Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG SA4#88 meeting
S4-160449
18 - 22 April, 2016, Memphis, TN, US
update to S4-160357
Agenda item:
8.6
Source:
Qualcomm Incorporated
Title:
TRAPI: Service APIs
Document for
Agreement

1 Introduction
Based on the discussions and agreements in the telco, this document uses the methodology that was agreed to document the service APIs. Specifically, the outline and documentation is used.
2 Motivation and Background
We have reviewed different approaches for the service API and we base our documentation on implementation knowledge and the rationales provided inline.
3 Service API
3.2 Graphical Presentation

[image: image1.emf]createAppInstanceId()

MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

register()

deregister()

getFileDeliveryServices()

 Figure 1 Application to MBMS function API
Figure 2 provides an overview of the graphical representation of multiple application connecting to MBMS Service API.

Figure 2 Multiple Applications connecting to MBMS Client
3.3 Services Provided

eMBMS Service API provides interfaces for different types of services. Each of the services is exposed as a self-contained interface (IDL interface).
Note : Multiple service types approach enables applications to use different services independently. An Application interested only in streaming service does not need to provide an empty implementation of the callback listener for the file delivery service and vice versa. This also allows for MBMS client implementations were only some services are available and not others.
1. File Delivery Service

File Download service provides application with an interface to access file download services. Application may get information about available eMBMS file download services and files. Application my start or stop capture of upcoming files on available service. MBMS Client provides application with updates on service status and availability. More interfaces described in IDL.

2. DASH-over-MBMS Streaming Service

DASH streaming service provides application with an interface to access DASH streaming services. Application may get information about available services. Application my start or stop any available service. MBMS Client provides application with DASH service MPD as well updates on service status and availability. More interfaces described in IDL.
3. RTP-over-MBMS Streaming Service (in progress)
RTP-over-MBMS Streaming Service provides the application with interfaces to access RTP eMBMS Service. The application may request start or stop any available service. Application will receive information about the RTP data.
3.4 File Delivery Service API
3.4.1 File Delivery Use Cases and Message Flows
3.4.1.1 File Delivery Service Registration:

[image: image14.emf]

Application Application

URL Dispatch

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 3 Application Registration sequence diagram
MBMS Aware Application calls createAppInstance() to create a unique identifier for the application to be used in subsequent application communication with middleware.

Note: The purpose of creating an AppInstanceId is to be able to identify the application, maintain its state and manage file downloads when application is in background and across restarts. For example in figure 2 if both applications are MBMS aware DASH applications, AppInstanceId will provide a unique identifier for each.
MBMS Aware Application calls a register() API to register for consuming File Delivery services. At registration the application provides its implementation of the File Delivery service callback listener. File Delivery service will provide async callbacks and unsolicited notification to the application via the callback listener.

Note: Callback listener provided at time of registration since they are expected to be called at the same time. It also allows async registration errors/callbacks
As a result of registration, the MBMS client will start periodic monitoring and download of service announcement over the broadcast channel and caches the state.

Once registered, application may start making calls on the File Delivery service interface. For example, application may request retrieval of the eMBMS File Delivery service list. The GetFileDeliveryServices() interface returns the complete list of available File Delivery services information, including service_id, service name, lang, file URIs, etc.

When application is no longer interested in consuming streaming services, it calls deregister() interface

3.4.1.2 Start Capture:

[image: image3.emf]startCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s)

and perform FEC decode

stopCapture()

Figure 4 File Delivery Application Start Capture
 After registration application may start making calls to File Delivery service interface. Application calls startCapture(). This will initiate the download of the selected file URI over broadcast. Upon receiving the requested file, MBMS Client will send a fileAvailable() notification via the registered callback listener.

When application is no longer interested in consuming the File Delivery Service, it calls the stopCapture() interface which will stop download of files for the service over broadcast.

3.4.1.3 Notification callback

[image: image5.emf]createAppInstanceId()

MBMS Aware

Application

MBMS Client

BM-SC

getFileDeliveryServices() Return list of File Delivery

services defined in

service announcement

Periodic Service Discovery(based o

n configuration parameter)

register()

serviceUpdatesAvailable()

Figure 5 MBMS update notification to registered File Delivery application
At registration time, applications sets a callback event listener. MBMS client uses this interface to send callbacks and notifications of events to the application. For example, as the MBMS client periodically downloads service announcement updates, it sends a notification of serviceUpdatesAvailable() to the application to signal that the list of services previously retrieved is updated.

