interface and message description

c. Doxygen for semantical description

d. Example Use Cases and Message Flows

4. The semantical description and messages flows include messages sent and received on each function as well as pre/post/error conditions
5. As IDL enables easy conversion to different languages, no program-language specific APIs (e.g. JSON, Java, or C) are necessary, but may in general not be prohibited. If IDL can provide a non-ambiguous translation to JSON, Java and C, then the documentation may be informative, otherwise it may be added to the normative specification as a referencable option.

Based on these considerations, some suggested documentation details are provided
A.2
Documentation Details

A graphical presentation of the interface is encouraged. Figure A.1 shows some examples using an informal notation. The existence of an interface can be implied even without using an explicit symbol for it. If a relationship symbol joins an element/function symbol and the relationship type involves an interaction—as opposed to, say, “is a subclass of,” that implies that the interaction takes place through the element’s interface.

[image: image5.png]
Figure A.1 Example Figure for Interface documentation
A.2.2
IDL for Interface Specification

Interface Definition Language (IDL) [9] is a standard language for defining function and method interfaces. It supports common primitive data types. Some of the base data types supported by IDL are int, Boolean, byte, char, double, float, long, short, and void *. IDL also supports signed and unsigned qualifiers, enumerations and more.

IDL's data types and definitions are both language-neutral and platform-neutral. This enables the definition of a common interface that may be implemented by different modules or components irrespective of the language and platform. An IDL interface provides a description of the functionality that will be provided by an object. It provides all of the information needed to develop clients that use the interface.
While IDL is not a programming language, there are tools that map IDL to just about every major programming language.
Below is a sample IDL definition of “order”
interface order {
 float calculate_tax ([in] float taxable_amount);
 float calculate_total([in] item_list items);
 bool place_order([in,out] item_list items);
}
A.2.3
IDL as Data Format

IDL is also proposed as the data format for message exchange.
A.2.4
Doxygen for API Semantics

Doxygen is a cross-platform documentation system for C++, Java, C, and IDL, etc. It provides a mechanism to document code syntax and semantics. It allows tagging comments in code that will be used to generate nicely formatted output. Available tags enables capturing methods, parameters, pre and post conditions for calling methods as well as highlighting error condition and exceptions.

Doxygen can be used to generate on-line class browser (in HTML) and/or an off-line reference manual from a set of source files. Below is a sample of Doxygen comments for a function definition.
/** @name binary_search

 * @brief Search a array for a value using binary search.
 * @param[in] a Array of floats.
 * @param[in] n Number of elements of @a a to search.
 * @param[in] v Value to search for.
 * @return An index into array @a a or -1.
 *
 * @pre 0 <= n <= Size of the array @a a.
 * @pre For all i,j with 0 <= i < j < @a n, @a a[i] <= @a a[j].
 * @post (0 <= result < @a n and @a a[result] == @a v)
 * or (result == -1 and there is no i, 0 <= i < @a n, s.t. @a a[i] == @a v).
 */
int binary_search(const float* a, int n, float v)

A.2.5
Use Cases and Message Flows
Message flows (sequence diagrams) are an interaction diagram that shows the objects/modules participating in a particular interaction and the messages they exchange arranged in a time sequence.

[image: image7]
Figure A.2 Example Figure for Sequence Diagram

Annex <X> (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2016-04
	S4
	160462
	
	
	Initial Skeleton document
	
	0.1.0

	2016-04
	S4
	160499
	
	
	Agreements during SA4#88
	0.1.0
	0.2.0

	2016-07
	S4
	160805
	
	
	Agreements during SA4#89
	0.2.0
	0.3.0

	2016-10
	S4
	161277
	
	
	Agreements during SA4#90
	0.3.0
	0.4.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�This seems to suggest that this section will describe the MBMS App Services, while the text below describes the supported APIs. Maybe we should add text to link that the API actually define the App User Services, i.e., how the apps get access to the content delivered via MBMS user services.

�So, 4.3 should probably be called service APIs.

�Does not read well. Needs edits.

�Focuses on DASH services. May want to add text that similar discussion also applies to other types of services, though not all components may be involved.

�Remove this as it conflicts with definition above and push back from other companies.

�Also add a generic diagram similar to

�Suggest remove/reword. This may not be a common deployment, but we do not want to expose API to the app that passes info that the could in turn pass to the DASH client.

[image: image8.png][image: image9.png]_1546448474.vsd
BM-SC

MBMS-GW

MME

M3

E-UTRAN

SGi-mb

SGmb

Sm

M1

Application Service Provider

xMB

MBMS-aware Application

UE Modem

MBMS Client

TRAPI

Application Service Discovery

TS26.346 including broadcast and unicast

