3GPP TSG SA4#86 meeting
Tdoc S4 151322
26-30 October 2015, San Jose Del Cabo, Mexico

Title:
MMCMH: Examples of Concurrent Codec Capabilities Exchange (CCCEx) Usage v2
Source:
Qualcomm Incorporated
Document for:
Discussion and Decision
Agenda Item:
12.6
1.1 Background
Contribution [1] discussed the need to provide a means to exchange concurrent codec capabilities (CCC) among terminals performing in-terminal mixing where media is distributed without a focus, and instead, uses a multi-unicast topology.
Contribution [2] introduced a format for providing the CCC information and a protocol for exchanging (CCCEx) the information among terminals. From the discussion of [2] it became more apparent that there is a trade-off between the granularity of the information to be provided and the ability to indicate the capability to support more concurrent operations. Depending on the use case and device, it was proposed that the solution be flexible enough to accommodate the different cases.
During the discussion of contribution [3] in the September 24 MTSI SWG teleconference on MMCMH, there was a request for examples to show how the CCCEx information would be used by a conference initiator to establish a conference in with in-terminal mixing.

Contribution [4] discussed a number of formats in which terminals can provide their concurrent codec capabilities (CCC) and how the information is used by the call initiator.
2.1 Examples of CCCEx
In this contribution, we provide CCCEx where the capabilities can be exchanged through SDP using multiple m-lines within the context of the current SDP examples in use cases described in MMCMH permanent document.
Table 1 shows the supported concurrent codec combinations available at the call initiator. For illustration purposes, only audio example is shown below. The concurrent codec capabilities information are grouped and chosen by the call initiator (e.g., conference focus, or a terminal to set up multi-unicast conference) as per the maximum number of participants that are going to join in a conference. In this particular example, the supported CCCEx at the terminal is known to the initiator prior to the call or based on the SDP offer sent by the terminal to the initiator at the start of the call. The call initiator then offers (or answers depending on how the CCCEx is available) to the MSMTSI terminal the media (simulcast send streams and the receive streams). For demonstrating the concept, it is shown using the max-send-ssrc the number of streams supported by the terminal to receive on the downlink. Conceptually one can expand the SDP offer/answer using the multiple m-audio lines. Table 1 shows the case where the initiator sets up the conference knowing that the terminal will not trim the streams on the decoder side. This could be known to the call initiator when the terminal responds to the call initiator’s SDP offer without disabling the m-lines. For illustration purposes, the supported Concurrent Codec Combinations at the terminal are estimated internally based on some mapping (e.g., AMR enc/dec: 0.1/0.02, AMR-WB: 0.2/0.04, EVS: 0.28/0.12) that is not necessarily known to other terminals or focus.

Table 1. Supported concurrent codec combinations available at the call initiator and SDP offer example from the initiator

	Number of participants
	Supported Concurrent Codec Combinations for a terminal (three possible scenarios) available at the initiator
Note: At the terminal, the capabilities are estimated based on internal mapping that is not known to other terminals or focus.
	SDP offer example from the conference initiator (for illustration purposes, only audio is shown below)

	N <= 5
	A. [Enc/send: AMR, AMR-WB, EVS]

[Dec/recv: 1 AMR, 1 AMR-WB, 3 EVS]

B. [Enc/send: AMR-WB, EVS]

[Dec/recv: 1 AMR-WB, 4 EVS]

C. [Enc/send: AMR, EVS]

[Dec/recv: 1 AMR, 5 EVS]
	A
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;100;101 send 99,100,101

a=max-send-ssrc:{99:1&100:1&101:3}

...

	
	D.
	B
	m=audio 49300 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 100;101 send 100,101

a=max-send-ssrc:{100:1&101:4}

...

	
	E.
	C
	m=audio 49400 RTP/AVP 99 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;101 send 99,101

a=max-send-ssrc:{99:1&101:5}

...

	N < 10
	F. [Enc/send: AMR, AMR-WB, EVS]

[Dec/recv: 3 AMR, 3 AMR-WB, 2 EVS]

G. [Enc/send: AMR-WB, EVS]

[Dec/recv: 2 AMR, 3 AMR-WB, 3 EVS]

H. [Enc/send: AMR, EVS]

[Dec/recv: 3 AMR, 2 AMR-WB, 4 EVS]
	A
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;100;101 send 99,100,101

a=max-send-ssrc:{99:3&100:3&101:2}

...

