3GPP TR 26.848 V1.7.1 (2014-11)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Multimedia Broadcast/Multicast Service (MBMS);

Enhanced MBMS Operation
(Release 12)

[image: image32.png]BM-SC

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword, …]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2011, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

1
Scope
7
2
References
7
3
Abbreviations
7
4
Enhanced MBMS Operation
8
4.1
Introduction
8
4.2
Enhancement, Recommended Requirements and Working assumptions
8
4.2.1
Switch from HTTP-based unicast delivery method to MBMS download delivery method
8
4.2.1.1
Description
8
4.2.1.2
Recommended Requirements & Evaluation Criteria
8
4.2.1.3
Gap Analysis & Evaluation
8
4.2.1.4
Assumptions
8
4.2.1.5
Solution
9
4.2.1.5.1
Example DASH over MBMS Architectures
9
4.2.1.5.2
Solution of DASH over MBMS
10
4.2.2
Potential FLUTE Enhancements
13
4.2.2.1
Deployment Architecture considerations
13
4.2.2.1.1
Introduction
13
4.2.2.1.2
Scenario 1: Managed Live DASH
13
4.2.2.1.3
Scenario 2: Unmanaged Live DASH
14
4.2.2.2
High-Level Design Principles
15
4.2.2.2.1
Error Resilience
15
4.2.2.2.2
Self-containment
15
4.2.2.2.3
Optimization for Real-time Services
15
4.2.2.2.4
Static and Dynamic Information
16
4.2.2.2.5
Modular, Generic, Extensible and Efficient Design
16
4.2.2.3
Recommended Requirements & Evaluation Criteria
16
4.2.2.4
Gap Analysis & Evaluation
18
4.2.2.4.1
Type 1: Backward compatible towards Rel-11 and earlier UEs
18
4.2.2.4.2
Type 2: Backward compatible towards Rel-11 and earlier Networks
18
4.2.2.4.3
Type 3: Backward compatible towards Rel-11 and earlier Networks and UEs
18
4.2.2.4.4
Type 4: UEs of Rel-11 and earlier releases ignore content delivered over Rel-12 FLUTE+
19
4.2.2.4.5
Considered Strictly backward-compatible extensions
19
4.2.2.4.6
ALC RFC differences and analysis
26
4.2.2.5
Assumptions
28
4.2.2.5.1
Source Data Properties
28
4.2.2.5.2
Upgrade to RFC5651
28
4.2.2.6
Solution
28
4.2.3
Datacasting Services
28
4.2.3.1
Description
28
4.2.3.1.1
Use Case #1 – Sports Scores and Statistics
28
4.2.3.1.2
Use Case #2 –USD Delivery
29
4.2.3.2
Recommended Requirements & Evaluation Criteria
29
4.2.3.3
Gap Analysis & Evaluation
29
4.2.3.4
Assumptions
29
4.2.3.5
Solution
30
4.2.4
File Repair without FDT
32
4.2.4.1
Description
32
4.2.4.1.1
Use Case #1 – Device is tuned to another frequency
32
4.2.4.1.2
Use Case #2 –Device is powered-off
32
4.2.4.1.3
Use Case #3 –Device is out of MBMS coverage but in good unicast coverage
32
4.2.4.2
Recommended Requirements & Evaluation Criteria
32
4.2.4.3
Gap Analysis & Evaluation
32
4.2.4.3.1
Existing Technologies
32
4.2.4.3.2
Consequences of Existing Technologies
32
4.2.4.3.3
Summary of Gap Analysis
33
4.2.4.4
Assumptions
33
4.2.4.5
Solution
33
4.2.5
Zapping Portal Services
35
4.2.5.1
Description
35
4.2.5.1.1
Use Case #1 –Fast Zap Video
35
4.2.5.1.2
Use Case #2 –Mosaic Service
35
4.2.5.2
Recommended Requirements & Evaluation Criteria
35
