

Note: This document is a recommendation rather than a specification.

 Guidelines for Implementation:

Ad Insertion in DASH

September 1, 2014

DASH Industry Forum

Version 0.9 (Community Review)

Until November 1st, 2014

Please submit comments

https://gitreports.com/issue/Dash-Industry-Forum/AdInsertion

 DASH-IF Ad Insertion (for internal review)

Scope 1

This document provides recommendations for implementing ad insertion in DASH. Second edition 2

of DASH (ISO/IEC 23009-1:2014 2nd edition, including COR1) is the baseline for this document. 3

Furthermore, this document defines several interoperability points. 4

2

 DASH Ad Insertion

Disclaimer 1

This document is not yet final. It is provided for public review until November 1st, 2014. If you 2

have comments on the document, please submit comments at the following URL: 3

• https://gitreports.com/issue/Dash-Industry-Forum/AdInsertion 4

DASH-IF members may alternatively 5

o submit comments at the github repository at https://github.com/Dash-Industry-Fo-6

rum/AdInsertion/issues 7

o or dashif+iop@groupspaces.com with a subject tag [AdInsertion] 8

Please add a detailed description of the problem and the comment. Based on the received com-9

ments a final document will be published by December 15-th, 2014. 10

This is a document made available by DASH-IF. The technology embodied in this document may 11

be covered under patents, including patents owned by such companies. No patent license, either 12

implied or express, is granted to you by this document. This draft specification is provided on an 13

as-is basis without any warranty whatsoever. 14

In addition, this document may include references to documents and/or technologies controlled 15

by third parties. Those documents and technologies may be subject to third party rules and li-16

censing terms. No intellectual property license, either implied or ex-press, to any third party ma-17

terial is granted to you by this document or DASH-IF. DASH-IF makes no any warranty whatso-18

ever for such third party material. 19

3

 DASH Ad Insertion

Contents 1

GUIDELINES FOR IMPLEMENTATION: AD INSERTION IN DASH .. I 2

1 INTRODUCTION ...7 3
1.1 GENERAL ... 7 4
1.2 DASH CONCEPTS .. 7 5

1.2.1 Remote Elements .. 7 6
1.2.2 Periods ... 8 7
1.2.3 DASH events ... 9 8
1.2.4 MPD Updates ... 9 9
1.2.5 Session information .. 10 10
1.2.6 Tracking and reporting ... 10 11

2 ARCHITECTURES ... 10 12

3 SERVER-BASED ARCHITECTURE ... 12 13
3.1 MAPPING INTO DASH ... 13 14

3.1.1 Period elements .. 13 15
3.1.2 Asset Identifiers .. 13 16
3.1.3 MPD updates .. 14 17
3.1.4 MPD events .. 14 18

3.2 WORKFLOWS ... 14 19
3.2.1 Linear ... 14 20
3.2.2 On Demand .. 17 21
3.2.3 Capture to VoD ... 18 22
3.2.4 Slates and ad replacement .. 18 23
3.2.5 Blackouts and Alternative content .. 18 24
3.2.6 Tracking and reporting ... 19 25

3.3 EXAMPLES ... 19 26
3.3.1 MPD with mid-roll ad breaks and default content ... 19 27

4 APP-BASED ARCHITECTURE .. 21 28
4.1 MAPPING INTO DASH ... 21 29

4.1.1 MPD ... 22 30
4.1.2 DASH events ... 22 31
4.1.3 Asset Identifiers .. 23 32

4.2 WORKFLOWS ... 24 33
4.2.1 Linear ... 24 34
4.2.2 On Demand .. 25 35

5 INTEROPERABILITY POINTS .. 25 36
5.1 SERVER-DRIVEN INTEROPERABILITY POINTS ... 25 37

5.1.1 Multiperiod... 25 38
5.1.2 Static just-in-time ... 27 39
5.1.3 Dynamic just-in-time... 27 40

5.2 APP-DRIVEN INTEROPERABILITY POINT ... 28 41
5.2.1 General... 28 42

4

 DASH Ad Insertion

5.2.2 Guidelines for Content Authoring .. 28 1

6 REFERENCES .. 29 2

 3

 4

5

 DASH Ad Insertion

List of Figures 1

Figure 1: XLink resolution ... 8 2

Figure 2: Server-based architecture .. 12 3

Figure 3: Using an asset identifier ... 13 4

Figure 4: Live workflow ... 15 5

Figure 5: Ad Decision .. 17 6

Figure 6: Example of MPD for "Top Gun" movie ... 20 7

Figure 7: App-based architecture .. 21 8

Figure 8: Inband carriage of SCTE 35 cue message ... 22 9

Figure 9: In-MPD carriage of SCTE 35 cue message .. 23 10

Figure 10: Linear workflow for app-driven architecture .. 24 11

 12

 13

6

 DASH Ad Insertion

Acronyms, abbreviations and definitions 1

Ad Break: A location or point in time where one or more ads may be scheduled for delivery; same as 2
avail and placement opportunity. 3

Ad Decision Service: functional entity that decides which ad(s) will be shown to the user. It in-4

terfaces deployment-specific and are out of scope for this document. 5

Ad Management Module: logical service that, given cue data, communicates with the ad decision 6

service and determines which advertisement content (if at all) should be presented during the ad 7

break described in the cue data. 8

Cue: indication of time and parameters of the upcoming ad break. Note that cues can indicate a 9

pending switch to and ad break, pending switch to a next ad within an ad break, and pending switch 10

from an ad break to the main content. 11

CDN node: functional entity returning a segment on request from DASH client. There are no 12

assumptions on location of the node. 13

Packager: functional entity that processes conditioned content and produces media segments suit-14

able for consumption by a DASH client. This entity is also known as fragmentor, encapsulator, or 15

segmentor. Packager does not communicate directly with the server – its output is written to the 16

origin. 17

Origin: functional entity that contains all media segments indicated in the MPD, and is the fallback 18

if CDN nodes are unable to provide a cached version of the segment on client request. 19

Splice Point: point in media content where 20

MPD Generator: functional entity returning an MPD on request from DASH client. It may be 21
generating an MPD on the fly or returning a cached one. 22

XLink resolver: functional entity which returns one or more remote elements on request from 23
DASH client. 24