	
	I.
	B
	m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 100;101 send 99,100,101

a=max-send-ssrc:{99:2&100:3&101:3}

...

	
	J.
	C
	m=audio 49400 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;101 send 99,100,101

a=max-send-ssrc:{99:3&100:2&101:4}

...

	N < 20
	A. [Enc/send: AMR, AMR-WB]

[Dec/recv: 19 AMR, 6 AMR-WB]

B. [Enc/send: AMR-WB, EVS]

[Dec/recv: 16 AMR, 2 AMR-WB, 1 EVS]

C. [Enc/send: AMR, EVS]

[Dec/recv: 17 AMR, 1 AMR-WB, 2 EVS]
	A
	m=audio 49200 RTP/AVP 99 100
a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast recv 99;100 send 99,100

a=max-send-ssrc:{99:19&100:6}

...

	
	D.
	B
	m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 100;101 send 99,100,101

a=max-send-ssrc:{99:16&100:2&101:1}

...

	
	E.
	C
	m=audio 49400 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;101 send 99,100,101

a=max-send-ssrc:{99:17&100:1&101:2}

...

	N < 30
	A. [Enc/send: AMR, AMR-WB]

[Dec/recv: 29 AMR, 3 AMR-WB]

B. [Enc/send: AMR-WB]

[Dec/recv: 29 AMR, 5 AMR-WB]

C. [Enc/send: AMR]

[Dec/recv: 29 AMR, 5 AMR-WB, 1 EVS]
	A
	m=audio 49200 RTP/AVP 99 100

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast recv 99;100 send 99,100

a=max-send-ssrc:{99:29&100:3}

...

	
	D.
	B
	m=audio 49200 RTP/AVP 100

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a= recv 100 send 99,100

a=max-send-ssrc:{99:29&100:5}

...

	
	E.
	C
	m=audio 49200 RTP/AVP 99 100

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a= recv 99 send 99,100

a=max-send-ssrc:{99:29&100:5&101:1}

...

Table 2 shows an example where the terminal sends an SDP answer to the call initiator (if needed) to indicate any update in its CCCEx. For illustration purposes, only audio example is shown below. The concurrent codec capabilities information are grouped and chosen by the call initiator (e.g., conference focus, or a terminal to set up multi-unicast conference) as per the maximum number of participants that are going to join in a conference. Table 2 shows the case where the initiator sets up the conference knowing that the terminal will not trim the streams on the decoder side. Through SDP answer the terminal may indicate its increase in capabilities and to receive more streams than originally known to the call initiator. The terminal may also potentially trim the received streams based on its changing concurrent codec capabilities without sending another SDP offer to the call initiator. In the case of audio, this selection can be made based on which streams are not in DTX mode. Media streams may also be prioritized based on the active level or volume of the audio stream. However, this requires decoding of the media from each stream to determine the loudest stream. The prioritized streams based on volume or level are further spatially mixed for rendering. For video, it is not as simple to dynamically select which streams to prioritize and ignore as there are not the same concepts of DTX and volume. Simpler criteria such as looking at the size of video packets might be used to get a very rough idea of motion/new information in particular video streams. More details on prioritizing the received media streams are elaborated in Clause 4.10.1.1.4 of MMCMH permanent document.
Table 2. Supported concurrent codec combinations available at the call initiator and SDP offer/answer example 2 from the initiator/terminal
	Number of participants
	SDP offer from the conference initiator (for illustration purposes, only audio is shown below)
	SDP answer example from the terminal to the conference initiator to indicate increase in capabilities

	N <= 5
	A
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;100;101 send 99,100,101

a=max-send-ssrc:{99:1&100:1&101:3}

...
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast send 99;100;101 recv 99,100,101

a=max-recv-ssrc:{99:5&100:5&101:5}

...

	
	B
	m=audio 49300 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 100;101 send 100,101

a=max-send-ssrc:{100:1&101:4}

...
	

	
	C
	m=audio 49400 RTP/AVP 99 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;101 send 99,101

a=max-send-ssrc:{99:1&101:5}

...
	

	N < 10
	A
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;100;101 send 99,100,101

a=max-send-ssrc:{99:3&100:3&101:2}

...
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast send 99;100;101 recv 99,100,101

a=max-recv-ssrc:{99:10&100:10&101:10}

...

	
	B
	m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 100;101 send 99,100,101

a=max-send-ssrc:{99:2&100:3&101:3}

...
	

