Page 1

3GPP TSG-SA4 Meeting #81
S4-141249
Tenerife, Spain, 3-7th November 2014
	CR-Form-v11

	CHANGE REQUEST

	

	
	TS 26.346
	CR
	0416
	rev
	1
	Current version:
	12.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	MBMS Enhancements

	
	

	Source to WG:
	TSG S4

	Source to TSG:
	Samsung Electronics Ltd.

	
	

	Work item code:
	MI_EMO
	
	Date:
	2014-10-28

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)

	
	

	Reason for change:
	As part of the MI_EMO work item, a set of enhancements to FLUTE have been discussed. In the CR, an implemetnation of these enhancements is introduced.

	
	

	Summary of change:
	A set of changes are introduced in this CR:
· The usage of multiple FLUTE sessions for carrying object flows and a description of the content relationships between the application and the object flows is introduced
· Carrying the object metdata that is specific to a particular object as part of the object itself.
· Carrying an indication of the type of data in the payload of the LCT packet, to facilitate error recovery

	
	

	Consequences if not approved:
	If not approved, the benefits of the above enhancements will not be available in Release 12.

	
	

	Clauses affected:
	7.2, 7.2.6, 7.2.10.2, 7.2.16, K.X.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	First Change

7.2
FLUTE usage for MBMS download

The purpose of download is to deliver content in files. In the context of MBMS download, a file contains any type of MBMS data (e.g. 3GPP file (Audio/Video), Binary data, Still images, Text, Service Announcement metadata).

In the present document the term "file" is used for all objects carried by FLUTE (with the exception of the FDT Instances).
UE applications for MBMS user services built upon the download delivery method have three general approaches to getting files from the FLUTE receiver for a joined session:

· Promiscuous: Instruct FLUTE to promiscuously receive all files available. Promiscuous reception can be suitable for single purpose sessions (generally with limited number and/or size of files) although uncertainty over the quality and content of files makes this approach generally undesirable.

· One-copy: Instruct FLUTE to receive a copy of one or more specific files (identified by the fileURI) - and potentially leaving the session following reception of one copy of all the specified files. Specifying the download file ensures that the UE has an upper bound to the quantity of files downloaded. One-copy reception requires prior knowledge of the file identifiers (fileURIs).

· Keep-updated: Instruct FLUTE to receive one or more specific files and continue to receive any updates to those files. As with one-copy, the keep-updated approach bounds the quantity of files downloaded and requires prior knowledge of the file identifiers. In order to realise an efficient keep-updated service, where file updates are unpredictable and maybe far apart in time, a registration and notification service is defined in sub-clause 7.7.
· Object flow: Instruct FLUTE to receive all files of a specific object flow, that is identified by a URL template, a file group, a specific session identifier, or base URL.
NOTE: The keep updated service is optional for the UE. In the absence of content filtering tools, the service is typically offered to a restricted set of applications.
NOTE:
The present document does not prevent or endorse changing download reception approach, and any related file list, during the life of the download session. Discovery of session content lists (including file lists) out-of-band of the delivery method sessions is beyond the scope of the present document.

The interaction of these file download modes and the caching directives is defined in sub-clause 7.2.13.

MBMS clients and servers supporting MBMS download shall implement the FLUTE specification (RFC 3926 [9]), as well as ALC (RFC 3450 [10]) and LCT (RFC 3451 [11]) features that FLUTE inherits. In addition, several optional and extended aspects of FLUTE ,as described in the following clauses, shall be supported.

One FDT instance is typically bound to one MBMS transmission session. It is therefore recommended, that each MBMS transmission session should contain one or more repetitions of the same FDT instance.
	Second Change

7.2.6
Transport File Grouping

Files downloaded as part of a multiple-file delivery are generally related to one another. Examples include web pages, software packages, segments of a DASH Representation, and the referencing metadata envelopes and their metadata fragments. FLUTE clients analyse the XML-encoded FDT Instances as they are received, identify each requested file, associate it with FLUTE packets (using the TOI) and discover the relevant in-band download configuration parameters of each file.

An additional "group" field in the FLUTE FDT instance and file elements enables logical grouping of related files. A FLUTE receiver should download all the files belonging to all groups where one or more of the files of those groups have been requested. However, a UE may instruct its FLUTE receiver to ignore grouping to deal with special circumstances, such as low storage availability.
The group names are allocated by the FLUTE sender and each specific group name shall group the corresponding files together as one group, including files describes in the same and other FDT Instances, for a session.

