3GPP TSG SA4#86 meeting
S4-151420
26 - 30 October, 2015, San Jose Del Cabo, Mexico
Agenda item:
9.8
Source:
Expway, Qualcomm Incorporated
Title:
MEPRO: Service APIs
Document for
Discussion and Agreement

1 Introduction
This document is the combination of 1533 and 1555.
7.3 Service API
7.3.1 Introduction

2 approaches are proposed in this document. These approaches present a lot of communalities.

Note: the support of the streaming service are missing in this document, but should be supported
7.3.2 Approach 1

7.3.2.1Introduction

The API provides model and controller implementation for a typical application, for example a Java application on an Android platform. The envisaged architecture facilitates quick development of client Applications. The API lets application developers concentrate on creating great apps instead of worrying about the underlying Android Services and management of communication with those services.

Example services that may make use of service APIs are the following:

· Top 10 YouTube videos

· Firmware Over The Air (FOTA)

· Weekly Magazine

· Examples of streaming services

· Live sports games

· Live TV channels

The content associated with services is delivered in broadcast networks via IP packets and logical access network channels. The broadcast network also provides a service announcement function to describe the services available in the network. Apps do not have to be aware of how services are delivered in the network, but use the I-1 interface:

· To discover available services

· To request that the MBMS client to activate reception of data for the available services.

The MBMS client identifies each service by a Service ID. The app has to use the right service ID in any servicespecific request.

To use the API, the App should have the following information:.

· App id – The unique ID of the app.

· Service Class info – A set of services may be grouped together according to a common classification. This group is called a service class. For example, there could be a service class named “sports” which refers to all sports-related services.

The list of service classes that the app is interested in has to be given to the MBMS client while using the API. The MBMS client is able to give the data only for those services that belong to this set of service classes.

7.3.2.2 Network Architecture

From an overall network perspective, Figure 1 is an overview of network elements typically associated with sending data to an app.

[image: image1.emf]eNODE-B

BM-SC

Content

Provider

Modem

Application

DASH

Encoder

eMBMS Service

Layer

DASH

Client

eMBMS

Provisioning

system

Multimedia

Framework

UE

Figure 1 Overview of elements involved in sending data to the app running on UE

7.3.2.3 Modules

The following modules are:

· Management Module

· Streaming Module

· File Delivery Module

· Network Module

Depending on the use case, one or several of the above modules are involved.

7.3.2.4 Use Cases and Message Flows
7.3.2.4.1Streaming application

A typical streaming app streams live videos to the user. The user typically sees a list of available streaming services, and based on the user selection, the app streams the video to the user.

The following use case call flow assumes that the user:

1. Opens the app.

2. Selects a streaming service from a list of services.

3. Switches to another streaming service.

4. Exits the app.

Figure 6 is the overview of the call flow for a typical streaming service app.

[image: image2.emf]App to MBMS ClientConnection Setup

(Management Module)

AppAPI

initializeMBMSClient()

initializeConfirmation()

addEventListener()

Listener

Initialize Parameters

getStreamingController()

return

Streaming Controller Object

getStreamingModel()

return

Streaming Model Object

Streaming Service Initialization

(Streaming Module)

initializeStreamingService()

streamingServiceInitializeConfirmation()

Listener

Streaming Service Initialize Parameters

Application Start-up

Initialize the

connection

Application Start-up

Initialize the

connection

addStreamingEventListener()

Figure 6-1 S – Typical call flow for a streaming service app (1 of 3)

[image: image3.emf]Streaming Service Management

(Streaming Module)

App

API

getStreamingServiceList()

startStreamingService()

Get the list of

Streaming Services

and corresponding

service id’s

User wants to start

Service 1 (with service

id S1)

Service Id = S1

return <Streaming Service List>

streamingServiceStarted()

Service Id = S1

User wants to switch to

another streaming

service –Service 2 (with

service id S2)

switchStreamingService()

From Service Id = S1

To Service id = S2

streamingServiceStopped()

Service Id = S1

streamingServiceStarted()

Service Id = S2

getPlaybackUrl()

Service Id = S1

return <URL of the MPD file>

return <URL of the MPD file>

getPlaybackUrl()

Service Id = 2

On the Media Player:

1. Set the MPD URL

2. Start the player

This notification can be

sent to the App before the

streamingServiceStopped()

notification also

Figure 6-2 Typical call flow for a streaming service app (2 of 3)