4.2.5.2.1
Fast Zap Video
36
4.2.5.2.2
Mosaic Service
36
4.2.5.3
Gap Analysis & Evaluation
37
4.2.5.3.1
Fast Zap Video
37
4.2.5.3.2
Mosaic Service
37
4.2.5.4
Assumptions
38
4.2.5.5
Solution
38
4.2.6
Joint object protection
38
4.2.6.1
Description
38
4.2.6.1.1
Use Case
38
4.2.6.2
Recommended Requirements & Evaluation Criteria
38
4.2.6.3
Gap Analysis & Evaluation
38
4.2.6.4
Assumptions
38
4.2.6.5
Solution
38
4.2.7
Multiple FLUTE Sessions for an MBMS User Service
38
4.2.7.1
Use Case Descriptions
38
4.2.7.1.1
Multiple Media Streams of a DASH-over-MBMS service
38
4.2.7.1.2
Hybrid Service Comprising Streaming and Auxiliary File Contents
39
4.2.7.2
Recommended Requirements & Evaluation Criteria
39
4.2.7.3
Gap Analysis & Evaluation
39
4.2.7.3.1
Application Identification
39
4.2.7.3.2
Schedule to Session Mapping
39
4.2.7.3.3
Service Area Specific Availability of Media Components
40
4.2.7.3.4
Inband USD Metadata Fragment Delivery
40
4.2.7.3.5
Unambiguous Identification of FLUTE Session Associated with Reception Report
40
4.2.7.3.6
Multiple MBMS Bearers Consideration
41
4.2.7.4
Assumptions
41
4.2.7.5
Solution
42
4.2.7.5.1
Schedule to Session Mapping
42
4.2.7.5.2
Inband USD Metadata Fragment Delivery
43
4.2.7.5.3
Application Identification
44
4.2.7.5.4
FLUTE Session Association with Reception Report
45
4.2.7.5.5
Service Area Specific Availability of NRT Content Components of a Service
46
4.2.8
Targeted Ad Insertion
46
4.2.8.1
Description
46
4.2.8.2
Recommended Requirements & Evaluation Criteria
46
4.2.8.3
Gap Analysis & Evaluation
47
4.2.8.4
Assumptions
47
4.2.8.5
Solution
47
4.2.8.5.1
Proposed Architecture
47
4.2.8.5.2
Example Call Flow
49
4.2.9
Generic Application Service Delivery over MBMS
51
4.2.9.1
Description
51
4.2.9.1.1
Example 1: Broadcast of MPEG-DASH
51
4.2.9.1.2
Example 2: Combined Unicast/Broadcast DASH
51
4.2.9.1.3
Example 3: Combined Unicast/Broadcast DASH with Transport Awareness in DASH client
52
4.2.9.1.4
Example 4: Apple HLS
52
4.2.9.1.5
Example 5: Web Page
53
4.2.9.2
Recommended Requirements & Evaluation Criteria
53
4.2.9.3
Gap Analysis & Evaluation
53
4.2.9.4
Assumptions
53
4.2.9.5
Solution
53
4.2.10
Improve MBMS OTA efficiency
53
4.2.10.1
Description
53
4.2.10.1.1
Use Case #1 –Keep Updated Data Service
53
4.2.10.2
Recommended Requirements & Evaluation Criteria
53
4.2.10.3
Gap Analysis & Evaluation
54
4.2.10.4
Assumption
54
4.2.10.5
Solution
54
4.2.11
Multi-Program Support:
55
4.2.11.1
Description
55
4.2.11.1.1
Use Case #1 –Portal and Association
55
4.2.11.1.2
Use Case #2 –Fast Start-up and Rapid Channel Change
55
4.2.11.2
Recommended Requirements & Evaluation Criteria
55
4.2.11.3
Gap Analysis & Evaluation
55
4.2.11.4
Assumptions
55
4.2.11.5
Solution
55
4.2.12
Robust DASH operation in live services
55
4.2.12.1
Description
55
4.2.12.2
Recommended Requirements & Evaluation Criteria
55
4.2.12.3
Gap Analysis & Evaluation
55
4.2.12.4
Assumptions
55
4.2.12.5
Solution
55
4.3
Related Change Requests
55
5
Conclusion
55