 25

26

7

 DASH Ad Insertion

 1

1 Introduction 2

1.1 General 3

This document specifies the reference architecture and interoperability points for a DASH-based 4

ad insertion solution. 5

The baseline reference architecture addresses both server-based and app-based scenarios. The for-6

mer approach is what is typically used for Apple HLS, while the latter is typically used with Mi-7

crosoft SmoothStreaming and Adobe HDS. 8

1.2 DASH Concepts 9

DASH ad insertion relies heavily on several DASH tools, which are introduced in this section. The 10

correspondence between these tools and ad insertion concepts will be established later. Remote 11

elements 12

1.2.1 Remote Elements 13

Remote elements are elements that are not fully contained in the MPD document but are referenced 14

in the MPD with an HTTP-URL using a simplified profile of XLink. 15

A remote element has two attributes, @xlink:href and @xlink:actuate. @xlink:href contains the 16

URL for the complete element, while @xlink:actuate specifies the resolution model. The value 17

"onLoad" requires immediate resolution at MPD parse time, while "onRequest" allows deferred res-18

olution at a time when an XML parser accesses the remote element. In this text we assume deferred 19

resolution of remote elements, unless explicitly stated otherwise. While there is no explicit timing 20

model for earliest time when deferred resolution can occur, the spec strongly suggests it should be 21

close to the expected playout time of the corresponding period. 22

8

 DASH Ad Insertion

 1

Figure 1: XLink resolution 2

Resolution (a.k.a. dereferencing) consists of two steps. Firstly, a DASH client issues an HTTP 3

GET request to the URL contained in the @xlink:href, attribute of the in-MPD element, and the 4

XLink resolver responds with a remote element entity in the response content. In case of error 5

response or syntactically invalid remote element entity, the @xlink:href and @xlink:actuate at-6

tributes are removed from the in-MPD element. 7

If the value of the @xlink:href attribute is urn:mpeg:dash:resolve-to-zero:2013, HTTP GET re-8

quest is not issued, and the in-MPD element is removed from the MPD. This special case is used 9

when a remote element can be accessed (and resolved) only once during the time at which a given 10

version of MPD is valid. 11

If syntactically valid remote element entity was received, the DASH client will replace in-MPD 12

element with remote period entity. 13

Once a remote element entity is resolved into a fully specified element, it may contain an 14

@xlink:href attribute, which contains a new XLink URL allowing repeated resolution. 15

Note that the only information passed from the DASH client to the XLink resolver is encoded 16

within the URL. Hence there may be a need to incorporate parameters into it, such as splice time 17

(i.e., PeriodStart for the remote period) or cue message. 18

A specification of XLink behavior in DASH is provided in 0 sec. 5.5.3. 19

1.2.2 Periods 20

1.2.2.1 Timing 21

Periods are time-delimited parts of a media presentation, starting at offset PeriodStart from its 22

start. PeriodStart can be explicitly stated using the Period@start attribute or indirectly com-23

puted using Period@duration of the previous periods. 24

9

 DASH Ad Insertion

Precise period duration of period i is given by PeriodStart(i+1) – PeriodStart(i). This can accom-1

modate the case where media duration of period i is slightly longer than the period itself, in which 2

case a client will schedule the start of media presentation for period i+1 at time PeriodStart(i+1). 3

Period@presentationTimeOffset specifies the offset of the earliest presentation time of 4

the first segment of period i from PeriodStart(i) . 5

1.2.2.2 Segment Availability 6

In case of dynamic MPDs, Period-level BaseURL@availabilityTimeOffset allow earlier availability 7

start times. A shorthand notation @availabilityTimeOffset="INF" at a Period-level BaseURL in-8

dicates that the segments within this period are available at least as long as the current MPD is 9

valid. This is the case with stored ad content. Note that DASH also allows specification of @avail-10

abilityTimeOffset at AdaptationSet and Representation level. 11

1.2.2.3 Seamless transition 12

The DASH specification says nothing about period transitions – i.e., there are no guarantees seam-13

less continuation of playout across the period boundaries. Content conditioning and receiver capa-14

bility requirements should be defined for applications relying on this functionality. 15

1.2.2.4 Period labeling 16

Period-level AssetIdentifier descriptors identify the asset to which a given period belongs. 17

Beyond identification, this can be used for implementation of client functionality that depends on 18

distinguishing between ads and main content (e.g. progress bar and random access). 19

1.2.3 DASH events 20

DASH events are messages having type, timing and optional payload. They can appear either in 21

MPD (as period-level event stream) or inband, as ISO-BMFF boxes of type `emsg`. The `emsg` 22

boxes appear at the very beginning of the segment, so that DASH client will need a minimal 23

amount of parsing to detect them. 24

DASH defines three events that are processed directly by a DASH client: MPD Validity Expira-25

tion, MPD Patch and MPD Update. All signal to the client that the MPD needs to be updated – by 26

providing the publish time of the MPD that should be used, by providing an XML patch that can 27

be applied to the client’s in-memory representation of MPD, or by providing a complete new MPD. 28

User-defined events are also possible. The DASH client does not deal with them directly – they 29

are passed to an application, or discarded if there is no application willing to process these events. 30

A possible client API would allow an application to register callbacks for specific event types. 31

Such callback will be triggered when the DASH client parses the ̀ emsg` box in a segment, or when 32

it parses the Event element in the MPD. 33

In the ad insertion context, user-defined events can be used to signal information, such as cue 34

messages (e.g. SCTE 35, see 4.1.2) 35

1.2.4 MPD Updates 36

If MPD@type='dynamic', it can be periodically updated. These updates can be synchronous, 37

in which case their frequency is limited by MPD@minimumUpdatePeriod. In the asynchro-38

nous case MPD updates are triggered by DASH events (see above). An `emsg` event box for the 39

10

 DASH Ad Insertion

MPD Validity Expiration event specifies the time after which current MPD is invalid and a new 1

MPD (with a newer @publishTime) must be obtained to continue playout. Use of MPD Patch 2

events provides an optimization that allows not requesting an MPD, and rather specifying the dif-3

ference between the new and the old MPD. This is convenient when changes are relatively small 4

– e.g., addition of a remote period. In case of more extensive changes, MPD Update message can 5

be used to carry the complete MPD inband. 6

When new period containing stored ads is inserted into a linear program, and there is a need to 7

unexpectedly alter this period the inserted media will not carry the `emsg` boxes – these will need 8

to be inserted on-the-fly by proxies. In this case use of synchronous MPD updates may prove 9

simpler. 10

MPD@publishTime provides versioning functionality: MPD with later publication times in-11

clude all information that was included all MPDs with earlier publication times. 12

