3GPP TSG SA4#84 meeting
S4-150703
06 - 10 July, 2015, Rennes, France
Agenda item:
7
Source:
Qualcomm Incorporated
Title:
MEPRO: Use Cases and Scenarios for TRAPO and API
Document for
Agreement
1 Introduction
During SA4#82 the MEPRO work item in S4-150157 was agreed and afterwards approved in by SA plenary in SP-150099. This documents addresses use cases and scenarios for two of the areas, TRAPO and API. Working Assumptions are documented.
2 Architectures
2.1 Service Layer Architecture and Scope
Figure 1 shows a service architecture for DASH-based streaming services over MBMS. This use case is explained exemplary, but considered also as the most relevant one. On the network side, a content provider uses DASH formats and provides these formats to a BM-SC. The BM-SC is controlled by an eMBMS provisioning system. The lower layers support the physical delivery of the data through regular LTE unicast as well as MBMS broadcast bearers. The MBMS client receivers the data and provides the data to the DASH client, but also communicates with an application in the device. The application may for example be a dedicated app or a common browser and the application is controlled by JavaScript. The MBMS client provides the information to the DASH client.

Today TS26.346 defines the interface between the BMSC and the MBMS client for both unicast and broadcast related services and functions. The interface between the MBMS client and the application are not specified. The focus of TRAPO and API are the interfaces between the application and the MBMS client as well as the mapping of the methods and API calls to the transport protocol between the MBMS client and the BMSC.
The DASH client may be viewed as part of the application, or it may be considered as a separate entity. As 3GPP defines interfaces into a DASH client in TS26.247 we propose to separate the DASH client function in the architecture.
[image: image7.png]Streaming App Applications File Download App

Multimedia
System

DASH
Client

Application

Environment w/o
MBMS capabilities
]

Gateway
Device

with

Sae MBMS
aware e File Reception

HTTP very Repair Reporting

Server

capabilities
Data Distribution Function

R SNaW

Modem Interface

eMBMS Transport Servi

[image: image1]
2.2 Client Architecture

A more refined client architecture is provided below in Figure 2 and two functions are provided, the streaming application and the file download application.

Different high-level functions are defined:

· An application function that includes a streaming and/or file download application.

· The multimedia subsystem that includes a DASH client (as well as codecs and other associated functions)

· The DRM agent for providing secure processing of content

· Underlying eMBMS transport function
· The MBMS client that includes different functions according to TS26.346.

[image: image2]
Figure 2 MBMS Client Architecture
The specific interfaces MBMS-API and HTTP may be considered in scope of TRAPO and API, but HTTP is mostly defined by TS26.247 and possibly new work in the SAND work in MPEG.
Therefore, the most relevant interfaces for the MEPRO work is MBMS-API in order to get access to the MBMS service layer functions in a simple manner.
2.3 Deployment Scenarios
Different use cases and deployment scenarios may be considered:

1. The application and DASH client are on the same device as the MBMS client and the LTE modem.

2. The application and DASH client are on a different device than as the MBMS client and the LTE modem. The latter scenario is shown in Figure 4. In this case MBMS-API and HTTP must be supported as network protocols. Whereas for HTTP this already exists, for MBMS-API this is an open questions.
[image: image8.png]Application Processor

Streaming App Applications File Download App

Multimedia Streaming Service File Download Service
System

pasH HTT! Service Reception
Client Discovery Reporting

WP SWEN

Data Distribution Function
Modem Interface

eMBMS Transport Service

[image: image3]
3 Use Cases and Scenarios

3.1 Overview

In the following we provide some use cases and scenarios that are considered relevant. In particular, the focus of the presentation is on the interaction between application and MBMS client. We address three different relevant use cases and scenarios:
· Service Discovery and Bootstrapping

· DASH-based streaming content and service change
· File download
All documentation is based on existing and publicly available APIs of the Qualcomm LTE Broadcast SDK
.