Note: The callback interface provides an efficient method to give instantaneous service updates to the application.
3.4.2 File Delivery Service IDL:

module FileDeliveryService

{

 //Common types

typedef Date unsigned long;

enum ResultCode

{

 Success,

 NoRegistartion,

 UnknownError

}

enum ErrorCode

{

 SERVICE_ALREADY_IN_USE,

 MAX_CONCURRENT_SERVICE,

 INVALID_SERVICE,

 UNKNOWN_ERROR

}

enum BroadcastCoverageState

{

 IN_COVERAGE,

 OUT_OF_COVERAGE

}

enum ServiceAvailabilityType

{

 AVAILABLE,

UNAVAILABLE

}
 //Forward Declaration

interface ILTEFileDeliveryServiceCallback;

//Define Parameter data structures to be used in interface ILTEFileDeliveryService

struct FileInfo {

string uri;

/** contentType is the MIME type of the file. */

string contentType;

/** mode is for future use and is not supported. */

public String mode;

/**

 * cacheControlExpires is a cacheControl-related parameter. The application uses Cache directives to

 * manage how long to retain files. cacheControlExpires defines the expected expiry time for

 * a specific file (or set of files) so it can be deleted at that time.

 * Note: cacheControlExpires object is null, if cacheControlMaxStale or cacheControlNoCache is true.

 */

Date cacheControlExpires;

/**

 * cacheControlMaxStale is a cacheControl-related parameter. The application uses Cache directives to

 * manage how long to retain files. When cacheControlMaxStale is set to true, the file

 * should be cached for an indefinite period of time, if possible. The file has no expiry date.

 */

boolean cacheControlMaxStale;

/**

 * cacheControlNoCache is a cacheControl-related parameter. The application uses Cache directives to

 * manage how long to retain files. When cacheControlNoCache is set to true, the file

 * (or set of files) won't be cached, which can be useful when the file is expected

 * to be highly dynamic (changes to the file occur quite often) or if the file will be used only

 * once by the receiver application.

 */

boolean cacheControlNoCache;
}

struct RegisterFdApp

 {

string appInstanceId;

}

struct DeregisterFdApp

 {

string appInstanceId;

}

struct StartCapture

 {

string appInstanceId;

unsigned long serviceHandle;

string uri;

string mode; //mode was a place holder not currently used

}

struct StopCapture

 {

string appInstanceId;

unsigned long serviceHandle;

string uri;

string mode; //mode was a place holder not currently used

}

struct DeleteFile

 {

string appInstanceId;

}

struct FileList

 {

string appInstanceId;

 sequence<string> fileUriList;

}

/* Structures defining DASH services*/

 struct ServiceNameLang

 {

/** Name **/

string name;

/** Language **/

string lang;

 }

 struct ServiceInfo

 {

/** List of language and name. The list is user-displayable info. */

sequence<ServiceNameLang> serviceNameList ;

/** serviceClass is a URN and identifies a set of services for a given application. */

string serviceClass;

/** serviceId is a URN and is unique to service. */

string serviceId;

/** serviceLanguage shows language of service. */

string serviceLanguage;

/** serviceHandle is an integer and is unique to service. */

unsigned long serviceHandle;

/**

 * serviceAvailability shows whether or not a service is available.

 *

 Available
 = 0

 *

 Not Available = 1

 */

ServiceAvailabilityType serviceAvailability;

/** Contains List of File Uris of File Delivery Service. */

sequence<string> fileUriList;

/** Contains Session Start Time. */

Date sessionStartTime;

/** Contains Session End Time. */

Date sessionEndTime ;

 }

 struct FDServices

 {

string appInstanceId;

sequence<ServiceInfo> serviceinfoList

 }

struct SetServiceClassFilter

{

 string appInstanceId;

 sequence<string> serviceClassList;

 }

struct GetFileDeliveryServices

{

string appInstanceId;

}

struct DeleteAllCapturedFiles

 {

string appInstanceId;

}

struct StopAllPendingCaptures

 {

string appInstanceId;

}

struct GetCapturedFileList

 {

string appInstanceId;

}

 struct SetOptIn

 {

string appInstanceId;

boolean optIn;

 }

 struct RunningFdServiceInfo

 {

 string uri;