1.2.5 Session information 13

In order to allow fine-grain targeting and personalization, we should be able to know the identity 14

of the viewer, i.e. maintain a notion of a session. 15

HTTP is a stateless protocol, however state can be preserved by the client and communicated to 16

the server. 17

The simplest way of achieving this is use of cookies. According to RFC 6265, cookies set via 2xx, 18

4xx, and 5xx responses must be processed and have explicit timing and security model. 19

1.2.6 Tracking and reporting 20

The simplest tracking mechanism is server-side logging of HTTP GET requests. Knowing request 21

times and correspondence of segment names to content constitutes an indication that a certain part 22

of the content was requested. If MPDs (or remote element entities) are generated on the fly and 23

identity of the requester is known, it is possible to provide more precise logging. Unfortunately 24

this is a non-trivial operation, as same user may be requesting parts of content from different CDN 25

nodes (or even different CDNs), hence log aggregation and processing will be needed. 26

Another approach is communicating with existing tracking server infrastructure using existing ex-27

ternal standards. A VAST-based implementation is shown in 3.2.6 below. 28

2 Architectures 29

The possible architectures can be classified based on the location of component that communicates 30

with the ad decision service: a server-based approach assumes a generic DASH client and all com-31

munication with ad decision services done at the server side (even if this communication is trig-32

gered by a client request for a segment, remote element, or an MPD. The app-based approach 33

assumes an application running on the UE and controlling one or more generic DASH clients. 34

Yet another classification dimension is amount of media engines needed for a presentation – i.e., 35

whether parallel decoding needs to be done to allow seamless transition between the main and the 36

inserted content, or content is conditioned well enough to make such transition possible with a 37

single decoder. 38

11

 DASH Ad Insertion

Workflows can be roughly classified into linear and elastic. Linear workflows (e.g., live feed from 1

an event) has ad breaks of known durations which have to be taken: main content will only resume 2

after the end of the break and the programmer / operator needs to fill them with some inserted 3

content. Elastic workflows assume that the duration of an ad break at a given cue location not 4

fixed, thus the effective break length can vary (and can be zero if a break is not taken). 5

 6

12

 DASH Ad Insertion

3 Server-based Architecture 1

 2

Cloud

Ad Decision Server

ad

ad

ad

content

content

content

Media Engine

DASH

Access Client

Ad Decision Server

MPD Generator Packager

CDN/Origin

Content

+ inband events

ad

ad

ad

content

content

content

Segments

Segments

and timing

XLink

Resolver

Content + cues

Cues

Periods

XLink

MPD

 3

Figure 2: Server-based architecture 4

In the server-based model, all ad-related information is expressed via MPD and segments, and ad 5

decisions are triggered by client requests for MPDs and for resources described in them (segments, 6

remote periods). 7

Server-based model is inherently MPD-centric – all data needed to trigger ad decision is concen-8

trated in the MPD. In case where ad break location (i.e., its start time) is unknown at the MPD 9

generation time, it is necessary to rely on MPD update functionality. The two possible ways of 10

achieving these are described in 1.2.4. 11

In the live case, packager receives feed containing inband cues, such as MPEG-2 TS with SCTE 12

35 cue messages 0. Packager ingests content segments into the CDN, passing manifest and cue 13

data to the ad management module. In the on demand case, cues can be provided out of band. 14

Ad management is located at the server side (i.e., in the cloud), thus all manifest and content con-15

ditioning is done at the server side. 16

13

 DASH Ad Insertion

3.1 Mapping into DASH 1

3.1.1 Period elements 2

A single ad is expressed as a single Period element. 3

Periods with content that is expected to be interrupted as a result of ad insertion should contain 4

explicit start times (Period@start), rather than durations. This allows insertion of new periods 5

without modifying the existing periods. If a period has media duration longer then the distance 6

between the start of this period and the start of next period, use of start times implies that a client 7

will start the playout of the next period at the time stated in the MPD, rather than after finishing 8

the playout of the last segment. 9

An upcoming ad break is expressed as a single Period element, possibly remote. 10

Remote Period will be resolved on demand into one or more than one Period elements. It is possi-11

ble to embed parameters from the cue message into the XLink URL of the corresponding remote 12

period, in order to have them passed to the ad decision system via XLink resolver at resolution 13

time. 14

In an elastic workflow, when an ad break is not taken, the remote period will be resolved into a 15

period with zero duration. This period element will contain no adaptation sets. 16

If a just-in-time remote Period dereferencing is required by use of @xlink:actuate="onRequest", 17

MPD update containing a remote period should be triggered close enough to the intended splice 18

time. This can be achieved using MPD Validity events and full-fledged MPD update, or using 19

MPD Patch and MPD Update events (see sec. 1.2.4 and 1.2.3). 20

It may be operationally simpler to avoid use of onRequest dereferencing in case of linear content. 21

3.1.2 Asset Identifiers 22

AssetIdentifier descriptors iden-23

tify the asset to which a period belongs. 24

This can be used for implementation of 25

client functionality that depends on distin-26

guishing between ads and main content 27

(e.g. progress bar). 28

Periods with same AssetIdentifier 29

should have identical adaptation sets, ini-30

tialization segments and same DRM in-31

formation (i.e., DRM systems, licenses). 32

This allows reuse of at least some initiali-33

zation data across periods of the same as-34

set, and ensures seamless continuation of 35

playback if inserted periods have zero du-36

ration 37

 38

 39 Figure 3: Using an asset identifier

14

 DASH Ad Insertion

3.1.3 MPD updates 1

MPD updates are used to implement dynamic behavior. An updated MPD may have additional 2

(possibly – remote) periods. Hence, MPD update should be triggered by the arrival of the first cue 3

message for an upcoming ad break. Ad breaks can also be canceled prior to their start, and such 4

cancellation will also trigger an MPD update. 5

Frequent regular MPD updates are sufficient for implementing dynamic ad insertion. Unfortu-6

nately they create an overhead of unnecessary MPD traffic – ad breaks are rare events, while MPD 7

updates need to be frequent enough if a cue message is expected to arrive only several seconds 8

before the splice point. Use of HTTP conditional GET requests (i.e., allowing the server to respond 9

with "304 Not Modified" if MPD is unchanged) is helpful in reducing this overhead, but asynchro-10

nous MPD updates avoid this overhead entirely. 11

DASH events with scheme "urn:mpeg:dash:event:2013" are used to trigger asynchronous 12