	
	C
	m=audio 49400 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;101 send 99,100,101

a=max-send-ssrc:{99:3&100:2&101:4}

...
	

3.1 CCCEx information
The Clause 4.10.1 Media Distribution via Multi-Unicast is shown below and the text proposal for CCCEx to be included.
3.1 Media Distribution via Multi-unicast

In a multi-unicast model, each participant sends a copy of its media to each of the other (N-1) participants.

3.1 Concurrent Codec Capabilities Exchange

3.1 Concurrent Decoding

Media distribution via multi-unicast requires that a UE concurrently decode multiple audio and/or video streams received from the other conference participants. Each terminal has a computational limit to the number decoder instances it can operate concurrently. This limits the number of participants that can be in a conference with the terminal, or requires that the terminal has the ability to prioritize decoding certain streams and ignore others.

Let,

· MaxDec be the maximum number of decoders that can be run concurrently by the terminal

· N be the number of participants in the conference, including the conference initiator

If a terminal does not ignore any media streams it receives then we must have,

	N <= MaxDec + 1
	Eq. 4.10.1.2.1-1

When sending an SDP Offer, the conference initiator should respect the above limitation when deciding how many callers to invite to the conference (i.e., N-1).

Furthermore, if each of the other terminals does not prioritize and ignore media streams it receives, each terminal must also be able to decode N-1 media streams. Therefore the initiator must consider the following limitation:

	N <= min(MaxDec of each terminal) + 1
	Eq. 4.10.1.2.1-2

3.1 Concurrent Encoding

Media distribution via multi-unicast can require that a UE concurrently encode multiple audio and/or video streams that are sent to the other participants. This can happen when the initiator offers more than one type of codec for a media type and the other participants select to use different codecs.

This is illustrated in Figure 18 below where terminal A has offered both EVS and AMR-WB in its SDP offers to terminals B and C. Terminal C supports EVS and responds with an SDP answer selecting EVS while terminal B, which only supports up to AMR-WB, selected AMR-WB in its SDP Answer to terminal A. Terminals B and C also perform their own codec negotiation (e.g., set-up via the SIP REFER method from terminal A) in which they choose AMR-WB since terminal B does not support EVS.

[image: image1.emf]A

C

B

A’s media to B

AMR-WB

A

’

s

m

e

d

i

a

t

o

C

E

V

S

B’s media to A

AMR-WB

B

’

s

m

e

d

i

a

t

o

C

A

M

R

-

W

B

C

’

s

m

e

d

i

a

t

o

A

E

V

S

C

’

s

m

e

d

i

a

t

o

B

A

M

R

-

W

B

Figure 18 Multi-stream audio handling with audio routed to the rendering device and audio mixing performed at the UE using different negotiated codecs.
As can be seen from Figure 18, Terminal A and Terminal C have to both encode their content in the EVS and AMR-WB formats concurrently.

Let,

· MaxEnc be the maximum number of encoders that can be run concurrently by the terminal
Then a terminal initiating a conference with in-terminal mixing should consider the following limit:

	min[# of types of codecs in the SDP offer, (N-1)] <= MaxEnc
	Eq. 4.10.1.2.2-3

Furthermore, as was seen in the previous example, the # of types of codecs must also be less than the MaxEnc of each terminal involved in the conference. Therefore the following limit should be followed:

	min[# of types of codecs in the SDP offer, (N-1)] <= min(MaxEnc of each terminal)
	Eq. 4.10.1.2.2-4

3.1 Further Considerations in Concurrency

In a practical terminal implementation, the constraints described in Sections 4.10.1.2.1 and 4.10.1.2.2 must take into account that:

· For a given media type, the different types of codecs have different computational complexity requirements. This requires that the conference initiator consider the following for each codec it includes in the SDP Offer:

	min(MaxEnc of each codec) and min(MaxDec of each codec)
	Eq. 4.10.1.2.3-1

· A terminal performs both encoding and decoding. If these processes run on the same processors then the MaxEnc and MaxDec will depend on how many instances of each operation (encode/decode) are running. Conceptually, the limitation can be generalized as follows:

	complexity(operational encoders + operational decoders) <= complexity limit
	Eq. 4.10.1.2.3-2

· A terminal in a video conference performs both audio and video coding. If these processes run on the same processors then the MaxEnc and MaxDec will depend on how many instances of each operation for each media type are running. Conceptually, the limitation can be generalized as follows:

	complexity(operational audio codecs + operational video codecs) <= complexity limit
	Eq. 4.10.1.2.3-3

3.1 Prioritizing and Ignoring of Received Media Streams

A terminal can extend its ability to handle a conference with N users even if
	N > min(MaxDec of each terminal) + 1
	Eq. 4.10.1.2.4-1

as long as the terminal and all the other terminals in the conference do not decode all of the media streams they receive. This requires that the terminals have a means for choosing which streams to prioritize and which ones to ignore.