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document covers the MBMS enhancement aspects, including MBMS Over The Air (OTA) efficiency, MBMS for datacasting and real-time content, and generic signalling of DASH transport over broadcast, multicast and unicast.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".
[3]
3GPP TS 26.247: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".
[4]
IETF RFC 3450(December 2002): "Asynchronous Layered Coding (ALC) Protocol Instantiation", M. Luby.et al.
[5]
IETF RFC 5775(April 2010):"Asynchronous Layered Coding (ALC) Protocol Instantiation", M Luby, M.Watson, L.Vicisano
[6]
3GPP TS 26.233: "Transparent end-to-end Packet-switched Streaming Service (PSS); General description"
[7]

3GPP TS 23.003: "Numbering, addressing and identification"
[8]
3GPP TS 36.443: " Evolved Universal Terrestrial Radio Access Network (E-UTRAN); M2 Application Protocol (M2AP)"
3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

BM-SC
Broadcast-Multicast - Service Centre
DASH
Dynamic Adaptive Streaming over HTTP

eMBMS
Evolved MBMS

FDT
File Description Table

FLUTE
File deLivery over Unidirectional Transport

MPD
Media Presentation Description
4
Enhanced MBMS Operation
4.1
Introduction
4.2
Enhancement, Recommended Requirements and Working assumptions

4.2.1
Switch from HTTP-based unicast delivery method to MBMS download delivery method
4.2.1.1
Description
An MBMS client acquires a USD including a mediaPresentationDescription element which references a Media Presentation Description containing descriptive information on a DASH Media Presentation.

The DASH-based user service is available over both HTTP-based unicast delivery method and MBMS download delivery method.

Due to the fact that the UE is initially located outside of MBMS broadcast coverage, it starts to consume the DASH service delivered through HTTP-based unicast delivery method.

Later on, as the UE enters MBMS broadcast coverage, it switches to MBMS download delivery method for receiving the DASH service, for example, due to better quality of content delivered over MBMS download delivery method.

Subsequently, the UE moves away from MBMS broadcast coverage, and switches back to HTTP-based unicast delivery method of the DASH service.

The service switch in each of the above cases is performed transparently to the user and does not adversely impact the user experience.
4.2.1.2
Recommended Requirements & Evaluation Criteria
The following recommended requirements are collected:
· The MPD and other DASH formats delivered in the MBMS User Service conform to TS26.247[3].

· The fallback to unicast can be done without bitrate guarantees matching those on the unicast distribution, i.e. the content delivered over unicast may provide alternative Representations of the same content that is delivered over broadcast.

· The information on what DASH resources (MPD, Segments, xlink resources, etc.) are available in broadcast and what are available in unicast is included in the User Service Description.

· Seamless switch of MBMS User Service when switching between unicast and broadcast is enabled.

· The signalling is generic enough to at least support the two example DASH over MBMS architectures in section 4.2.1.5.1.

· Takes into account the recommendation from MPEG: "... we concluded that for delivery protocols interfacing with HTTP such as FLUTE, no change or extension of DASH format is needed and the system adopting the DASH standard can support such deployments using the existing standard."

4.2.1.3
Gap Analysis & Evaluation
4.2.1.4
Assumptions
A UE receives enough information which allows it to perform a switch from HTTP-based unicast delivery method to MBMS download deliver method of the DASH service, and vice versa.

A UE is able to identify the delivery method Segments and other MPD resources are provided.

A UE is able to ensure continuous playout when the switch from HTTP-based delivery method to MBMS download delivery method is performed and vice versa.

