3GPP TSG-SA4 Meeting #84
S4-150638
Rennes, France, July 6 – 10, 2015

Title:

QOSE2EMTSI Proposal for updated handling of bitrate variations
Source:
Ericsson LM
Document for:
Discussion and approval
Agenda Item:
10.5.1
1 Introduction
In the MTSI teleconference on May 12 on QOSE2EMTSI [1] the general principles for how to handle bitrate variations were agreed. The solution uses an averaging window of length ‘T’. The following items were left undefined:

· Exact definition of the averaging window length ‘T’.
· If the window length should be different for different QCIs or if it is possible to use one common window length for all media variants.

· Handling of VBR speech codecs, e.g. for EVS.
This contribution uses an analytical approach to derive recommendations for how ‘T’ should be selected.

Annex A includes proposed updates to solution F in TR 26.924, [3].
2 Discussion on solutions
2.1 Reasonable video encoder configuration
The video codec used in this analysis is configured as described in the table below.
Table 1.
Parameters used in this analysis
	Property
	Value(s)
	Comments

	Video codec
	H.264
	The video codec that is use is actually unimportant for this analysis

	Bit rate
	384 kbps
	The average bitrate that is actually unimportant for this analysis

	Frame rate
	10, 15, 20, 30 Hz
	

	Average frame data size
	2400 bytes/frame
	The average frame data size is actually unimportant for this analysis

	Frame data sizes, I frames
	5x, 10x average frame data size
	

	Packetization
	2 RTP packets per video frame on average
Up to 10-20 RTP packets for I frames
	This analysis assumes that all RTP packets are transmitted at once, which makes the packetization unimportant for this analysis

	IPv6/UDP/RTP overhead
	40+8+12 = 60 bytes
	The IP overhead is actually unimportant for this analysis

2.2 Normal transmission
The normal transmission behaviour means that there is no need to send any large I frames. The actual frame data size will vary but the expectation value of the frame data size is still constant and depends only on the bitrate (encoding bitrate plus IP/UDP/RTP overhead) and the frame rate:

[image: image1.emf](encodingBitrate + overhead)

E| frameDataSize] =
Jr frameRate

X

E

[

frameDataSize

]

=

(

encodingBitrate

+

overhead

)

frameRate

=

X

This is illustrated in the table below.
Table 2. Description of expected normal sending behaviour
	Frame number
	-m
	…
	-3
	-2
	-1
	0
	+1
	+2
	+3
	…
	+m

	E[fds]
	X
	…
	X
	X
	X
	X
	X
	X
	X
	…
	X

	Average
	X
	
	X
	X
	X
	X
	X
	X
	X
	
	X

This is independent of the window length and the position.
2.3 Sending a large I frame

If a large I frame (5x the average frame data size) is transmitted and if the surrounding frames are not modified then the average depends on the length of the window and also the position. In the table below it is assumed that the length of the window is 5 frames and the average frame data size at position ‘p’ calculated over the last 5 frames.
Table 3. Average frame data size with different positioning of the
	Frame number
	-6
	-5
	-4
	-3
	-2
	-1
	0
	+1
	+2
	+3
	+4
	+5
	+6

	E[fds]
	X
	X
	X
	X
	X
	X
	5X
	X
	X
	X
	X
	X
	X

	Avg@-6
	X
	
	
	
	
	
	
	
	
	
	
	
	

	Avg@-5
	
	X
	
	
	
	
	
	
	
	
	
	
	

	Avg@-4
	
	
	X
	
	
	
	
	
	
	
	
	
	

	Avg@-3
	
	
	
	X
	
	
	
	
	
	
	
	
	

	Avg@-2
	
	
	
	
	X
	
	
	
	
	
	
	
	

	Avg@-1
	
	
	
	
	
	X
	
	
	
	
	
	
	

	Avg@0
	
	
	
	
	
	
	1.8X
	
	
	
	
	
	

	Avg@+1
	
	
	
	
	
