Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #88
S4-160465
Memphis, USA 18th – 22nd Apr 2016

Agenda item:
8.6
Source:
Expway, Qualcomm Incorporated
Title:
TRAPI: Service API working assumptions
Document for
Discussion and Agreement

1 Introduction
This document describes a basis for Service APIs. It is based on merge between S4-160347 and S4-160449.
2 Architecture
Editor note: Have an architecture diagram

3 Service API
3.2 Introduction

3.2.1 Syntactic Language
The 3GPP API proposal is delivered as an IDL file written in OMG’s Interface Description Language.

OMG’s Interface Definition Language (IDL) is a standard language for defining function and method interfaces. It supports common primitive data times IDL. Some of the base data types supported by IDL are int, Boolean, byte, char, double, float, long, short, and void *. IDL also supports signed and unsigned qualifiers, enumerations and more.

IDL's data types and definitions are both language-neutral and platform-neutral. This enables the definition of a common interface that may be implemented by different modules or components irrespective of the language and platform.

An IDL interface provides a description of the functionality that will be provided by an object. It provides all of the information needed to develop clients that use the interface.

While IDL is not a programming language, there are tools that map IDL to just about every major programming language.

3.3 Class hierarchy

Editor note: should we incorporate an hierarchy ?
3.4 APIs
3.4.1 eMBMS Instance

Editor Note

· Add creation/destroy function description

· Add application registration/deregistration mechanism with a list of ClassName (could be empty, in that case it is similar with a registration to any className)
· Add a method to get the service list (this list is filtered)
· On going discussion on filtering mechanism: should it be type based, service class ?
3.4.2 Notification mechanism
Editor Note

· Add notification mechanism
Already Possible events:
· new servicelist,

· new file received,

· acknowledgement/results of different actions

· result for get service function

· result for open, close.

3.4.3 Application Services
3.4.3.1 Access to the list of application service
The user can retrieve the array of available application Services by calling the getApplicationServices method

The Services’ array contains different types of Services. At the moment only three types of Services are used:
· DASH Service

· File Service

· Streaming Service

Editor note: make it compatible with the application service part.
If the Service type is unknown to the application, it should simply ignore it. This kind of situation may happen if older version of this interface are used with newer implementation of the 3GPP APIs. Ignoring the unknown service types ensure the forward compatibility of this API.

3.4.3.2 Open

Editors note describe the 2 methods
· Method 1: the eMBMS client only download one file or a collection of files (e.g. wild card) which has been selected by the application
· Method 2: the eMBMS client download all files received in that service.
· The event notification may be deactivated (ie in case of DASH application service for instance)

· to be discussed how this deactivation occurs (Is the behavior of the open method dependent on the parameters passed by application or do we have specific constraints based on the service type in the USD)
· Note in case of File Delivery Application Service, the application does not need to stay around to receive the file which may be scheduled in the future.
· To be discussed: Proposal from Qualcomm in case of File Delivery Application Service The name should capture the command to go do a capture/reception of the file and report back when the file is available.
3.4.3.3 Close

Editors note describes the close method
3.4.3.4 Access to Application service Information
Editors note to be defined:
· one method to get
· name

· type – this type may be the mime-Type of the entrypoint if present

· service Identifier

· startTime (Is it needed for file delivery application service?)
· endTime (Is it needed for file delivery application service?)
· One method to get the list of file in case of File delivery Application service

· One method to get entry point (if present)
· in case of DASH it would be MPD URL
· To be solved: can we aggregate all the method? We need to support the case where the MPD is added in the USD just before the service starts. In such case, a service will change its type during this USD update.

3.5 Status codes
Editor note:

The 3GPP API proposal defines some status values to handle as many status as possible. The status list should probably be extended to cover all the possible use cases. At the moment the identified statuses are:
· r_ok

Success status
· r_errorParameters

Bad parameters

· r_errorMemory

A memory allocation failed
· r_errorFileSystem

The space on the file system is not enough
· r_warninfNotFound

The requested data can’t be found

4 Conclusion
As a conclusion, it is proposed to agree:

· Use part 3 as basis for API
[image: image1.png]

- 1/5 -