}

struct RunningFdServiceList

 {

string appInstanceId;

 sequence< RunningFdServiceInfo> serviceList;

}

struct GetRunningFdServices

 {

string appInstanceId;

}

struct SetStorageLocation

 {

string appInstanceId;

 string mountPoint;

}

struct GetFileDownloadState

{

string appInstanceId;

}

//Define Parameter data structures to be used in interface ILTEFileDeliveryService

struct FileAvailableNotification

 {

string appInstanceId;

 unsigned long serviceHandle
 FileInfo fileInfo;

}

struct ServiceUpdatesAvailable

{

string appInstanceId;

}

struct BroadcastCoverageNotification

{

string appInstanceId;

BroadcastCoverageState state;

}

struct ServiceErrorNotification

{

string appInstanceId;

unsigned long serviceHandle;

ErrorCode err;

}

struct FileDownloadFailureNotification

{

string appInstanceId;

 unsigned long serviceHandle
 string uri;

 }

struct InsufficientStorage
 {

string appInstanceId;

 unsigned long serviceHandle
 string uri;

 ErrorCode reasonId;

 string mountPoint;

unsigned long storageNeeded;

}

struct InaccessibleLocation
{

string appInstanceId;

 unsigned long serviceHandle
 string message;

 string mountPoint;

}

struct ActiveFileDownloadStateInfoList
{

string appInstanceId;

 unsigned long serviceHandle
 string uri;

 DownloadState state; //to be defined

}

struct FileDownloadStateUpdatesAvailable
{

string appInstanceId;

}

 struct RoamingNotification

 {

string appInstanceId;

RoamingState state;

 }

interface ILTEFileDeliveryService

{

 /**

@name getVersion

@brief retrieves the version of the current FILE DELIVERY service interface implemetation

@return Interface Version

 **/

 String getVersion();

 /**

@name createAppInstanceId

@brief creates a unique instance id for application

@param[in] appId application identifier

@param[out] appInstanceId application unique instance identifier

@return ResultCode: operation success or failure

 **/

 ResultCode createAppInstanceId([in] String appId,[out] String[] appInstanceId);

 /**

@name deleteAppInstanceId

@brief deletes the app instance ID

@param appId application identifier

@param appInstanceId application unique instance id

@post application instance id is deleted and no longervalid

@return ResultCode

 **/

ResultCode deleteAppInstanceId([in] String appId,[in] String appInstanceId);

/**

@name register

@brief application registers a callback listener with the MBMS client

@param regInfo information required for application registration.

RegisterFDApp struct type previously defined.

@param cb callback listener

@pre application calls createAppInstanceId()

@post application registered for callbacks for File Delivery function

 MBMS client discovers server providing MBMS function

 MBMS server initiates bootstrap and periodic service discovery monitoring

@return ResultCode

 **/

ResultCode register([in] RegisterFdApp regInfo, [in] ILTEFileDeliveryServiceCallback cb);

/**

@name deregister

@brief application deregisters a callback listener with the MBMS client

@param regInfo information required for application deregistration.

DeregisterFDApp struct type previously defined.

@param cb callback listener

@pre application calls register

@post application deregisters for File Delivery service events.

MBMS client stops all activity initiated by application

@return ResultCode

 **/

ResultCode deregister([in] DeregisterFdApp regInfo, [in] ILTEFileDeliveryServiceCallback cb);

/**

@name setServiceClassFilter

@brief application sets a filter on File Delivery services it is interested in

@param serviceClassInfo list of service class filters requested by application.

SetServiceClassFilter struct type previously defined.

@pre application is registered for File Delivery service

@post application service class filter set

 MBMS client to filiter list of services to expose to application from USD

 based on application set filter

@return ResultCode

 **/

ResultCode setServiceClassFilter([in] SetServiceClassFilter serviceClassInfo);

/**

@name getFileDeliveryServices

@brief retrieves the list of File Delivery services defined in the USD

 List of services is filtered by the service class filter,

 if a filter has been set by application

@param GetFDServices parameters for get File Delivery services message.

GetFDServices struct type previously defined.

@param[out] FDServices list of filtered File Delivery services

@pre application is registered for File Delivery service

@post MBMS client returns list of File Delivery service to application

@return ResultCode

 **/

ResultCode getFileDeliveryServices([in] GetFileDeliveryServices info,[out] FdServices services);

 /**

@name startCapture

@brief Start Download of files over for file delivery service over broadcast

@param StartCapture struct inludes parameters for startCapture Request

StartCapture struct type previously defined.