[image: image4.emf]App to MBMS ClientConnection Shutdown

(Management Module)

Streaming Service Shutdown

(Streaming Module)

AppAPI

stopStreamingService()

Service Id = S2

streamingServiceStopped()

Service Id = S2

terminateStreamingService ()

removeStreamingEventListener()

Listener

terminate()

Remove

EventListener()

Listener object

User wants to exit the

application

On the Media Player:

1. Stop the playback

2. Release the media

player

Terminate

Confirmation()

Figure 6-3 S – Typical call flow for a streaming service app (3 of 3)

The call flow in Figure 6 is supported by the following actions that map to communication of the MBMS client with the network. Those actions that map against protocol information are highlighted.

initializeMBMSClient()

· The MBMS client acquires the MBMS service information from its bootstrap information, namely by accessing the USD Bundle

· The MBMS client responds and acknowledge initialization

getStreamingController()

· builds a framework

· is internal to MBMS client and application

· may be removed from the call flow

addStreamingEventListener()

· provides communication channel for events

· more an issue of implementation

· may be removed from the call flow

initializeStreamingService(ServiceClass)

· mapping against the USD attribute r7:serviceClass

[image: image5.png]
getStreamingServiceList()

· filter the USD for streaming services (including an MPD URL) and associated to service class

· a list of service IDs is returned

startStreamingService(service ID)

· access and start downloading the segments into local cache

· streamingServiceStarted informs app about the start of the service, i.e. when the MPD is available

getPlaybackURL (serviceID)

· returns MPD URL pointing to the local host

· application can now start the DASH client

switchStreamingService(service S1, service S2)

· starts and stops TMGI/FLUTE reception for S2 and S1

· notifies app about the availability of the MPD for S2

stopStreamingService (serviceID)

· stops TMGI/FLUTE reception for S2

removeStreamingEventListener()

· stops the event listener

· more an issue of implementation

· may be removed from the call flow

terminateStreamingService()

· internal

· implementation issue

· may be removed from the call flow

7.3.2.4.2 File Delivery application

Figure 7‑1 is the typical overall call flow sequence of an app support file delivery service. Subsequent sections include the call flow sequences for individual functions and other scenarios.

[image: image6.emf]App to MBMS ClientConnection Setup

(Management Module)

AppAPI

Initialize()

initializeonfirmation()

addEventListener()

Listener

Initialize Parameters

getFileDeliveryController()

return

File Delivery Controller Object

getFileDeliveryModel()

return

File Delivery Model Object

File Delivery Service Initialization

(File Delivery Module)

initializeFileDeliveryService()

fileDeliveryServiceInitializeConfirmation()

Listener

File Delivery Service Initialize Parameters

Application Start-up

Initialize the

connection

Application Start-up

Initialize the

connection

addFileDeliveryEventListener()

Figure 7‑1 FD – Typical call flow for a file delivery service app (1 of 2)

[image: image7.emf]File Delivery Service Management

(File Delivery Module)

App to MBMS ClientConnection Shutdown

(Management Module)

File Delivery Service Shutdown

(File Delivery Module)

AppAPI

terminateFileDeliveryService ()

removeFileDeliveryEventListener()

Listener

getFileDeliveryServiceList()

startFileCapture()

Get the list of File

Delivery Services and

corresponding

service id’s

User wants to start a

file delivery service

(with service id S1)

Service Id = S1, fileURI = U1

return <Map of File Delivery Services>

File download is

complete

fileAvailable()

Service Id = S1, FD File = F1

terminate ()

removeEventListener()

Listener object

terminateConfirmation()

Figure 7–1 FD – Typical call flow for a file delivery service app (2 of 2)

The call flow in Figure 7 is supported by the following actions that map to communication of the MBMS client with the network. Those actions that map against protocol information are highlighted.

First steps see above (all in 6-1)

getFileDeliveryServiceList()

· returns list to file delivery services that match service class

· if there is a file schedule, then the list of file URLs will be added as well
startFileCapture(serviceID, file URI)

· MBMS client hands file to application

· The MBMS client will not store the file
7.3.2.4.3YouTube app – top 10 videos

In this section, we look at a typical YouTube kind of app which downloads the top 10 videos of the day for the user. The following use case call flow assumes that the user:

5. Opens the app.

6. Sees the top 10 videos of the day (may play a few videos).

7. Exits the app.

In this scenario, we look at how the app can avoid downloading videos over subsequent days if they have already been downloaded the previous day as part of that day’s top 10 list. The unwanted older video files are also deleted from the device.