MPD updates. 13

The simple mapping of live inband cues in live content into DASH events is translating a single 14

cue into an MPD Validity expiration event (which will cause an MPD update prior to the splice 15

time). MPD Validity expiration events need to be sent early enough to allow the client request a 16

new MPD, resolve XLink (which may entail communication between the resolver and ADS), and, 17

finally, download the first segment of the upcoming ad in time to prevent disruption of service at 18

the splice point. 19

3.1.4 MPD events 20

In addition to tracking events (ad starts, quartile tracking, etc.) the server may also need to signal 21

additional metadata to the video application. For example, an ad unit may contain not only inline 22

linear ad content (that is to be played before, during, or after the main presentation), it may also 23

contain a companion display ad that is to be shown at the same time as the video ad. It is important 24

that the server be able to signal both the presence of the companion ad and the additional tracking 25

and click-through metadata associated with the companion. 26

With that said, there is no need to have a generic DASH client implement this functionality – it is 27

enough to provide opaque information that the client would pass to an external module. Event 28

schemeIdUri provides us with such addressing functionality, while MPD events allow us to put 29

opaque payloads into the MPD. 30

 31

3.2 Workflows 32

In the workflows below we assume that our inputs are MPEG-2 transport streams with embedded 33

SCTE 35 cue messages. In our opinion this will be a frequently encountered deployment, however 34

any other in-band or out-of-band method of getting cue messages and any other input format lend 35

themselves into the same model. 36

3.2.1 Linear 37

A real-time MPEG-2 TS feed arrives at both packager and MPD generator. While real-time mul-38

ticast feeds are a very frequently encountered case, the same workflow can apply to cases such as 39

ad replacement in a pre-recorded content (e.g., in time-shifting or PVR scenarios). 40

15

 DASH Ad Insertion

MPD generator generates dynamic MPDs. Packager creates DASH segments out of the arriving 1

feed and writes them into the origin server. Client periodically requests the MPDs so that it has 2

enough time to transition seamlessly into the ad period. 3

Packager and MPD generator may be tightly coupled (e.g. co-located on the same physical ma-4

chine), or loosely coupled as they both are synchronized only to the clock of the feed. 5

6
 7

Figure 4: Live workflow 8

3.2.1.1 Cue Interpretation by the MPD generator 9

When an SCTE 35 cue message indicating an upcoming splice point is encountered by the MPD 10

generator, the latter creates a new MPD for the same program, adding a remote period to it. 11

The Period@start attribute of the inserted period has splice_time() translated into the 12

presentation timeline. Parameters derived from the cue message are inserted into the Pe-13

riod@xlink:href attribute of the inserted period. Examples below show architectures that 14

allow finer targeting. 15

3.2.1.1.1 Example 1: Immediate ad decision 16

MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the gener-17

ator updates its template. At each MPD request, the generator customizes the request based on the 18

information known to it about the requesting client. The generator contacts ad decision server and 19

produces one or more non-remote ad periods. In this case XLink is not needed. 20

3.2.1.1.2 Example 2: Stateful cue translation 21

MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the gener-22

ator updates its template. At each MPD request, the generator customizes the request based on the 23

information known to it about the requesting client. 24

16

 DASH Ad Insertion

The operator targets separately male and female audiences. Hence, the generator derives this from 1

the information it has regarding the requesting client (see 1.2.5), and inserts an XLink URL with 2

the query parameter ?sex=male for male viewers, and ?sex=female for the female viewers. 3

3.2.1.1.3 Example 3: Stateless cue translation 4

At cue message arrival, the MPD generator extracts the entire SCTE 35 splice_info_sec-5

tion (starting at the table_id and ending with the CRC_32) into a buffer. The buffer is then 6

encoded into URL-safe base64url format [RFC 4648], and inserted into the XLink URL of a new 7

remote Period element. splice_time is translated into Period@start attribute. The new 8

MPD is pushed to the origin. 9

Note: this example follows the technique defined for HLS in [OATC], but uses slightly different 10

encoding as the section is included in a URI. 11

3.2.1.2 Cue Interpretation by the packager 12

Cue interpretation by the packager is optional and is an optimization, rather than core functionality. 13

On reception of an SCTE 35 cue message signaling an upcoming splice, an `emsg` with MPD 14

Validity Expiration event is inserted into the first available segment. This event triggers an MPD 15

update, and not an ad decision, hence the sum of the earliest presentation time of the `emsg`-16

bearing segment and the `emsg`.presentation_time_delta should be sufficiently earlier than 17

the splice time. This provides the client with sufficient time to both fetch the MPD and resolve 18

XLink. 19

splice_time() of the cue message is translated into the media timeline, and last segment be-20

fore the splice point is identified. If needed, the packager can also finish the segment at the splice 21

point and thus having a segment shorter than its target duration. 22

3.2.1.3 Multiple cue messages 23

There is a practice of sending several SCTE 35 cue messages for the same splice point (e.g., the 24

first message announces a splice in 6 seconds, the second arrives 2 seconds later and warns about 25

the same splice in 4 seconds, etc.). Both the packager and the MPD generator react on the same 26

first message (the 6-sec warning in the example above), and do nothing about the following mes-27

sages. 28

3.2.1.4 Cancelation 29

It is possible that the upcoming (and announced) insertion will be canceled (e.g., ad break needed 30

to be postponed due to overtime). Cancelation is announced in a SCTE 35 cue message. 31

When cancelation is announced, the packager will insert the corresponding `emsg` event and the 32

MPD generator will create a newer version of the MPD that does not contain the inserted period 33

or sets its duration to zero. This implementation maintains a simpler less-coupled server side sys-34

tem at the price of an increase in traffic. 35

3.2.1.5 Early termination 36

It is also possible that a planned ad break will need to be cut short – e.g., an ad will be cut short 37

and there will be a switch to breaking news. The DASH translation of this would be creating an 38

17

 DASH Ad Insertion

`emsg` at the packager and updating the MPD appropriately. Treatment of early termination here 1

would be same as treatment of a switch from main content to an ad break. 2

It is easier to manipulate durations when Period@duration is absent and only Period@start is used 3