@pre application is registered for File Delivery service
@post monitor file session scehdule and start download when scehdule starts

@return ResultCode

 **/

ResultCode startCapture([in] StartCapture info);
 /**

@name stopCapture
@brief Stop Download of files for the file Delivery service over broadcast

@param StopCapture struct includes parameters for stopCapture

stopCapture struct type previously defined.

@pre application is registered for File Delivery service

@post Stop download of files for this service over broadcast

@return ResultCode

 **/

ResultCode stopCapture([in] StopCapture info);

 /**

@name deleteFile

@brief Delete files from MBMS client storage mainatianed for the application

@param DeleteFile struct includes parameters for deleteFile

DeleteFile struct type previously defined.

@pre application is registered for File Delivery service

@post file removed from storage

@return ResultCode

 **/

ResultCode deleteFile([in] DeleteFile info);

 /**

@name getCapturedFileList

@brief retrieves the list of files previouslt captured for the

application

@param GetCapturedFileList struct includes parameters for

getCapturedFileList

GetCapturedFileList struct type previously defined.

 @params [out] FileList list of files previouslt captured

@pre application is registered for File Delivery service

@return ResultCode

 **/

ResultCode getCapturedFileList([in] GetCapturedFileList info,[out] FileList files);

 /**

@name deleteAllCapturedFiles

@brief delete all files previously captured by the application

@param DeleteAllCapturedFiles struct includes parameters for

deleteAllCapturedFiles

DeleteAllCapturedFiles struct type previously defined.

@pre application is registered for File Delivery service

@post files captured by the application are deleted

@return ResultCode

 **/

ResultCode deleteAllCapturedFiles([in] DeleteAllCapturedFiles info);

 /**

@name stopAllPendingCaptures

@brief stop all previously requested file captures by application

@param StopAllPendingCaptures struct includes parameters for

StopAllPendingCaptures request

stopAllPendingCaptures struct type previously defined.

@pre application is registered for File Delivery service

@post all ongoing capture requests are terminated

@return ResultCode

 **/

ResultCode stopAllPendingCaptures([in] StopAllPendingCaptures info);

 /**

@name setOptIn

@brief application sets opt/optout from reception reporting on

application downloaded data

@param info optin info requested by application.

SetOptIn struct type previously defined.

@pre application is resgistered for File Delivery service

@post MBMS function sets optin as per application request

@return ResultCode

**/

ResultCode setOptIn([in] SetOptIn info);

 /**

@name getRunningFdServices

@brief get the list of currently running services

@param GetRunningFdServices includes parameters for getRunningFdServices

request

GetRunningFdServices struct type previously defined.

@param [out] RunningFdServiceList the list of services that app has

previosuly requested capture

RunningFdServiceList struct type previosuly defined

@pre application is registered for File Delivery service

@return ResultCode

 **/

ResultCode getRunningFdServices([in] GetRunningFdServices info, [out] RunningFdServiceList services);

 /**

@name setStorageLocation

@brief set the mount point (internal/sdcard..etc) to store the

application downloaded files
@param SetStorageLocation includes parameters for setStorageLocation request

SetStorageLocation struct type previously defined.

@pre application is registered for File Delivery service

@post upcomming files downloaded in new mount point

@return ResultCode

 **/

ResultCode setStorageLocation([in] SetStorageLocation info);

 /**

@name getFileDownloadState

@brief retrieves the state of files pending download

@param GetFileDownloadState includes parameters for getFileDownloadState

GetFileDownloadState struct type previously defined.

@pre application is registered for File Delivery service

@return ResultCode

 **/

ResultCode getFileDownloadState([in] GetFileDownloadState info);

}

interface ILTEFileDeliveryServiceCallback

{

 /**

@name fileAvailable

@brief notification to application whn a new file is downloaded as per

application capture request
@param FileAvailableNotification includes parameters for the dowloaded file

FileAvailableNotification struct type previously defined.

@pre application is registered for File Delivery service

Application calls startCapture

 **/

void fileAvailable([in] FileAvailableNotification notification);

 /**

@name broadcastCoverageNotification

@brief notification to application on the change of networl coverage

state.