	
	
	1.8X
	
	
	
	
	

	Avg@+2
	
	
	
	
	
	
	
	
	1.8X
	
	
	
	

	Avg@+3
	
	
	
	
	
	
	
	
	
	1.8X
	
	
	

	Avg@+4
	
	
	
	
	
	
	
	
	
	
	1.8X
	
	

	Avg@+5
	
	
	
	
	
	
	
	
	
	
	
	X
	

	Avg@+6
	
	
	
	
	
	
	
	
	
	
	
	
	X

It is here assumed that the policing allows for X. This means that for the Nth frame and for the 4 subsequent frames the average will exceed the MBR and the policing may drop some packets. This is highlighted in the table above.

2.4 Compensating for a large I frame
To compensate for the large I frame, the frame before and after would need to be encoded at a lower bitrate. If the averaging window is 5 frames and the size of the I frame is 5X then 4 frames before and after would need to be encoded at 0 bits. This is shown in the table below.
Table 4. Compensating for a large I frame

	Frame number
	-6
	-5
	-4
	-3
	-2
	-1
	0
	+1
	+2
	+3
	+4
	+5
	+6

	E[fds]
	X
	X
	0
	0
	0
	0
	5X
	0
	0
	0
	0
	X
	X

	Avg@-6
	X
	
	
	
	
	
	
	
	
	
	
	
	

	Avg@-5
	
	X
	
	
	
	
	
	
	
	
	
	
	

	Avg@-4
	
	
	0.8X
	
	
	
	
	
	
	
	
	
	

	Avg@-3
	
	
	
	0.6X
	
	
	
	
	
	
	
	
	

	Avg@-2
	
	
	
	
	0.4X
	
	
	
	
	
	
	
	

	Avg@-1
	
	
	
	
	
	0.2X
	
	
	
	
	
	
	

	Avg@0
	
	
	
	
	
	
	X
	
	
	
	
	
	

	Avg@+1
	
	
	
	
	
	
	
	X
	
	
	
	
	

	Avg@+2
	
	
	
	
	
	
	
	
	X
	
	
	
	

	Avg@+3
	
	
	
	
	
	
	
	
	
	X
	
	
	

	Avg@+4
	
	
	
	
	
	
	
	
	
	
	X
	
	

	Avg@+5
	
	
	
	
	
	
	
	
	
	
	
	0.2X
	

	Avg@+6
	
	
	
	
	
	
	
	
	
	
	
	
	0.4X

This now fulfils the MBR requirement and the policing should not need to drop any packets.

An obvious drawback of this is that 8 out of 9 frames are not transmitted so the video is frozen for a quite many frames, both before and after the I frame. How long freezing time one will get before and after the I frame depends on the frame rate:

· 10 fps (4*1/10 s = 0.4 s

· 15 fps (4*1/15 s = 0.267 s

· 20 fps (4*1/20 s = 0.2 s

· 30 fps (4*1/30 s = 0.133 s

The total impacted period is 9 frames (freezing before the I frame + the I frame + freezing after the I frame):
· 10 fps (9*1/10 s = 0.9 s

· 15 fps (9*1/15 s = 0.6 s

· 20 fps (9*1/20 s = 0.45 s

· 30 fps (9*1/30 s = 0.3 s

2.5 Sending an even larger I frame
Sending a 10x I frame while keeping the window length at 5 frames means that it becomes impossible to send all the date at once. To avoid exceeding the MBR one have to:

· skip the transmission of the 4 frames before the I frame

· send half of the data for the I frame (similar to what is shown above)

· skip the transmission of the next 4 frames
· send the remaining half of the data for the I frame

· skip the transmission of the 4 frames subsequent

It should be noted that the I frame cannot be completely decoded until the second half of the data has arrived, so the freezing time before the presentation of the I frame will be 9 frame periods. This corresponds to 0.3-0.9 seconds, depending on the frame rate.
This extra delay to send the second half of the data for the I frame is in this document called “packet pacing” but other terminologies can also be relevant. This packet pacing would come automatically if a token bucket were used for the transmission, as described in [2]. The drawback with the packet pacing is that it increases the end-to-end delay. If one want to maintain a smooth and regular play-out rate then this extra delay would impact all frames.