3.2 Service Discovery and Bootstrapping

In the following service discovery and bootstrapping is discussed. The call flow in Figure 5 provides a call flow that includes the Application, the MBMS client, the lower layer eMBMS service and the BMSC. Assume an application is aware of an MBMS-based application and it registers with the MBMS client. The MBMS client will then activate and download all User Service Description information and informs the MBMS client about the available services. The service information is as follows:
· Service Id (unique identifier assigned by BM-SC)

· Service class

· Service language

· Service Availability

· List of service names (language and name)

· MPD URI (for DASH streaming services)

[image: image4.emf]Application Registration

Enable eMBMS

Application MBMS Client BM-SC

Retrieve user service definition(SDP) for service discovery -HTTP

eMBMS

Service

Persist service discovery

service definition

Activate TMGI

Open FLUTE session

(local multicast join) and receive file

service announcement MIME file

Deactivate TMGI

Close FLUTE session

Get eMBMS services list Return list of eMBMS

services defined in

service announcement

Service discovery bootstrapping

Service discovery

Process service

announcement MIME

file and persist

SA storage

Periodic Service Discovery(based on configuration parameter)

Figure 4 Service Discovery and Bootstrapping
The relevant APIs for service announcement are the Application Registration and the available service list as indicated in bold and red.
3.3 DASH-based streaming content and service change
For the DASH-based streaming content a call flow is provided in Figure 6. It is assumed that the application has access to the service information according to section 3.2 including the service ID and the MPD URL.

The following steps are carried out according to Figure 6.

· Start Streaming service based on the serviceID
· This triggers actions in the MBMS client and eMBMS service to open a FLUTE session.

· Once completed, the application obtains a service start notification

· The application starts the service calling the DASH client with the appropriate MPD URL as known from the service announcement.

· The MBMS client and DASH client act by providing and consuming MPDs and Segments for the DASH client
· The application may provide a stop message for the streaming service using the ID
· The MBMS client will process accordingly and terminate the session.
In summary the following notifications from the MBMS client to the Application may be provided:
· Service started

· Service stopped
· Service error
· Service stalled

[image: image5.emf]Start DASH service (serviceID)

Stop DASH service (serviceID)

Activate TMGI

Application

MBMS Client

eMBMS

Service

Open FLUTE session

(local multicast join) and receive

segment file(s) and perform FEC decode

Deactivate TMGI

DASH Client

Service start notification

Start Playback (MPD url)

Get Media Segments

Close FLUTE session

Stop Playback

Get MPD and IS

eMBMS Transport Mgmt

DASH Playback

eMBMS Transport Mgmt

Validate/Wait for validity of

scheduleFragment in USD

Playback media by

fetching Media Segments

Figure 5 DASH Streaming Service with relevant APIs
3.4 File Download Service

For a file download service, a call flow is provided in Figure 7. It is assumed that the application has access to the service information according to section 3.2 including the service ID and some file identifiers (URLs, directories, etc.).

The following steps are carried out according to Figure 7:

· After service discovery, the Application would request the MBMS client to receive files. Examples include that the application is interested to receive files to show program guide or the application is interested to download a weekly/daily magazine.
· The MBMS client initiates all the communication and setup and downloads the file, including ADPs.

· The MBMS client provides a file download notification to the application.

[image: image6.emf]Capture File(s)(ServiceId, File name/

prefix/dirName)

File download notification

Activate TMGI

Application MBMS Client

eMBMS

Service

Open FLUTE session

(local multicast join) and receive file(s)

and perform FEC decode

Perform file repair (if

required) using ADP in USD

Deactivate TMGI

Close FLUTE session

File download

Validate/Wait for validity of

scheduleFragment in USD

Figure 6 File Download Service
3.5 Other services and Scenarios

Other services and scenarios may be considered on application level. This includes

· service updates (MBMS client sends a service update notification to the application)

· information on broadcast coverage

· Broadcast unicast handoffs

· MooD redirections
3.6 Supported Use cases
In summary, the following use cases are considered in the above scenarios:
· Play streaming service
· Switching streaming service
· Starting file download service
· Receiving MPD updated notification
· Receiving file available notification
· Receiving service update notification
· Receiving broadcast coverage notification
· Receiving stalled notification
· Configured service class
4 Relation to TRAPO and API
Based on the information, this section provides the relation of this information to the MEPRO areas TRAPO and API:

On API:

· This document provides a clear overview on relevant APIs between an MBMS aware application and the MBMS client. The application communicates with MBMS client based on these APIs.