State may be in /out of covergse. Notification send on a state change

@param notification parameters for broadcast coverage notification.

BroadcastCoverageNotification struct type previously defined.

@pre application is registered for DASH service.

 **/

void broadcastCoverageNotification([in] BroadcastCoverageNotification notification);

 /**

@name serviceUpdatesAvailable

@brief notification to application on an update the available File

Delivery services.

Update may be due to the received USD or the network configuration

@param notification parameters for service update available.

ServiceUpdatesAvailable struct type previously defined.

@pre application is registered for File Delivery service.

 **/

void serviceUpdatesAvailable([in] ServiceUpdatesAvailable info);

 /**

@name serviceError

@brief notification to application when there is an error with broadcast

download of service

@param notification parameters for service error notification.

ServiceErrorNotification struct type previously defined.

@pre application is registered for File Delivery service.

 Application calls startCapture()

 **/

void serviceError([in] ServiceErrorNotification notification);

 /**

@name fileDownloadFailure

@brief notifiction to application that download of a requested file

failed

@param FileDownloadFailureNotification includes information about the

file that failed download

FileDownloadFailureNotification struct type previously defined.

@pre application is registered for File Delivery service

Application calls startCapture

 **/

void fileDownloadFailure([in] FileDownloadFailureNotification notification);

 /**

@name insufficientStorage

@brief notification to application that the mount point set by the
application does not have enough storage for the upcoming file download

@param InsufficientStorage includes parameters to specify the file and
storage requierment

InsufficientStorage struct type previously defined.

@pre application is registered for File Delivery service

Application calls startCapture

 **/

void insufficientStorage([in] InsufficientStorage info);

 /**

@name inaccessibleLocation

@brief notification to application that the mount point set by the

application is not accessible by MBMS Client

@param InaccessibleLocation includes the inaccessible mount point

InaccessibleLocation struct type previously defined.

@pre application is registered for File Delivery service

Application calls setStorageLocation

 **/

void inaccessibleLocation([in] InaccessibleLocation info);

 /**

@name fileDownloadState

@brief async response to getFileDownloadState request

@param ActiveFileDownloadStateInfoList includes information about the

pending file download state

ActiveFileDownloadStateInfoList struct type previously defined.

@pre application is registered for File Delivery service

Application cales getFileDownloadState

 **/

void fileDownloadState([in] ActiveFileDownloadStateInfoList activeFileDownloadStateInfoList);

 /**

@name fileDownloadStateUpdatesAvailable

@brief notify aoolication of a change in the state of pending file

downloads
@param FileDownloadStateUpdatesAvailable includes parameters for fileDownloadNotification

FileDownloadStateUpdatesAvailable struct type previously defined.

@pre application is registered for File Delivery service

 **/

void fileDownloadStateUpdatesAvailable ([in] FileDownloadStateUpdatesAvailable info);

 /**

@name roamingNotification

@brief notification to application of roamingState.

@param notification parameters for roamingState.

RoamingNotification struct type previously defined.

@pre application is registered for network service.

 **/

 void roamingNotification([in] RoamingNotification notification);

}

}
3.5 DASH-over-MBMS Streaming Service API
3.5.1 DASH-over-MBMS Streaming Use Cases and Message Flows

3.5.1.1 Application Registration:

[image: image7.emf]createAppInstanceId()

MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

register()

deregister()

getDASHServices()

 Figure 6 Application Registration sequence diagram
Application calls createAppInstance() to create a unique identifier for the application to be used in subsequent application communication with middleware.

Note: . The purpose of creating an AppInstanceId is to be able to identify the application, maintain its state and manage file downloads when application is in background and across restarts. (see figure 2)
Application calls a register() API to register for consuming DASH services. At registration the application provides its implementation of the DASH service callback listener. DASH streaming service will provide async callbacks and unsolicited notification to the application via the callback listener.
As a result of registration, the MBMS client will start periodic monitoring and download of service announcement over the broadcast channel and caches the state.

Once registered, application may start making calls on the DASH service interface. For example, application may request retrieval of the eMBMS DASH service list. The getDASHServices() interface returns the complete list of available DASH services information, including service_id, service name, lang, mpd, etc.
When application is no longer interested in consuming streaming services, it calls deregister() interface

3.5.1.2 Start DASH Streaming Service

[image: image9.emf]startDASHService()

stopDashService()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

Figure 7 Application starts DASH streaming services

After registration, the application may start making calls to DASH service interface. Application calls startDASHService(). This will initiate the download of the DASH segments over broadcast and prepare the DASH MPD. Once ready to provide service, MBMS Client will send a serviceStarted() Notification to the application via the registered callback listener. Upon receiving the serviceStarted, application may start playback of DASH on media player.