2.6 Using a longer averaging window

Extending the averaging window to 10 frames when sending a 5x frames allows for sending the frames immediately before and after the I frame. However, those frames need to be encoded at a lower bitrate. One example is shown in the table below where the surrounding frames are encoded with 50% of the average bitrate.

Table 5. Compensating for a large I frame

	Frame number
	-11
	-10
	-9
	-8
	-7
	-6
	-5
	-4
	-3
	-2
	-1
	0
	+1
	+2
	+3
	+4
	+5

	E[fds]
	1
	1
	1
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	1
	0.5
	0.5
	0.5
	0.5
	0.5

	Avg
	1
	1
	1
	0.95
	0.9
	0.85
	0.8
	0.75
	0.7
	0.65
	0.6
	1
	0.95
	0.95
	0.95
	0.95
	0.95

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Frame number
	+6
	+7
	+8
	+9
	+10
	+11
	+12
	+13
	+14
	+15
	+16
	+17
	+18
	+19
	+20
	+21
	+22

	E[fds]
	0.5
	0.5
	0.5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	Avg
	0.95
	0.95
	0.95
	1
	0.6
	0.65
	0.7
	0.75
	0.8
	0.85
	0.9
	0.95
	1
	1
	1
	1
	1

The above description can be easily expanded to other variants.

2.7 Selection of averaging window length
From the discussion above it can be derived that the window length, expressed in number of frames, depends on the following parameters:

· the relationship between the average bitrate and the recovery bitrate used before and after the I frame

· the relationship between the maximum frame data size that one want to handle in relation to the average frame data size

This can be expressed with the following formula:

[image: image2.emf]avgWinLength = avgBitrate . maxFrameDataSize

avgBitrate — recoveryBitrate avgFrameDataSize

avgWinLength

=

avgBitrate

avgBitrate

-

recoveryBitrate

*

maxFrameDataSize

avgFrameDataSize

A few examples are shown in the table below:
Table 6. Examples of averaging window lengths
	avgBitrate
	recoveryBitrate
	maxFrameDataSize
	avgFrameDataSize
	avgWinLength

	B
	B/2
	5X
	X
	10

	B
	B/3
	5X
	X
	7.5

	B
	B/4
	5X
	X
	3.75

	B
	0
	5X
	X
	5

	B
	B/2
	10X
	X
	20

	B
	B/3
	10X
	X
	15

	B
	B/4
	10X
	X
	7.5

	B
	0
	10X
	X
	10

Assuming that MTSI should allow for I frames up to 10 times the size of the average frame and assuming that MTSI should allow for using 50% of the average bitrate during the recovery period then the length of the averaging window becomes 20 frames.
Assuming further that frame rate should normally be between 10 and 30, the worst case (10 fps) gives T = 2 seconds.
3 Other services

3.1 Conversational speech
In most cases (fixed-rate codecs, AMR, AMR-WB, EVS with CBR), the bearer setup is set to the highest codec mode, or higher if application layer redundancy is needed. Using an averaging window of 2 seconds should work well.

EVS however also includes the 5.9 kbps VBR mode. The 5.9 kbps average rate is only applicable to speech. If the signal is non-speech it can happen that the higher bitrate modes (7.2 or 8.0 kbps) are used for longer periods of time.

It is not obvious how to handle this with an averaging window in the policing function because at session setup, when the codec mode is decided, one do not know what type of signal that will be injected into the encoder.

There is however a quite straight-forward solution, which is to set the MBR (or GBR for MBR>GBR bearers) to 8.0 kbps or higher whenever the 5.9VBR is negotiated for the session, even if 5.9VBR is the only allowed mode.
3.2 Streaming and other non-conversational services
Streaming services allow for longer end-to-end delay than conversational services. This gives more room for using packet pacing in the client to give a smoother bitrate.