The scenario also assumes that the Top 10 video files are always broadcasted.

The key issue is that in this use case, the context of the file bundle is part of the application, only the application is aware that the set of files constitute the top 10 YouTube files.

There may be other cases for which the “bundle” is in the MBMS delivery, but this is not the case in the below. Generally, such “bundling” of files should be carefully checked and avoided as it overloads the MBMS client with ESG-kind of data.

[image: image8.emf]App to MBMS ClientConnection Setup

AppAPI

initialize()

initializeConfirmation()

addEventListener()

Listener

Initialize Parameters

getFileDeliveryController()

return

File Delivery Controller Object

getFileDeliveryModel()

return

File Delivery Model Object

File Delivery Service Initialization

initializeFileDeliveryService()

fileDeliveryServiceInitializeConfirmation()

Listener

File Delivery Service Initialize Parameters

User opens the

application on Day 1

Initialize the

connectionto MBMS

Client

addFileDeliveryEventListener()

Initialize the connection

towards File delivery

Service with registration

time to live as 1 day

Day 1

Figure 9‑2 YouTube top 10 videos application (1 of 4)

[image: image9.emf]File Delivery Service Shutdown

App to MBMS ClientConnection Shutdown

Top 10 Video download

Top 10 Catalog download

AppAPI

getFileDeliveryServiceList()

startFileCapture()

Get the list of File Delivery

Services and corresponding

service id’s

Service Id = S1, fileURI = Cat_U1

return <Map of File Delivery Services>

fileAvailable()

From the service list,

identify the service (say S1)

corresponding to Top 10

videos.

Download the Catalog file

which would give the order

of the top 10 videos

Catalog file download complete

startFileCapture()

Video no.1 capture complete

fileAvailable()

Service Id = S1, FDFile = F1

Start the download of all

the videos from the Top 10

video service.

Video no.2 capture complete

fileAvailable()

Service Id = S1, FDFile = F2

Video no.10 capture complete

fileAvailable()

Service Id = S1, FDFile = Cat_F1

Service Id = S1, fileURI = U1

Service Id = S1, FDFile = F10

terminateFileDeliveryService ()

removeFileDeliveryEventListener()

Listener

terminate ()

removeEventListener()

Listener object

Start Registration Time to Live -

Hold on the registration and do

service updates for up to 1 day

Day 1 (Continued)...

User closes the

application on Day 1

Figure 9‑3 YouTube top 10 videos application (2 of 4)

[image: image10.emf]App to MBMS clientConnection Setup

AppAPI

initializeMSDC()

initializeConfirmation()

addEventListener()

Listener

Initialize Parameters

getFileDeliveryController()

return

File Delivery Controller Object

getFileDeliveryModel()

return

File Delivery Model Object

File Delivery Service Initialization

initializeFileDeliveryService()

fileDeliveryServiceInitializeConfirmation()

Listener

File Delivery Service Initialize Parameters

Initialize the

connection towards

MBMS Client

addFileDeliveryEventListener()

Initialize the connection

towards File derlivery

Service with registration

time to live as 1 day

Day 2

While the App is closed, MBMS

Clientcontinues to download the

updates of the Catalog file for one

day (Reg Time to Live).

User opens the

application on Day 2

Figure 9‑4 YouTube top 10 videos application (3 of 4)

[image: image11.emf]File Delivery Service Shutdown

App to MBMS ClientConnection Shutdown

Top 10 New Video download

Top 10 Catalog file notification

AppAPI

getFileDeliveryServiceList()

return <Map of File Delivery Services>

Identify the service (say S1)

corresponding to Top 10

videos.

startFileCapture()

Video no.5 capture complete

fileAvailable()

Service Id = S1, FDFile = FF1

Video no.8 capture complete

fileAvailable()

Service Id = S1, FDFile = FF5

Video no.10 capture completefileAvailable()

Service Id = S1, fileURI = U1

Service Id = S1, FDFile = FF10

terminateFileDeliveryService ()

removeFileDeliveryEventListener()

Listener

terminate ()

removeEventListener()

Listener object

Start Registration Time to Live -

Hold on the registration and do

service updates for up to 1 day

Day 2 (Continued)...