– this way attributes already known to the DASH client don’t change. 4

3.2.1.6 Ad decision 5

Dash Client MPD Generator XLink Resolver

MPD

GET(MPD)

GET(XLink URL)

Ad Decision Server

RequestAd(avail)

Ad Decision

CDN node

Ad Period (Entity)

Ad Segment

GET(Ad Segment)

 6

Figure 5: Ad Decision 7

A client will attempt to dereference a remote period element by issuing an HTTP GET for the URL 8

that appears in Period@xlink:href. The HTTP server responding to this request (XLink re-9

solver) will contact the ad decision service, possibly passing it parameters known from the request 10

URL and from client information available to it from the connection context. In case described in 11

3.2.1.1.3, the XLink resolver has access to a complete SCTE 35 message that triggered the splice. 12

The ad decision service response identifies the content that needs to be presented, and given this 13

information the XLink resolver can generate one or more Period elements that would be then re-14

turned to the requesting DASH client. 15

A possible optimization is that resolved periods are cached – e.g. in case of 3.2.1.1.1 "male" and 16

"female" versions of the content are only generated once in T seconds, with HTTP caching used 17

to expire the cached periods after T seconds. 18

3.2.2 On Demand 19

In a VoD scenario, cue locations are known ahead of time. They may be available multiplexed into 20

the mezzanine file as SCTE 35 or SCTE 104, or may be provided via an out-of-band EDL. 21

18

 DASH Ad Insertion

In VoD workflows both cue locations and break durations are known, hence there is no need for a 1

dynamic MPD. Thus cue interpretation (which is same as in 3.2.1) can occur only once and result 2

in a static MPD that contains all remote elements with all Period elements having Pe-3

riod@start attribute present in the MPD. 4

In elastic workflows ad durations are unknown, thus despite our knowledge of cue locations within 5

the main content it is impossible to build a complete presentation timeline. Period@duration 6

needs to be used. Remote periods should be dereferenced only when needed for playout. In case 7

of a “jump” – random access into an arbitrary point in the asset – it is a better practice not to 8

dereference Period elements when it is possible to determine the period from which the playout 9

starts using Period@duration and asset identifiers. The functionality described in 3.2.1 is 10

sufficient to address on-demand cases, with the only difference that a client should be able to 11

handle zero-duration periods that are a result of avails that are not taken. 12

3.2.3 Capture to VoD 13

Capture to VoD use case is a hybrid between pure linear and on demand scenarios: linear content 14

is recorded as it is broadcast, and is then accessible on demand. A typical requirement is to have 15

the content available with the original ad for some time, after which ads can be replaced 16

There are two possible ways of implementing the capture-to-VoD workflow. 17

The simplest is treating capture-to-VoD content as plain VoD, and having the replacement policy 18

implemented on the XLink resolver side. This way the same Period element(s) will be always 19

returned to the same requester within the window where ad replacement is disallowed; while after 20

this window the behavior will be same as for any on-demand content. An alternative implementa-21

tion is described in 3.2.4 below. 22

[[Ed.: address blackout use cases]] 23

3.2.4 Slates and ad replacement 24

A content provider (e.g., OTT) provides content with ad breaks filled with its own ads. An ISP is 25

allowed to replace some of these with their own ads. Conceptually there is content with slates in 26

place of ads, but all slates can be shown and only some can be replaced. 27

An ad break with a slate can be implemented as a valid in-MPD Period element that also has XLink 28

attributes. If a slate is replaceable, XLink resolution will result in new Period element(s), if not – 29

the slate is played out. 30

3.2.5 Blackouts and Alternative content 31

In many cases broadcast content cannot be shown to a part of the audience due to contractual 32

limitations (e.g., viewers located close to an MLB game will not be allowed to watch it, and will 33

be shown some alternative content). While unrelated to ad insertion per se, this use case can be 34

solved using the same “default content” approach, where the in-MPD content is the game and the 35

alternative content will be returned by the XLink resolver if the latter determines (in some unspec-36

ified way) that the requester is in the blackout zone. 37

19

 DASH Ad Insertion

3.2.6 Tracking and reporting 1

A Period, either local or a remote entity, may contain an EventStream element with an event con-2

taining IAB VAST 3.0 Ad element. DASH client does not need to parse the information and act 3

accordingly – if there is a listener to events of this type, this listener can use the VAST 3.0 Ad 4

element to implement reporting, tracking and companion ads. The processing done by this listener 5

does not have any influence on the DASH client, and same content would be presented to both 6

“vanilla” DASH client and the player in which a VAST module registers with a DASH client a 7

listener to the VAST 3.0 events. 8

3.3 Examples 9

3.3.1 MPD with mid-roll ad breaks and default content 10

In this example, a movie (“Top Gun”) is shown on a linear channel and has two mid-roll ad breaks. 11

Both breaks have default content that will be played if the XLink resolver chooses not to return 12

new Period element(s) or fails. 13

In case of the first ad break, SCTE 35 cue message is passed completely to the XLink resolver, 14

together with the corresponding presentation time. The syntax in this case is similar to what is 15

proposed in 0 for HLS. 16

In case of the second ad break, proprietary parameters u and z describe the main content and the 17

publishing site. 18

 19

<?xml version="1.0"?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:mpeg:dash:schema:mpd:2011"

 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"

 type="dynamic"

 minimumUpdatePeriod="PT2S"

 timeShiftBufferDepth="PT600S"

 minBufferTime="PT2S"

 profiles="urn:mpeg:dash:profile:isoff-live:2011"

 availabilityStartTime="2012-12-25T15:17:50">

 <BaseURL>http://cdn1.example.com/</BaseURL>

 <BaseURL>http://cdn2.example.com/</BaseURL>

 <!-- Movie -->

 <Period start="PT0.00S" duration="PT600.6S" id="movie period #1">

 <AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"

 value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W">

 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="24000/1001" segmentAlignment="true" startWithSAP="1">