In the case of speech, this selection could be made based on which streams are not in DTX mode. In most cases, talkers will naturally floor control each other as it is difficult to listen to more than two speakers at the same time. Therefore a terminal that can decode up to two or three concurrent audio streams could handle most audio conference configurations. However, it should be noted that there will still be some operational complexity increase with increasing N as the terminal has to inspect the voice packets (at least for size) from the media streams to determine which are active.

It is also possible for the terminal to attempt to prioritize the media streams with the loudest volumes. However, this requires decoding of the media from each stream to determine the loudest MaxDec streams. The terminal could save some complexity if the sampling/selecting is not performed for every voice frame, e.g., periodically at longer intervals.

For video, it is not as simple to dynamically select which streams to prioritize and ignore as there are not the same concepts of DTX and volume. Looking at other criteria such as the amount of movement will involve significant complexity. Simpler criteria such as looking at the size of video packets might be used to get a very rough idea of motion/new information in particular video streams.

Video has the additional challenge that most of the frames in the streams are differentially encoded wrt previous video frames in the stream. If a media stream is ignored it cannot simply be decoded again until an independently-decodable (e.g., IDR) frame, or a frame whose reference frame has already been pre-stored, is received.

3.1 Conclusions
When sending the SDP Offer for a conference that has in-terminal mixing, the conference initiator needs to consider, its computational constraints, i.e., the maximum number of concurrent encoders and decoders the conference initiator can operate. Before sending the SDP Offer, the conference initiator should also be informed of the computational constraints of the other conference participants, i.e., the maximum number of concurrent encoders and decoders each terminal can operate, and take these constraints into account.
4.10.1.2 CCCEx SDP offer/answer
4.10.1.2.1 Concurrent Codec Capabilities Information

4.10.1.2.1.1 CCCEx Format Considerations
The following are considered by the terminal to make the CCCEx available to the conference initiator:
1. Format indicates capabilities per codec

2. Format independently indicates capabilities for the encoder and decoder of each codec

3. Format can indicate whether concurrent operation of an encoder and/or decoder of different codecs share the same computational resource

4. Format can indicate that the terminal decoding capabilities do not pose a constraint because the terminal is able to trim the number of media streams to match its concurrent decoding capabilities.

4.10.1.2.2 Supported CCCEx information for a terminal available at the initiator
There are several ways the terminal may determine its CCEx capabilities and make the information available to the conference initiator. The conference initiator may then use this information to set up the conference depending on the number of participants, codec types supported, etc as described below.
4.10.1.2.2.1 Absolute Limits per Media Type
One simple solution is to communicate the maximum number of concurrent implementations of each media type. New session-level SDP attributes could be defined as follows:
a=max_dec_audio:<num_instances>

a=max_dec_video:<num_instances>

a=max_enc_audio:<num_instances>

a=max_enc_video:<num_instances>

<num_instances> is an integer, in the range of 0 to 16, inclusive, that, when greater than 0, specifies the maximum number of concurrent decoders (for the first two) or encoders (for the last two) of that media type (i.e., audio for the 1st and 3rd, or video for the 2nd and 4th) supported by the UE when no other media encoders or decoders of the same media type are supported. The value 0 of <num_instances> specifies that the UE is capable of picking and trimming streams and therefore can handle an infinite number of streams.

A limitation of this is that the maximum number of concurrent instances will be constrained by the most computationally-intensive codec. A severe, but possible, example of this is for a video telephony session where the terminal supports H.265 and declares that it can support up to two video encoder instances (H.264 and H.265, two H.264, or two H.265 instances). Knowing that it has to reserve enough resources for two video encoders, the terminal will be severely limited in the number of video decoder instances or speech encoder or decoder instances that it can handle concurrently.