· As the MBMS client and the Applications are typically developed independently, the specification of standardized APIs for MBMS services is beneficial.

· The API definition focuses on up-to-now non-standardized interfaces. Therefore, for example the interface between the DASH client and the MBMS client do not have to be defined as the DASH formats provide the interoperability.
· The definition of the APIs in a formal manner is useful. The detailed language and abstraction still needs to be discussed.
On TRAPO:
· The above mentioned APIs may be implemented also as a URL form. This permits that the application can communicate with the MBMS client in a formalized manner, similarly as applications communicate with underlying HTTP stack.
· The URL needs sufficient information to register with the MBMS client, generally the following information is considered sufficient in the URL:

· ServiceID

· Service Type

· Files that are delivered within a service, or an application content
· No changes on the protocol on the wire are expected to be necessary for the operations, only the URL form and the methods between the application and the DASH client are expected to be defined.
· The USD can provide a list of services and the BMSC and the MBMS client can serve as a resolution function/name server.
· Notifications from the application to the MBMS client include:

· Provide accessible service list

· Access service with a certain ID

· Start streaming service

· Starting file download service
· Notifications from the MBMS client to the application include:
· Receiving MPD updated notification

· Receiving file available notification

· Receiving service update notification

· Receiving broadcast coverage notification

· Receiving stalled notification

· Receiving service start/stop notifications
5 Working Assumptions

Based on the discussion in this document we propose the following initial working assumptions for the TRAPO and API work:

On TRAPO

· The work does not address new use cases that change the protocol on the wire, i.e. the protocol between the MBMS client and the BMSC.

· The scope of the work is focused on the definition of the MBMS URL that includes the minimum information from the application to the MBMS client in order to access the service. Typically the service id and possibly a delivered resource is considered sufficient.
· The interface between the DASH client and the MBMS client is not expected to be affected by this work item. Existing DASH functionalities and potentially developed work in MPEG in the context of SAND may be used.
· For resolution purposes, the USD provides a list of services and the BMSC and the MBMS client can serve as a resolution function. No new resolution function is expected to be necessary.

On API:

· The APIs are expected to be developed between an MBMS aware application and the MBMS client. The application communicates with MBMS client based on these APIs.

· As the MBMS client and the Applications are typically developed independently, the specification of standardized APIs for MBMS services is beneficial.

· The API definition focuses on up-to-now non-standardized interfaces. Therefore, for example the interface between the DASH client and the MBMS client do not have to be defined as the DASH formats provide the interoperability.

· The definition of the APIs in a formal manner is useful. The detailed language and abstraction still needs to be discussed.

· The API should support that application and MBMS client are on the same physical device or connected through an HTTP/IP network connection.
6 Proposal
It is proposed to take into account the information in section 2-5 for the MEPRO area on TRAPO and API and to add the information to the TR that guides the work item.
Figure � SEQ Figure * ARABIC �1� Service Architecture for DASH-over-MBMS

Figure � SEQ Figure * ARABIC �4� MBMS Client and Application in separate devices

� https://developer.qualcomm.com/mobile-development/emerging-technologies/qualcomm-lte-broadcast-sdk

- 11/11 -

[image: image9.png]UE Network

eMBMS
Provisioning
System

Content
Provider

Application

DASH
Encoder

Client

= = =
s
—

=== Broadcast traffic
<+ Unicast traffic