When application is no longer interested in consuming the DASH service, it calls the stopDASHService() interface, which will stop download of segments for the service over broadcast.
3.5.1.3 Notification callback

[image: image11.emf]createAppInstanceId()

MBMS Aware

Application

MBMS Client

BM-SC

getDASHServices() Return list of DASH

services defined in

service announcement

Periodic Service Discovery(based on configuration parameter)

register()

serviceUpdatesAvailable()

Figure 8 MBMS update notification to registered DASH application
At registration time, applications sets a callback event listener. MBMS client uses this interface to send callbacks and notifications of events to the application. For example, as the MBMS client periodically downloads service announcement updates, it sends a notification of serviceUpdatesAvailable() to the application to signal that the list of services previously retrieved is updated.

Note: The callback interface provides an efficient method to give instantaneous service updates to the application
3.5.2 DASH-over-MBMS Streaming Service IDL

//DASH Streaming types

module DASHStreamingService

{

 //Common types

typedef Date unsigned long;

enum ResultCode

{

 Success,

 NoRegistartion,

 UnknownError

}

enum ErrorCode

{

 SERVICE_ALREADY_IN_USE,

 MAX_CONCURRENT_SERVICE,

 INVALID_SERVICE,

 UNKNOWN_ERROR

}

enum BroadcastCoverageState

{

 IN_COVERAGE,

 OUT_OF_COVERAGE

}

enum ServiceAvailabilityType

{

 AVAILABLE,

UNAVAILABLE

}

enum StalledReasonCode

{

 RADIO_CONFLICT,

 END_OF_SESSION,

 OUT_OF_COVERAGE,

 OUT_OF_SERVICE,

 BREARER_UNAVAILABLE,

 BEARER_UNAVAILABLE_AT_INITIATION,

 UNKNOWN_REASON

 }

 //Forward Declaration

 interface ILTEDASHServiceCallback;

//Define Parameter data structures to be used in interface ILTEDASHService

 struct RegisterDASHApp

 {

string appInstanceId;

 }

 struct DeregisterDASHApp

 {

string appInstanceId;

 }

 struct SetServiceClassFilter

 {

 string appInstanceId;

 sequence<string> serviceClassList;

 }

 struct GetDASHServices

 {

string appInstanceId;

 }

 /* Structures defining DASH services*/

 struct ServiceNameLang

 {

/** Name **/

string name;

/** Language **/

string lang;

 }

 struct ServiceInfo //** MAY EXPLICITLY idenmtify this as a DASH serviceInfo

 {

/** List of language and name. The list is user-displayable info. */

sequence<ServiceNameLang> serviceNameList ;

/** serviceClass is a URN and identifies a set of services for a given application. */

string serviceClass;

/** serviceId is a URN and is unique to service. */

string serviceId;

/** serviceLanguage shows language of service. */

string serviceLanguage;

/** serviceHandle is an integer and is unique to service. */

int serviceHandle;

/**

 * serviceAvailability shows whether or not a service is available.

 *

 Available
 = 0

 *

 Not Available = 1

 */

ServiceAvailabilityType serviceAvailability;

/** mpd uri for DASH. It is only for DASH service. */

string mpdUri;

/** Contains List of File Uris of File Delivery Service. */

//sequence<String> fileUriList;

/** Contains Session Start Time. */

Date sessionStartTime;

/** Contains Session End Time. */

Date sessionEndTime ;

 }

 struct DASHServices

 {

string appInstanceId;

sequence<ServiceInfo> serviceinfoList

 }

 struct StartDASHService

 {

string appInstanceId;

unsigned long serviceHandle;

 }

struct SwitchDASHService

 {

string appInstanceId;

unsigned long oldServiceHandle;

unsigned long newServiceHandle;

 }

 struct StopDASHService

 {

string appInstanceId;

unsigned long serviceHandle;

 }

 struct SetOptIn

 {

string appInstanceId;

boolean optIn;

 }

 //Define Parameter data structures to be used in interface ILTEDASHServiceCallback

 struct ServiceStartedNotification

 {

string appInstanceId;

unsigned long serviceHandle;