 <BaseURL>video_1/</BaseURL>

 <SegmentTemplate timescale="90000" initialization="$Band-

width%/init.mp4v"

 media="$Bandwidth$/$Number%05d$.mp4v"/>

 <Representation id="v0" width="320" height="240" bandwidth="250000"/>

 <Representation id="v1" width="640" height="480" bandwidth="500000"/>

 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>

 </AdaptationSet>

 </Period>

 <!-- Mid-roll advertisement, passing base64url-coded SCTE 35 to XLink resolver -

20

 DASH Ad Insertion

->

 <Period duration="PT60.6S" id="ad break #1"

 xlink:href="https://adserv.com/avail.mpd?time=54054000&id=1234567&

 cue=DAIAAAAAAAAAAAQAAZ_I0VniQAQAgBDVUVJQAAAAH+cAAAAAA=="

 xlink:actuate="onRequest" >

 <!-- Default content, replaced by elements from remote entity -->

 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="30000/1001"

 segmentAlignment="true" startWithSAP="1">

 <BaseURL availabilityTimeOffset="INF">default_ad/</BaseURL>

 <SegmentTemplate timescale="90000" initialization="$Band-

width%/init.mp4v"

 media="$Bandwidth%/$Time$.mp4v"/>

 <Representation id="v0" width="320" height="240" bandwidth="250000"/>

 <Representation id="v1" width="640" height="480" bandwidth="500000"/>

 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>

 </AdaptationSet>

 </Period>

 <!—Movie, cont'd -->

 <Period duration="PT600.6S" id="movie period #2">

 <AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"

 value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W">

 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="24000/1001"

 segmentAlignment="true" startWithSAP="1">

 <BaseURL>video_2/</BaseURL>

 <SegmentTemplate timescale="90000" initialization="$Band-

width%/init.mp4v"

 media="$Bandwidth%/$Time$.mp4v"/>

 <Representation id="v0" width="320" height="240" bandwidth="250000"/>

 <Representation id="v1" width="640" height="480" bandwidth="500000"/>

 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>

 </AdaptationSet>

 </Period>

 <!-- Mid-roll advertisement, using proprietary parameters -->

 <Period start="PT60.6S" id="ad break #2"

 xlink:href=”https://adserv.com/avail.mpd?u=0EFB-02CD-126E-8092-1E49-

W&z=spam”

 xlink:actuate="onRequest" >

 <!-- Default content, replaced by elements from remote entity -->

 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"

 frameRate="30000/1001"

 segmentAlignment="true" startWithSAP="1">

 <BaseURL availabilityTimeOffset="INF">default_ad2/</BaseURL>

 <SegmentTemplate timescale="90000" initialization="$Band-

width%/init.mp4v"

 media="$Bandwidth%/$Time$.mp4v"/>

 <Representation id="v0" width="320" height="240" bandwidth="250000"/>

 <Representation id="v1" width="640" height="480" bandwidth="500000"/>

 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>

 </AdaptationSet>

 </Period>

</MPD>

Figure 6: Example of MPD for "Top Gun" movie 1

21

 DASH Ad Insertion

4 App-based Architecture 1

 2

Figure 7: App-based architecture 3

 4

Inputs in this use case are same as the ones described in sec. 3. At the packaging stage, cues are 5

translated into a format readable by the app or/and DASH client and are embedded into media 6

segments or/and into the manifest 7

Ad management module is located at the client side. The DASH client receives manifest and seg-8

ments, with cues embedded in either one of them or in both. 9

Cue data is passed to the ad management module, which contacts the ad decision service and re-10

ceives information on content to be played. This results in an MPD for an inserted content and a 11

splice time at which presentation of main content is paused and presentation of the inserted content 12

starts. 13

Note that this architecture does not assume multiple decoders – with careful conditioning it is 14

possible to do traditional splicing where inserted content is passed to the same decoder. In this case 15

it is necessary to keep a player state and be able to initialize a player into this state. 16

4.1 Mapping into DASH 17

This section details mapping of elements of the reference architecture into DASH concepts per the 18

2nd edition of the specification (i.e., ISO/IEC 23009-1:2014). 19

22

 DASH Ad Insertion

4.1.1 MPD 1

Each ad decision results in a separate MPD. A single MPD contains either main content or inserted 2

content; existence of multiple periods or/and remote periods is possible but not essential. 3

4.1.2 DASH events 4

Cue messages are mapped into DASH events, using inband `emsg` boxes and/or in-MPD events. 5

Note that SCTE 35 cue message may not be sufficient by itself. 6

The examples below show use of SCTE 35 in user-defined events, and presentation time indicates 7

the timing in within the Period. 8

Figure 8 below shows the content of an `emsg` box at the beginning of a segment with earliest 9

presentation time T. There is a 6-sec warning of an upcoming splice – delta to splice time is indi-10

cated as 6 seconds – and duration is given as 1 minute. This means that an ad will start playing at 11

time T + 6 till T + 66. This example follows a practice illustrated in 0. 12

 13

 14

 15

 16

Figure 8: Inband carriage of SCTE 35 cue message 17

23

 DASH Ad Insertion

Figure 9 below shows the same example with an in-MPD SCTE35 cue message. The difference is 1

in the in-MPD event the splice time is relative to the Period start, rather than to the start of the 2

event-carrying segment. This figure shows a one-minute ad break 10 minutes into the period. 3

<EventStream schemeIdUri="urn:scte:scte35:2013:xml">

 <Event timescale="90000" presentationTime="54054000" duration="5400000" id="1">

 <scte35:SpliceInfoSection scte35:ptsAdjustment="0" scte35:tier="22">

 <scte35:SpliceInsert

 scte35:spliceEventId="111"

 scte35:spliceEventCancelIndicator="false"

 scte35:outOfNetworkIndicator="true"

 scte35:uniqueProgramId="65535"

 scte35:availNum="1"

 scte35:availsExpected="2"

 scte35:spliceImmediateFlag="false">

 <scte35:Program>

 <!-- Event timing is given by Event@presentationTime, -->

 <!-- splice_time() processing is up to the application -->

 <scte35:SpliceTime scte35:ptsTime="122342"/>

 </scte35:Program>

 <scte35:BreakDuration

 scte35:autoReturn="false" scte35:duration="5400000"/>

 </scte35:SpliceInsert>

 <scte35:AvailDescriptor scte35:providerAvailId="332"/>

 </scte35:SpliceInfoSection>

 </Event>

</EventStream>

Figure 9: In-MPD carriage of SCTE 35 cue message 4

 5

4.1.3 Asset Identifiers 6

See sec. 3.1.2 for details. 7

24

 DASH Ad Insertion

4.2 Workflows 1

4.2.1 Linear 2

 3

Figure 10: Linear workflow for app-driven architecture 4

A real-time MPEG-2 TS feed arrives at a packager. While real-time multicast feeds are a very 5

frequently encountered case, the same workflow can apply to cases such as ad replacement in a 6

pre-recorded content (e.g., in time-shifting or PVR scenarios). 7

Packager creates DASH segments out of the arriving feed and writes them into the origin server. 8