Group field usage in FDT Instances is shown in the FDT XML schema (clause 7.2.10). Each file element of an FDT Instance may be labelled with zero, one or more group names. Each FDT Instance element may be labelled with zero, one or more group names which are inherited by all files described in that FDT Instance.
	Third Change

7.2.7
Signalling of Parameters with Basic ALC/FLUTE Headers

FLUTE and ALC mandatory header fields shall be as specified in [9, 10] with the following additional specializations:

* The length of the CCI (Congestion Control Identifier) field shall be 32 bits and it is assigned a value of zero (C=0).

* The Transmission Session Identifier (TSI) field shall be of length 16 bits (S=0, H=1, 16 bits).

* The Transport Object Identifier (TOI) field should be of length 48 bits (O=1, H=1).
* Only Transport Object Identifier (TOI) 0 (zero) shall be used for FDT Instances.

* The following features may be used for signalling the end of session and end of object transmission to the receiver:
-
The Close Session flag (A) for indicating the end of a session.
-
The Close Object flag (B) for indicating the end of an object.

In FLUTE the following applies:

* The Sender Current Time present flag (T) shall be set to zero.
* The Expected Residual Time present flag (R) shall be set to zero.
* The LCT header length (HDR_LEN) shall be set to the total length of the LCT header in units of 32-bit words.

* For "Compact No-Code FEC scheme" [12], the FEC Payload ID shall be set according to RFC 3695 [13] such that a 16 bit SBN (Source Block Number) and then the 16 bit ESI (Encoding Symbol ID) are given.

* For “MBMS FEC scheme”, the FEC Payload ID shall be set according to Clause 7.2.12.1.

	Fourth Change

7.2.10.2
3GPP FDT Extension Type Schema

The extension of the IETF FLUTE FDT schema is done using the following schema definition:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:complexType name="MBMS-Session-Identity-Expiry-Type">

<xs:simpleContent>

<xs:extension base="MBMS-Session-Identity-Type">

<xs:attribute name="value" type="xs:unsignedInt" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="MBMS-Session-Identity-Type">

<xs:restriction base="xs:unsignedByte"/>

</xs:simpleType>

<xs:simpleType name="groupIdType">

<xs:restriction base="xs:string"></xs:restriction>

</xs:simpleType>

</xs:schema>
The Release 11 extension of the FLUTE FDT schema is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

targetNamespace="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:element name="Alternate-Content-Location-1" type="Alternative-Content-LocationType"/>

<xs:element name="Alternate-Content-Location-2" type="Alternative-Content-LocationType"/>

<xs:complexType name="Alternative-Content-LocationType">

<xs:sequence>

<xs:element name="Alternate-Content-Location" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Availability-Time" type="xs:dateTime"/>

</xs:complexType>

<xs:element name="Base-URL-1" type="xs:anyURI"/>

<xs:element name="Base-URL-2" type="xs:anyURI"/>

 <xs:attribute name="FEC-Redundancy-Level" type="xs:unsignedInt"/>
</xs:schema>
The Release 12 extension of the FLUTE FDT schema is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2014:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="urn:3GPP:metadata:2014:MBMS:FLUTE:FDT"

targetNamespace="urn:3GPP:metadata:2014:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:element name="OFD" type="OFDType" maxOccurs="unbounded"/>

<xs:complexType name="OFDType">

<xs:sequence>

<xs:element name="ObjectMapping" type="ObjectMappingType" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="FlowID" type="xs:integer" use="optional"/>

<xs:attribute name="Content-Type" type="xs:string" use="optional"/>

<xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>

<xs:attribute ref="mbms2009:Decryption-KEY-URI" use="optional"/>

<xs:attribute ref="mbms2012:FEC-Redundancy-Level" use="optional"/>

</xs:complexType>

<xs:complexType name="ObjectMappingType">

<xs:choice>

<xs:element name="Template" type="TemplateType"/>

<xs:element name="List" type="ListType"/>

<xs:element name="Offset" type="xs:integer"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="ListType">

<xs:sequence>

<xs:element name="URLMap" type="URLMapType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TemplateType">

<xs:simpleContent>

<xs:extention base="xs:anyURI">

<xs:atrribute name="startTOI" use="required"/>

<xs:attribute name="endTOI" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="URLMapType">

<xs:simpleContent>

<xs:extention base="xs:anyURI">

<xs:atrribute name="TOI"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:schema>
	Fifth Change

7.2.16
Object Flows
Object Flows are a set of related transport objects that are meant to be consumed together by the receiving application. An object flow can either be identified by the transport session, where one FLUTE session carries exactly one object flow, or by using the grouping syntax as defined in section 7.2.6