 }

 struct ServiceStoppedNotification

 {

string appInstanceId;

unsigned long serviceHandle;

 }

 struct MpdUpdateNotification

 {

string appInstanceId;

unsigned long serviceHandle;

 }

 struct ServiceErrorNotification

 {

string appInstanceId;

unsigned long serviceHandle;

ErrorCode err;

 }

 struct ServiceStalledNotification

 {

string appInstanceId;

unsigned long serviceHandle;

StalledReasonCode reason;

 }

 struct ServiceUpdatesAvailable

 {

string appInstanceId;

 }

 struct BroadcastCoverageNotification

 {

string appInstanceId;

BroadcastCoverageState state;

 }

 struct RoamingNotification

 {

string appInstanceId;

RoamingState state;

 }

interface ILTEDASHService

{

 enum ResultCode

{

 Success,

 NoRegistartion,

 UnknownError

}

 /**

@name getVersion

@brief retrieves the version of the current DASH service interface implemetation

@return Interface Version

 **/

 String getVersion();

 /**

@name createAppInstanceId

@brief creates a unique instance id for application

@param[in] appId application identifier

@param[out] appInstanceId application unique instance identifier

@return ResultCode: operation success or failure

 **/

 ResultCode createAppInstanceId([in] String appId,[out] String[] appInstanceId);

 /**

@name deleteAppInstanceId

@brief deletes the app instance ID

@param appId application identifier

@param appInstanceId application unique instance id

@post application instance id is deleted and no longervalid

@return ResultCode

 **/

ResultCode deleteAppInstanceId([in] String appId,[in] String appInstanceId);

/**

@name register

@brief application registers a callback listener with the MBMS client

@param regInfo information required for application registration.

RegisterDASHApp struct type previously defined.

@param cb callback listener

@pre application calls createAppInstanceId()

@post application registered for callbacks for DASH function

 MBMS client discovers server providing MBMS function

 MBMS server initiates bootstrap and periodic service discovery monitoring

@return ResultCode

 **/

ResultCode register([in] RegisterDASHApp regInfo, [in] ILTEDASHServiceCallback cb);

/**

@name deregister

@brief application deregisters a callback listener with the MBMS client

@param regInfo information required for application deregistration.

DeregisterDASHApp struct type previously defined.

@param cb callback listener

@pre application calls register

@post application deregisters for DASH service events.

MBMS client stops all activity initiated by application

@return ResultCode

 **/

ResultCode deregister([in] DeregisterDASHApp regInfo, [in] ILTEDASHServiceCallback cb);

/**

@name setServiceClassFilter

@brief application sets a filter on DASH services it is interested in

@param serviceClassInfo list of service class filters requested by application.

SetServiceClassFilter struct type previously defined.

@pre application is registered for DASH service

@post application service class filter set

 MBMS client to filiter list of services to expose to application from USD

 based on application set filter

@return ResultCode

 **/

ResultCode setServiceClassFilter([in] SetServiceClassFilter serviceClassInfo);

/**

@name getDASHServices

@brief retrieves the list of DASH services defined in the USD

 List of services is filtered by the service class filter,

 if a filter has been set by application

@param GetDASHServices parameters for get DASH services message.

GetDASHServices struct type previously defined.

@param[out] DASHServices list of filtered DASH services

@pre application is registered for DASH service

@post MBMS client returns list of DASH service to application

@return ResultCode

 **/

ResultCode getDASHServices([in] GetDASHServices info,[out] DASHServices services);

/**

@name startDASHService

@brief Start download of segments of DASH service over broadcast

@param StartDASHService parameters for start DASH services message.

StartDASHService struct type previously defined.

@pre application is registered for DASH service

@post start download of DASH segments over broadcast

MBMS may send a servciestarted notification when ready for playback

to trigger the app to start mediaplayer

@return ResultCode

 **/

ResultCode startDASHService([in] StartDASHService serviceInfo);

/**

@name switchDASHService

@brief Start download of segments of DASH service over broadcast for new service and stop download of segments of DASH service for old service

@param SwitchDASHService parameters for switch DASH services message.

SwitchDASHService struct type previously defined.