This can cause the following issues:

· Prevent the terminal from being included in conferences with a larger number of participants using a less complex decoder

· Prevent all the participants in a conference from using more advanced optional codecs in the session

4.10.1.2.2.2 Absolute Limits per Codec Type
A more refined solution is to communicate the maximum number of concurrent implementations of each type of codec by defining the following SDP attributes:
a=max_dec:<codec> <level> <num_instances> [<profile>]

a=max_enc:<codec> <level> <num_instances> [<profile>]

<codec> is the media type name of a codec as defined in the RTP payload format for that codec, e.g., "video/H264" for H.264 as defined in [7] and "video/H265" for H.265 as defined in [8], respectively.

<level> specifies the level of the codec, e.g., for H.264 and H.265 the value is equal to level_idc as defined in [9] and level-id as defined in [8], respectively, and when the codec is EVS, the value of this field being 1, 2, 3 and 4 specifies NB, WB, SWB and FB, respectively.

<num_instances> is an integer, in the range of 0 to 16, inclusive, that, when greater than 0, specifies the maximum number of supported concurrent decoders (for a=max_dec) or encoders (for a=max_enc) of the specified codec at the specified level and profile (when present), when no other media encoders or decoders of the same codec are supported. The value 0 of <num_instances> specifies that the UE is capable of picking and trimming streams and therefore can handle an infinite number of streams.

<profile>, which is optional, specifies the profile of the codec, e.g., for H.264 and H.265 the value is equal to profile_idc as defined in the ITU-T H.264 specification and profile-id as defined in the H.265 RTP payload format (the latest version of which is here: https://tools.ietf.org/html/draft-ietf-payload-rtp-h265-14), respectively.

A limitation of this is that it is not clear how the conference initiator can determine exactly how many concurrent encoders and decoders can be supported when there is a mix of codec types. A conservative way to estimate this is to use the encoder/decoder limit of the most computationally taxing codec being used. However this has the limitation that the limits are constrained by the most complex codec, resulting in the same disadvantages, namely,

· Prevent the terminal from being included in conferences with a larger number of participants using a less complex decoder

· Prevent all the participants in a conference from using more advanced optional codecs in the session

4.10.1.2.2.3 Resource Allocation and SDP offer/answer
Another potential way is to describe the percentage of processor resources available or allocated for each encoding/decoding function. This information can be used internally by the terminal to estimate the number of possible send and receiver streams that the terminal is capable of concurrently encode and decode. This information of number of encoder and decoder streams per codec per media can be made available to the conference initiator before the call set up or through SDP offer at the time of call set up.
Section 4.10.1.2.4 describes how a receiving terminal can prioritize and ignore particular media streams to reduce the number decoder instances it has to concurrently operate. If a terminal employs such a “trimming” algorithm and is able to limit the number of streams it has to decode to match its concurrent decoding capabilities, then the terminal does not require the conference initiator to limit the number of participants in the call based on the terminal’s decoding capabilities. In this case the terminal can indicate a processor resource allocation factor of 0 corresponding to such streams as illustrated in the following example:

m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/16000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99;100;101 send 99,100,101

a=max-send-ssrc:{99:1&100:1&101:3}

The conference initiator uses the above information from each participant to ensure that the proposed conference does not exceed the concurrent codec capabilities of the participants.
4.10.1.2.2.4 CCCEx Combination and SDP offer/answer
Another solution is to list all the combinations of codec operations that the terminal can process simultaneously. For example, the combinations can be based on the number of participants in the conference.
Table xx. Example-1 profiles of Supported Concurrent Codec Combinations
	Number of participants
	Supported Concurrent Codec Combinations for a terminal (three possible scenarios) available at the initiator

Note: At the terminal, the capabilities are estimated based on internal mapping that is not known to other terminals or focus.

	N <= 5
	A. [Enc/send: AMR, AMR-WB, EVS]

[Dec/recv: 1 AMR, 1 AMR-WB, 3 EVS]

B. [Enc/send: AMR-WB, EVS]

[Dec/recv: 1 AMR-WB, 4 EVS]

C. [Enc/send: AMR, EVS]

[Dec/recv: 1 AMR, 5 EVS]

	
	D.

	
	E.

	N < 10
	A. [Enc/send: AMR, AMR-WB, EVS]

[Dec/recv: 3 AMR, 3 AMR-WB, 2 EVS]

B. [Enc/send: AMR-WB, EVS]

[Dec/recv: 2 AMR, 3 AMR-WB, 3 EVS]

C. [Enc/send: AMR, EVS]

[Dec/recv: 3 AMR, 2 AMR-WB, 4 EVS]

	
	D.