Object flows can be received and recovered automatically by the FLUTE receiver without having to receive requests for each particular object of the object flow. The FLUTE receiver also does not need to receive every single FDT instance to be able to recover the objects of an object flow. An Object Flow Description element is added to the FDT Instance schema to enable describing all common properties of an object flow. After receiving one FDT Instance, the FLUTE receiver can safely ignore the subsequent FDT Instances for that object flow and for the whole duration of the FDT Instance (i.e. until it expires), until the object mapping established by the OFD is no longer valid, or until a new object flow is discovered in the session.
The object flow is identified by the 16 MSB part of the Transport Object Identifier (TOI). The object flow is identified in the FDT Instance that declares the object flow by the attribute FlowID, or if the FlowID is not present then the object flow is identified by the Transport Session Identifier (TSI).
The objects of an object flow are mapped to their URL in one of the following ways:
· Using the Template element

· Using a list of URLs

· Using the EXT_EH header to carry Content-Location

An offset of the TOI may be specified to map the first URL in the mapping to an offsetted TOI value.
The OFD XML syntax is defined in section 7.2.10.2.
	Sixth Change

7.2.16
LCT Header Extensions
7.2.16.1 Introduction

A set of LCT header extensions is defined by this specification. Any LCT header extension that is not recognized, shall be ignored by the receiver.
7.2.16.3
EXT_EH Header Extension

The entity header extension EXT_EH is used to signal the entity header of the transport object. When present it shall contain the entity header as defined by section 7 of RFC 2616. The entity header shall be UTF-8 encoded. When present, at least the Content-Location and the Content-Length fields must be present. The Content-MD5 should be present to enable file versioning during file repair.
The EXT_EH header is defined as a variable length header extension with Header Extension Type (HET) equal to 126.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | HET=126 | HEL | entity headers … |

 +-+

 | entity headers … | Padding |

 +-+
Padding shall be set to 0. It is of variable length and is added at the end of the entity headers to achieve 32-bit word alignment alignment.
	Seventh Change

Annex K.X Guidelines for Enhanced FLUTE Operation
K.X.1
Introduction

This section provides guidelines on the use of the FLUTE enhancements to improve the reception and processing procedures at the receiver.

K.X.2
Enhanced DASH consumption
The DASH client decides which Representations it is interested in receiving and communicates this choice to the MBMS client. DASH Representation may be mapped to object flows, where each object flow may be delivered over a separate FLUTE session or mapped to a separate group. The MBMS client uses the contentRelationship element as part of the deliveryMethod to identify the actual FLUTE session that delivers the content of the selected DASH Representation.
The MBMS client then instructs the FLUTE receiver to receive all objects of that particular object flow. The FLUTE receiver joins the FLUTE session and receives the first FDT Instance identified by TOI 0. It checks for the OFD element to identify the charachteristics of the object flow. It then uses that information together with the information in the header extensions of the received LCT packets of that object flow to reconstruct the transport objects and recover the metadata of these objects (content length, content location, content encoding, MD5, FEC OTI, …). If the object is partially received and cannot be recovered through FEC, a partial recovery procedure, e.g. as described in section K.X.3, is initiated.
The FLUTE receiver makes the recovered object available to the MBMS client which in turn feeds it into the DASH client media buffers. Such implementation is depicted in the following figure.

[image: image1.png]Object Flow Demuxer

DASH Ségments DASHSegments

Straem API
Appendstreami()

Figure 1 Example Enhance DASH Implementation
K.X.3
Partial Object Recovery
In this section, we are only interested in the recovery of ISOBMFF-based files, as used in progressive download and DASH segments. A DASH media segment may contain 1 or more movie fragments. A progressive download file usually contains many movie fragments.

At the receiver, the following steps are performed:

1.
Receive LCT packet

2.
Check if (TSI, TOI) correspond to transport object that is of interest to the application.

3.
Place packet payload in an object map for the corresponding source block number

4.
Perform FEC decoding

5.
If the transport object has been recovered correctly, extract the file and pass it to the application

6.
If the transport object has not been recovered correctly

a.
traverse object map to detect movie fragment boundaries. This can be performed by examining the ISOBMFF header extension proposed in section 3.

b.
For each detected movie header, detect which samples have been affected by packet loss

c.
remove samples that are completely lost and decide based on the media type whether to completely remove a sample or keep it if at least one of its sub-samples are lost.

d.
adjust the information in every trun box to reflect the removed or reduced size samples.

e.
remove movie fragments for which the “moof” box could not be recovered

For progressive download applications and DASH applications where segments contain more than one movie fragment, the partial error recovery is performed periodically instead of for the whole transport object.

Note that partial object recovery is not possible when Content Encoding is applied.

The error recovery procedure is depicted in the following figure:

[image: image2.png]jepw

Figure 2 Partial Recovery