Other services may be more similar to file transfer and may show very large bitrate variations than what is discussed above for video. These may therefore need a longer averaging window.

Also, if a vendor wants to use the same averaging window for all services then he should select the maximum one. If MTSI clients assume that the averaging window is 2 seconds then this should still work well. This is why the following statements are important:

· Policing functions in the network should use an averaging window that is at least 2 seconds.

· UEs should assume that the averaging window in policing functions is no longer than 2 seconds.

With this, the different service specifications could define different window lengths. It an then be left for the implementers to decide if they want to use one single averaging window length or if they want to have different averaging window lengths for different QCIs.

4 Proposal

It is proposed to adopt an averaging window ‘T’ of at least 2 seconds for MTSI.
It is also proposed that the TR is updated according to the changes shown in the annex.
5 References

[1] S4-150633, DRAFT Report from SA4 MTSI SWG conf. call on QoS End-to-end MTSI extensions (QOSE2EMTSI) on May 12, 2015.
[2] S4-130706, Effects of Token Bucket limitations on media transport.
[3] S4-150636, TS 26.924 v1.2.1.

Annex A: Proposed update to solution

8.6
Potential solution F: Bitrate variations

8.6.1
Introduction

This solution defines that an averaging window should be used when calculating the used bitrate. The length (in time) of the averaging window is then selected such that even large bitrate variations are smoothed sufficiently to avoid risking packet losses.

8.6.2
Description of the solution

The procedure for how the used bitrate should be calculated is defined in 3GPP specifications. The procedure uses an averaging window over a specified time period ‘T’ such that an average over the given time period is calculated. This gives a smoothing effect such that clients that need to send one or more large packets, for example for a large I frame, have time to compensate for this by sending smaller packets afterwards.

The solution defines the time period that is used in somewhat different ways depending on whether the entity is generating media or whether the entity is monitoring the media:

· Entities generating media, e.g. codecs, should generate packets such that the average bitrate measured over a time period ‘Te’ that is shorter than or equal to T.

· Entities monitoring the media, e.g. policing functions, should calculate the average bitrate over a time period that ‘Tp’ that is longer than or equal to T.

The length of the averaging window ‘T’ is proposed to be 2 seconds.
This solution does not use any signalling between clients and networks, or between different networks nodes. This means that the implementation is local in the respective node. This also means that the actual implementation could be different and does not use an averaging window as long as the performance is equivalent to what is defined above. For example, a client generating media could use a packet pacing function to avoid sending several large packets too closely to each other, which would create a high peak bitrate and would risk triggering the policing function.

The time period T can be made dependent on the QCI and thus media specific or service specific by defining it in media or service specifications, for example in TS 26.114. It is FFS whether a time period T dependant on the QCI offers significant advantages over a fixed time period T that is sufficiently long for all services. It is also FFS to determine whether a separate value of T should be defined for source-controlled Variable-Bit-Rate (VBR) operation vs. non-VBR codec modes, e.g. for EVS using VBR operation.

If a generic definition is desired, which is then used for all media and all services, then it may be better to define the time period in PCC or EPC specifications.

8.6.3
Compliance with proposed requirements

This solution fulfils the proposed requirement on bitrate variations since developers would know how the bitrate is calculated and can design the clients and network nodes for this.

8.6.4
Impact on networks and terminals

It is well known that encoders, especially for video, generate media with large bitrate variations already today. This means that both networks and terminals should already use some form of averaging when calculating the bitrate. Policing functions need to do this to avoid dropping packets unnecessarily. Terminals also need this to reduce the variations to avoid triggering packet dropping in policing functions.

When introducing this solution it should therefore be relatively easy to implement it also in networks and terminals. This solution also means no changes to the architecture or the interfaces, which further simplifies the implementation
_1370646232.unknown

_1370646504.unknown