The packager translates SCTE 35 cue messages into inband DASH events, which are inserted into 9

media segments. 10

MPD generator is unaware of ad insertion functionality and the packager does the translation of 11

SCTE 35 cue messages into inband user-defined DASH events. On reception of an SCTE 35 cue 12

message signaling an upcoming splice, a `emsg` with a translation of the cue message in its 13

`emsg`.message_data[] field is inserted into the most recent segment. This event triggers client 14

interaction with an ad decision server, hence the sum of the earliest presentation time of the 15

`emsg`-bearing segment and the `emsg`.presentation_time_delta should be a translation of 16

splice_time() into the media timeline. 17

An alternative implementation which is more compatible with server-based architecture in sec. 3: 18

an MPD generator can generate separate MPDs for both server-based and app-based architectures 19

creating remote periods for server-based and in-MPD SCTE 35 events for app-based architectures, 20

while a packager can insert inband MPD Validity Expiration 21

A DASH client will pass the event to the app controlling it (e.g., via a callback registered by the 22

app). The app will interpret the event and communicate with the ad decision server using some 23

interface (e.g., VAST). This interface is out of the scope of this document. 24

25

 DASH Ad Insertion

The communication with ad decision service will result in an MPD URL. An app will pause the 1

presentation of the main content and start presentation of the inserted content. After presenting the 2

inserted content the client will resume presentation of the main content. This assumes either proper 3

conditioning of the main and inserted content or existence of separate client and decoder for in-4

serted content. The way pause/resume is implemented is internal to the API of the DASH client. 5

Interoperability can be achieved by using the DASH MPD fragment interface 0. 6

4.2.2 On Demand 7

As in the server-based case, functionality defined for the live case is sufficient. Moreover, the fact 8

that that app-based implementation relies heavily on app's ability to pause and resume the DASH 9

client, support for elastic workflows is provided out of the box. 10

In the on demand case, as cue locations are well-known, it is advantageous to provide a static MPD 11

with SCTE 35 events than run a dynamic service that relies on inband events. 12

5 Interoperability points 13

Signaling of ad insertion interoperability point should be done using MPD.SupplementalProperty 14

descriptor with @schemeIdUri="urn:org:dashif:iop:adin". The @value attribute shall always 15

be present, and shall carry the IOP identifier values defined in this section. 16

5.1 Server-driven interoperability points 17

5.1.1 Multiperiod 18

5.1.1.1 General 19

This interoperability point assumes multi-period DASH content, with each Period corresponding 20

either to inserted content or a single ad. This IOP assumes all elements are non-remote, i.e. no 21

XLink implementation is needed. The downside is that ad decisions need to be made by the time 22

MPD is generated or updated. 23

In order to facilitate asynchronous MPD updates in a dynamic service the content may contain 24

DASH MPD Validity Expiration events. 25

Inband MPD Validity Expiration events are expected to occur in some of the media segments. 26

Alternatively, MPD Validity Expiration events may appear as MPD events. Either one of the 27

mechanisms – MPD events or inband events – may be used in a single period. 28

NOTE: additional user-defined events (either inband or MPD) may be present, but the client is not 29

expected to process them 30

The compliance to Server-Driven Multiperiod IOP may be signaled by a @profiles attribute 31

with the value http://dashif.org/guidelines/adin/multiperiod 32

5.1.1.2 Guidelines for Content Authoring 33

5.1.1.2.1 Multi-period content 34

The DASH-IF DASH-AVC/264 Live Services document sec. 4.3.3 provides guidelines for multi-35

period content. These guidelines should be followed. 36

26

 DASH Ad Insertion

5.1.1.2.2 Asset Identifiers 1

AssetIdentifier descriptor shall be used for distinguishing parts of the same asset within a 2

multi-period MPD, hence it shall be used for main content. 3

In order to enable better tracking and reporting, unique IDs should be used for different assets. 4

Hence it is recommended to use AssetIdentifier descriptors in inserted content as well. 5

1.) The value of @schemeIdUri shall be "urn:org:dashif:asset-id:2014" 6

2.) The value of @value attribute descriptor shall be a MovieLabs ContentID URN (0, 2.2.1) 7

for the content. It shall be the same for all parts of an asset. Preferred scheme is EIDR. 8

3.) If the period is the last period of a multi-period asset, the author may add "one-off" self-9

contained period (e.g., an advertisement), the value of the AssetIdentifier@id at-10

tribute shall be a UUID. 11

NOTE: if (3) above is not done, the random access logic for a repeated ad will consider every 12

repeated appearance of the ad as a continuation of its previous appearance(s). This way, a second 13

appearance of an ad will have playout bar start at 50%. 14

 15

The AssetIdentifier descriptor should be used for all multi-period assets. 16

If a period has single-period semantics (i.e., an asset is completely contained in a single period, 17

and its continuation is not expected in the future), the author shall not use asset identifier on these 18

assets. 19

Periods that do not contain non-remote AdaptationSet elements, as well as zero-length peri-20

ods shall not contain the AssetIdentifier descriptor. 21

5.1.1.2.3 On Demand content 22

In case the main content complies with ISO-BMFF On Demand profile, we can assume it is stored 23

as a single file. There is no need to create per-period files if this content is offered as multi-period. 24

All periods for this asset will have same BaseURL values and different SegmentBase@presen-25

tationTimeOffset values, each corresponding to the media time equivalent to PeriodStart. The 26

file will contain `sidx` box(es), and the client will read the index information to calculate the seg-27

ment offsets taking the value of SegmentBase@presentationTimeOffset into account. Note: as 28

of August 2014, this is insufficiently clear from the standard. 29

5.1.1.2.4 Events 30

5.1.1.2.4.1 Signaling 31

Presence of inband MPD Validity Expiration events shall always be signaled using Adapta-32

tionSet.InbandEventStream element with @schemeIdUri=" 33
urn:mpeg:dash:event:2012". 34

Inband MPD Validity expiration events shall be present in video. If these events are used, all video 35

adaptation sets shall carry them. 36

5.1.1.2.4.2 Placement 37

27

 DASH Ad Insertion

`emsg` boxes shall be aligned: if segment SR1(i) is the ith segment of a representation R1 within an 1

adaptation set containing N representations, then if SR0(i) contains an ̀ emsg` box, identical ̀ emsg` 2

box will be carried in segments SR2(i) …, SRN(i). This means that irrespective of representation 3

selected, all `emsg` boxes will be read if media from an adaptation set is played out. 4