Get latest predownloaded

Catalog file. The file gives:

-New Top 10 List

-List of new videos in Top10

-List of videos out of Top 10

App initiates download of

only new videos added to

Top 10 list –File no. 5, 8, 10

Delete the unwanted old videos

Delete the old files which

are no longer part of the

top 10 list. (Old video no.1,

3 and 9)

Service Id = S1, File URI = OldV1

deleteFile()

Delete Video no.1

deleteFile()

Delete Video no.9

getAvailableFileList()

<List of available files>

return

Service id = S1

Service Id = S1, File URI = OldV9

User closes the

application on Day 2

getAvailableFileList()

<List of available files>

return

Service id = S1

terminateConfirmation()

Figure 9‑5 YouTube top 10 videos application (4 of 4)

The call flow in Figure 9 is supported by the following actions that map to communication of the MBMS client with the network. Those actions that map against protocol information are highlighted.

7.3.3 Approach2

7.3.3.1 Basic Principle

The APIs are separate in 3 main areas:

The mbms protocol allows the management of MBMS services. The following function may be defined:

· get the list of a service,

· start to download files of a service,

· get the list of files,

· get the manifest file of an eMBMS service.

The HTTP protocol can be used by an application to acquire the files downloaded in the cache. For instance a DASH client will acquire the AV segments downloaded by the Middleware.

The socket API can be used for RTP stream consumption.

HTTP protocol and Socket API are used in order to work with traditional players such as RTP player or DASH player.

7.3.3.2 MBMS Protocol
7.3.3.2.1 Introduction

This protocol allows the management of services (get the list of available services). Moreover, this protocol allows to open, close a service and download files carried in a service. A non-exhaustive list of possible APIs are proposed in this section.

7.3.3.2.2 General APIs

Get the list of services (mbms://).

It returns the list of mbms services’ URLs described in the Service Announcement.

Get the list of services (serviceClass).

It returns the list of mbms services’ URLs described in the Service Announcement, filtered out by service class, i.e. the list of services whose serviceClass attribute, within the USD, is equals to the given parameter.

7.3.3.2.3 DASH service APIs

Open DASH service (mbmsServiceURL)

It starts the download of the segments

Close DASH service (mbmsServiceURL)

It stops the download of the segments and clears the cached segments

Get manifest (mbmsServiceURL)

It returns the local HTTP URL of the MPD.

In order to acquire files (mpd file, init segment and AV segment), the application should be able to use an HTTP server.

7.3.3.2.4 Download service APIs

Open service (mbmsServiceURL)

It starts the download of all available files. An event is sent to the eventListener when a file is cached.

Close service (mbmsServiceURL)

It stops the download of all available file and deletes the cached files

Get manifest (mbmsServiceURL)

It returns a list of available files’ URLs for the given service.

Get file (fileURL)

If the file has already been cached, it delivers the file.

If the file can be downloaded/cached, it starts or schedules its acquisition. An event is sent to the eventListener when the file is cached.

If the file can’t be downloaded, it returns HTTP 404 error.

7.3.3.2.5 Event listener APIs

Set Event Listener (eventListener)

Indicates to the middleware where its events shall be thrown.

7.3.3.2.6 Event List

File cached : file successfully downloaded and available from the cache

File download failure: the file could not be downloaded. Body of the event shall provide details: service or file removed from the announcement, out of eMBMS service coverage…

3 Summary and Proposal
It is proposed to include section 2 into the Technical Report..
_1507559818.vsd
Text

N

N

App

API

_1507559820.vsd
Text

N

N

App to MBMS Client Connection Shutdown

(Management Module)

File Delivery Service Shutdown

(File Delivery Module)

_1507559822.vsd
Text

N

N

_1507559823.vsd
Text

N

N

App to MBMS client Connection Setup

App

 API

_1507559824.vsd
Text

N

N

File Delivery Service Shutdown

_1507559821.vsd
Text

N

N

App to MBMS Client Connection Setup

App

API

_1507559819.vsd
Text

N

N

App to MBMS Client Connection Setup 
(Management Module)

App

API

_1507559816.vsd
Text

N

N

_1507559817.vsd
Text

N

N

App

API

_1507559815.vsd
BM-SC

Content Provider

Modem

DASH Encoder

DASH Client

Application

UE

eMBMS Service Layer

eNODE-B

Multimedia Framework

eMBMS Provisioning system