@pre application is registered for DASH service

@post start download of DASH segments over broadcast for new service and stop download of old service

MBMS may send a servciestarted notification when ready for playback

to trigger the app to start mediaplayer

@return ResultCode

 **/

ResultCode switchDASHService([in] SwitchDASHService serviceInfo);

/**

@name stopDASHService

@brief stop download of segments of DASH service over broadcast

@param StopDASHService parameters for start DASH services message.

StopDASHService struct type previously defined.

@pre application is registered for DASH service

@post stop download of DASH segments over broadcast

MBMS may sends a servciestopped notification to trigger the app to stop mediaplayer

@return ResultCode

 **/

ResultCode stopDASHService ([in] StopDASHService serviceInfo);

/**

@name setOptIn

@brief application sets opt/optout from reception reporting on application downloaded data

@param info optin info requested by application.

SetOptIn struct type previously defined.

@pre application is registered for DASH service

@post MBMS function sets optin as per application request

@return ResultCode

 **/

ResultCode setOptIn([in] SetOptIn info);

}

interface ILTEDASHServiceCallback

{

/**

@name serviceStarted

@brief notification to application that DASH service is started and

media player may be initialized for palyback

@param notification parameters for service started notification .

ServiceStartedNotification previously defined.

@pre application is registered for DASH service.

 Application calls startDASHService

 **/

void serviceStarted([in] ServiceStartedNotification notification);

/**

@name serviceStopped

@brief notification to application that DASH service is stopped and

media player may be stopped for palyback

@param notification parameters for service started notification.

ServiceStoppedNotification struct type previously defined.

@pre application is registered for DASH service.

 Application calls stopDASHService

 **/

void serviceStopped([in] ServiceStoppedNotification notification);

/**

@name mpdUpdated

@brief notification to application that mpd for DASH service is updated

@param notification parameters for mpd updated notification.

MpdUpdateNotification struct type previously defined.

@pre application is registered for DASH service.

 Application calls startDASHService

 **/

void mpdUpdated([in] MpdUpdateNotification notification);

/**

@name serviceError

@brief notification to application when there is an error with broadcast download of service

@param notification parameters for service error notification.

ServiceErrorNotification struct type previously defined.

@pre application is registered for DASH service.

 Application calls startDASHService

 **/

void serviceError([in] ServiceErrorNotification notification);

/**

@name serviceStalled

@brief notification to application when there is temporary disruption of

 the broadcast download of service

@param notification parameters for service stalled notification.

ServiceStalledNotification struct type previously defined.

@pre application is registered for DASH service.

 Application calls startDASHService

 **/

void serviceStalled([in] ServiceStalledNotification notification);

 /**

@name serviceUpdatesAvailable

@brief notification to application on an update the available DASH services.

Update may be due to the received USD or the network configuration

@param notification parameters for service update available.

ServiceUpdatesAvailable struct type previously defined.

@pre application is registered for DASH service.

 **/

void serviceUpdatesAvailable ([in] ServiceUpdatesAvailable info);

/**

@name broadcastCoverageNotification

@brief notification to application on the change of networl coverage
state.

State may be in /out of covergse. Notification send on a state change

@param notification parameters for broadcast coverage notification.

BroadcastCoverageNotification struct type previously defined.

@pre application is registered for DASH service.

 **/

void broadcastCoverageNotification([in] BroadcastCoverageNotification notification);

 /**

@name roamingNotification

@brief notification to application of roamingState.

@param notification parameters for roamingState.

RoamingNotification struct type previously defined.

@pre application is registered for network service.

 **/

 void roamingNotification([in] RoamingNotification notification);

}

}

3.6 RTP-over-MBMS Streaming Service API
3.6.1 RTP-over-MBMS Streaming Use Cases and Message Flows

3.6.2 RTP-over-MBMS Streaming Service IDL

4 Proposal

It is proposed to add section 3 to TS26.347 clause 6 as service APIs.
[image: image13.png]

MBMS API

MBMS URL Handler

MBMS API

MBMS-Aware Application

MBMS-Aware Application

MBMS Client

MBMS Aware

Application 2

MBMS Aware

Application 1

- 37/37 -

_1521968510.vsd
MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

StartCapture()

FileAvailable()

MBMS Aware
Application

StopCapture()

_1521968799.vsd
Data

MBMS Client

createAppInstanceId()

Deregister()

MBMS Aware
Application

BM-SC

Register()

Periodic Service Discovery (based on configuration parameter)

GetDASHServices()