Note: this definition will be superseded by the event alignment definition in ISO/IEC 5

23009-1:2014 AMD1 when published by ISO. 6

If several `emsg` boxes are present in a segment and one of them is the MPD Validity Expiration 7

event, `emsg` carrying it shall always appear first. 8

 9

5.1.2 Static just-in-time 10

5.1.2.1 General 11

This interoperability point assumes multi-period DASH content, MPD that contains Pe-12

riod@xlink:href and Period@xlink:actuate. It is a superset of Static Multiperiod IOP (see 13

5.1.1), with the addition of XLink. 14

The compliance to Static Just-in-time IOP may be signaled by a @profiles attribute with the 15

value "http://dashif.org/guidelines/adin/static#jit" 16

5.1.2.2 Guidelines for Content Authoring 17

5.1.2.2.1 General 18

Guidelines in 5.1.1.2 above apply 19

5.1.2.2.2 Remote Periods 20

MPD contains remote periods, some of which may have default content. Some of which are re-21

solved into multiple Period elements. 22

After dereferencing MPD may contain zero-length periods or/and remote Periods. 23

In case of Period@xlink:actuate="onRequest", MPD update and XLink resolution should be 24

done sufficiently early to ensure that there are no artefacts due to insufficient time given to down-25

load the inserted content. 26

If deterministic XLink resolution timing is used, the in-MPD remote element can contain a Sup-27

plementalProperty descriptor at the Period level (note: this is a COR1 addition). The @schemeI-28

dUri attribute value shall be "urn:org:dashif:dereferencing-offset" and @value shall be 29

always present and contain an offset, in seconds, from PeriodStart till the preferred XLink resolu-30

tion time. For @value=t, XLink dereferencing should be done at time PeriodStart-t or later. 31

If a Period element is contained in a remote element entity (i.e., contained within the XLink re-32

sponse, which is one or more Period elements) it shall contain Period@start 33

5.1.3 Dynamic just-in-time 34

5.1.3.1 General 35

This interoperability point is a combination of Dynamic Multiperiod IOP and Static Just-in-time 36

IOP (see 5.1.2 above). MPD may contain remote Period elements (i.e., Period@xlink:href and 37

28

 DASH Ad Insertion

Period@xlink:actuate may be present) and MPD updates may be triggered by MPD Validity 1

Expiration events. 2

The compliance to Dynamic Just-in-time IOP may be signaled by a @profiles attribute with 3

the value "http://dashif.org/guidelines/adin/dynamic#jit" 4

5.1.3.2 Guidelines for Content Authoring 5

5.1.3.2.1 Timing aspects 6

Recommendations 5.1.2.2.2 applies. Care needs to be taken so that the client is given a sufficient 7

amount of time to (a) request and receive MPD update, and (b) dereference the upcoming remote 8

period. 9

5.2 App-driven interoperability point 10

5.2.1 General 11

This interoperability point assumes separate MPDs for main and inserted content. 12

Thus DASH is only used as means of transport for cue messages. This profile further relies on 13

SCTE 35 cue messages embedded in the MPD or in media segments. While there is no dependency 14

on ISO-BMFF Live profile, we expect inband events to be used in conjunction with it. 15

The compliance to App-driven IOP may be signaled by a @profiles attribute with the value 16

"http://dashif.org/guidelines/adin/app" 17

5.2.2 Guidelines for Content Authoring 18

5.2.2.1 Events 19

5.2.2.1.1 MPD Events 20

Period elements may contain an EventStream element with EventStream@schemeI-21

dUri="urn:scte:scte35:2013:xml". Event elements contain XML representation of an SCTE 22

35 command. This XML representation is defined in 0. Note that SCTE 35 2014 schema allows 23

both more verbose detailed representation of SCTE 35 cue messages and a more compact base64-24

coded one. The latter can be used if verbosity is a concern. 25

Sum of Event@presentationTime and Event@duration shall never exceed period duration. 26

5.2.2.1.2 Inband Events 27

Media segments contain inband events with scheme "urn:scte:scte35:2013:bin" a complete 28

SCTE 35 section as a payload. Sum of the earliest presentation time of the `emsg`-bearing segment 29

and `emsg`.presentation_time_delta is a translation of the splice time into the media time-30

line. 31

Presence of inband SCTE 35 events shall always be signaled using AdaptationSet.In-32

bandEventStream element with @schemeIdUri="urn:scte:scte35:2013:xml". 33

Event message boxes shall be aligned: if segment SR1(i) is the ith segment of a representation R1 34

within an adaptation set containing N representations, then if SR0(i) contains an `emsg` box, iden-35

tical `emsg` box will be carried in segments SR2(i) …, SRN(i). This means that irrespective of rep-36

resentation selected, all `emsg` boxes will be read if media from an adaptation set is played out. 37

29

 DASH Ad Insertion

6 References 1

DASH Industry Forum, "Guidelines for Implementation: DASH264 Interoperability 2

Points", http://dashif.org/w/2013/08/DASH-AVC-264-v2.00-hd-mca.pdf . 3

ISO/IEC 23009-1:2014 2nd Ed., Information technology -- Dynamic adaptive streaming 4

over HTTP (DASH) -- Part 1: Media presentation description and segment formats. 5

IAB Video Multiple Ad Playlist (VMAP),http://www.iab.net/media/file/VMAPv1.0.pdf 6

IAB Video Ad Serving Template (VAST), http://www.iab.net/media/file/VASTv3.0.pdf 7

ANSI/SCTE 35 2013a, Digital Program Insertion Cueing Message for Cable 8

ANSI/SCTE 67 2014, Recommended Practice for SCTE 35 Digital Program Insertion 9

Cueing Message for Cable 10

ANSI/SCTE 172, Constraints on AVC Video Coding for Digital Program Insertion 11

EIDR ID Format - EIDR_ID_Format_v1.02_Jan2012-1.pdf, www.eidr.org 12

Common Metadata, TR-META-CM, ver. 2.0, January 3, 2013, available at , 13

http://www.movielabs.com/md/md/v2.0/Common_Metadata_v2.0.pdf 14

 15

