Page 4
Draft prETS 300 ???: Month YYYY


3GPP TSG-SA4 Meeting #83
S4-150374
Bratislava, Slovakia, 13-17 April 2015
Agenda item: 
10.5.4
Source: 
Intel
Title: 
Proposed Guidelines on ROI Command Jitter Buffer
Document for
Discussion and Agreement
1 Guidelines on ROI Command Jitter Buffer
In the context of deploying ROI control request in a sender-receiver video conversation, it is expected the following situations would occur:

· Multiple, subsequent ROI control commands issued by the MTSI receiver that reach the MTSI sender within short time interval, due to corrections issued by the owner of the receiver.

[image: image1.png]ROITERUES o) request2
RO request3

Time

12

ROIT

Roi 2





· In the context of multi-party video conferencing, the reception by the MTSI sender of concurrent ROI requests sent by several MTSI receivers, all owners of a receiver, in the party, trying to access the same area for details.
[image: image2.png]I-Usera request
— RO Uber3 request

o fe

ROI_Userl

01_User





These situations have to be properly addressed as the generation by the MTSI sender of a consistent, decodable stream requires proper setup of IDR frames and subsequent depending frame sequences. And the usual consequences of this is bit-rate overhead that results into frame drops on the receiver.

The proposed guidelines:
The proposed set of guidelines is two-fold:

The MTSI sender will stack up the requests in order of arrival (within its time reference) and manage them within an ROI Commands Jitter Buffer. The ROI Commands Jitter Buffer has the property of holding commands for X ms in the past (from current time). The content of the buffer is updated at the time of arrival of a new command request. Every X ms, the buffer lower boundary is set to Current Time – X ms and all commands arrival time older than this time are discarded.

The MTSI sender’s encoder, waits for X ms to check the status of commands. At that time, all received commands (active commands) are considered for ROI creation. The creation process will generate only 1 ROI (also called tile) that covers the set of regions described by all pending commands for that iteration.

[image: image3.png]



In the context of multi-party conferencing, the process above may still result in more than 1 tile (see below). X is chosen so that the overhead in bit-stream due to the image change is minimized. Typically, this would be 500-600 ms. ROI change requests are queued up in the Jitter Buffer associated with a local time stamp. Every X ms, sender looks at entries inside the buffer and

a) Clears all entries with time stamp older than Current Time – X (those have already been processed).

b) Processes all remaining entries.

Processing the entries consists, for all requests coordinates {[UL_x(i), UL_y(i)], W(i), H(i)}, in computing the equivalent ROI coordinates as per below:

Resulting ROI upper left anchor: [Min(i){UL_x(i), for all i}, Min(i){UL_y(i), for all i}]

Resulting ROI Width:


Max_X = Max(i){UL_x(i) + W(i), for all i}


W = Max_X - Min(i){UL_x(i), for all i}

Resulting ROI Height:


Max_Y = Max(i){UL_y(i), for all i}


H = Max_Y - Min(i){UL_y(i), for all i}

The overall process described above allows a smooth convergence of the ROI towards the stable region the user is finally looking for, in a form that can be thought of a gradual zoom in, without all visual jumps otherwise.

Also note that, for consistent video stream transfer and in order to avoid stream reconfiguration with IDR, etc., the tile might be scaled down or cropped to the video frame resolution in use. So, if 1280x720 resolution is used but the aggregation above creates a 1440x960 pixels image, the video transmission may not be reset to that new resolution but would be scaled or cropped to 1280x720 by the sender.

In the context of multi-party video conferencing, this also allows to create a video tile consistent for all viewers that mitigates network bandwidth at the expense of a potentially larger field of view. Obviously, if the request from all parties stabilize in different part of the initial sender view, it is the responsibility of the sender to properly create the number of separated views needed to support the requests or to deny the support of these stream instances in order to avoid network saturation.

If granted by the sender, this can be achieved by analyzing the pending requests in the jitter buffer and understanding whether they group into a single tile of surrounding pixels or more than such tile (segmentation can be guided by horizontal and vertical thresholds – if lower, tiles get aggregated).
2 Proposal
It is proposed to include the above proposed guidelines on ROI command jitter buffer in TS 26.114. If agreeable, an accompanying CR to TS 26.114 will be accordingly produced.
Time





X ms





X ms








- 1/3 -