	
	E.

Table xx. Example-2 profiles of Supported Concurrent Codec Combinations

	Profile
	Encoders
	Decoders

	
	Video
	Audio
	Video
	Audio

	
	H.265
	H.264
	EVS

WB
	EVS

SWB
	AMR-WB
	AMR-NB
	H.265
	H.264
	EVS

WB
	EVS

SWB
	AMR-WB
	AMR-NB

	A
	1
	
	
	
	1
	1
	1
	4
	
	
	1
	4

	B
	1
	
	
	
	1
	1
	1
	4
	
	
	2
	2

	C
	1
	
	
	
	1
	1
	1
	4
	
	
	3
	

	D
	1
	
	
	
	1
	1
	1
	1
	
	
	10
	8

	E
	
	1
	1
	1
	
	1
	1
	1
	3
	
	2
	4

	F
	
	
	1
	1
	1
	1
	
	
	4
	1
	12
	12

	…
	
	
	
	
	
	
	
	
	
	
	
	

Note that the profiles listed do not apply well to use cases that require simulcast of video using the same codec (i.e., low and high resolution images) as only one encoder is supported at a time. This is a limitation of the processor loading and not the profile scheme itself.

Profiles A through D can be thought of as the “HD Video” profiles that use H.265 at the expense of not allowing use of EVS. Although profiles A through C can handle the decoding of four H.264 streams, they cannot be used in typical multi-unicast video conferences as they can only encode one video stream and not in the mandatory codec such as H.264. An exceptional case could be where the user of this terminal wishes to only send video to one of the other participants, e.g, a video side bar conversation used for communicating sign language in an otherwise audio-only conference.

Aside from simple 2-party video sessions, profiles A through D are applicable to multicasting, single-source multicasting, or single-source multi-unicasting conferences where the H.265 codec is known to be supported by all terminals and simultaneous encoding of H.264 is not required. Note that Profile C may be considered invalid if AMR-NB is a mandatory codec for the service being offered as AMR-NB decoding is not supported. So this profile could be omitted for services mandating AMR-NB.

Profile F can be thought of as the “HD Voice only” profile, to be used in speech-only conferences. Since use cases requiring simultaneous encoding of speech using the same encoder are yet to be identified, the speech-only profiles only need to consider concurrently operating one instance of each speech encoder. This can simplify the number of profiles that need to be listed for speech-only conferences and profile F appears to be the only relevant speech-only profile as conferences supporting more than 13 participants are unlikely and may very well exceed the RTP stream processing limits of the terminal (described further below). For terminals that perform trimming of received media streams without requiring decoding all of them, the number of instances of the decoder function can be indicated as “infinity”:

4.10.1.2.2.5 RTP Stream Limits

The ability to support the concurrent decoding of many media streams makes it likely that decoding may not be the limiting factor in setting the size of a conference. The number of RTP media streams that can be handled by the terminal’s protocol stack becomes the limiting factor. Therefore it is important to also communicate this information about the RTP stack limitations to the conference initiator.

For this, two new session-level SDP attributes can be defined to specify the limits on the number of concurrent RTP stacks:

a = rtp_tx_limit: rtp_instances

a = rtp_rx_limit: rtp_instances

where “rtp_instances” indicates the number of concurrent RTP instances supported.

4.10.1.2.3 Conclusions

As a simple solution, the CCCEx may be estimated internally at the terminal and the information may be made available at the call initiator through SDP offer/answer.
4.1 Proposal
Include the examples in Clause 2 of this contribution and the Changes to 4.10.1.2 in the Permanent Document between Clauses 4.10.1.1.4 and 4.10.1.1.5 and in the Technical Report.
References
[1] S4-150720 MMCMH: Concurrent Codec Capabilities for Conferences with In-terminal Mixing

[2] S4-151049 MMCMH: Concurrent Codec Capabilities Exchange (CCCEx)

[3] S4-AHM301 MMCMH: Conclusion on Concurrent Codec Capabilities Exchange (CCCEx)
[4] S4-AHM319 MMCMH: MMCMH: Examples of Concurrent Codec Capabilities Exchange (CCCEx) Usage

[5] S4-151077 MMCMH Permanent Document v0.4.0[image: image2.png]

Page: 1/10

Page: 9/10

_1497100227.vsd
A

C

B

B’s media to A
AMR-WB

B’s media to C
AMR-WB

C’s media to B
AMR-WB