An MBMS client is able to forward a DASH Media Presentation that conforms to TS26.247[3] without parsing the MPD.
4.2.1.5
Solution
4.2.1.5.1
Example DASH over MBMS Architectures
As an illustrative example, Figure 4.2.1-1 depicts a potential end-to-end network architecture for DASH content delivery over MBMS bearer with unicast fallback. FLUTE-based download delivery represents the TS 26.346[2]-defined interface between the BM-SC and MBMS client. The assumed interface between the DASH client and the MBMS client (here assumed to be a composite entity including MBMS receiver, device-based HTTP server, policy, redirection and proxy functions) is HTTP/1.1.

[image: image3.emf]Encoding and

DASH formatting

DASH client

BM-SC and HTTP

server (e.g. proxy)

functions

MBMS client

(MBMS receiver +

FLUTE cache +

HTTP proxy server)

USD (pre Rel-12 MPD +

Rel-12 MPD)

Broadcast Segments over FLUTE

Unicast Segments

HTTP/1.1

TS 26.346-defined

interface

HTTP/1.1

Fig. 4.2.1-1: Potential DASH over MBMS Architecture #1

Figure 4.2.1-2 depicts another potential DASH over MBMS architecture, indicating the use of a local application web cache by the DASH client to serve its requests. The application web cache is shared with the MBMS client that implements a FLUTE receiver. Upon reception and reconstruction of DASH media segments over FLUTE, the segments are inserted into the application web cache. An interface between the DASH client and the FLUTE receiver/MBMS client is shown in this diagram to exchange information on the available and possibly recommended Representation(s) based on various conditions (e.g. location inside or outside MBMS coverage, policy) along with other metadata (e.g. available bandwidth, reason code).

[image: image4.png]Interface (API, IPC,
protocol interface, etc.)
{available_Reps,
preferred_Rep, reason_code,
available bandwidth}

USD with DASH
Transport indication

Fig. 4.2.1-2 – Potential DASH over MBMS Architecture #2
4.2.1.5.2
Solution of DASH over MBMS
A basic concept of the proposed solution is that the MBMS client does not have to process the MPD in order to determine the delivery method of DASH resources. It merely has to perform data matching of newly-added metadata in the USD with the URL of Segment requests generated by the DASH client to determine whether the requested Segment is available over broadcast, unicast, or both transport modes. This is possible because a fixed portion of the request URL that uniquely identifies the Representation to which the requested Segment pertains, referred to in our solution as the basePattern, will also be conveyed in the USD. In conjunction with any other relevant rules and conditions, such as coverage condition (whether the UE is located within broadcast coverage), network operator and/or service provider policy, etc., the MBMS client can employ various implementation mechanisms to mediate Segment requests to resources – i.e. via access to locally stored content in the UE, or at an external HTTP server. The XML content model of the proposed solution for extending the USD is shown in Figure 4.2.1-3. These pertain to modifications to the userServiceDescription and deliveryMethod elements, for the purposes of defining switchability of contents of the DASH-over-MBMS service, and transport/access specific information, respectively.

 [image: image5.png]deliveryMethodType

rBalternativeAccessDelivery

[sv:delimiter
o Ty

Fhaseattern

e [xsanyRl

userserviceDescriptionType [}

Fhaseattern

e [xsanyRl

sveimier
o Ty

seimier
ol

appserviceType

Blatributes

‘appServiceDescriptionURI

s anyURI
requred

mimeType|

yoc [xsisting
requred

Eletrioues
basepattern

e [xsanyRl

— 2%

EE— —

e [xsanyRl

e 2%

Fig. 4.2.1-3: USD Extension for DASH-over-MBMS User Service
4.2.1.5.2.1
Extension of deliveryMethod element
The deliveryMethod element may include one or more instances of the r12:broadcastAppService. Each entry of r12:broadcastAppService denotes a single broadcast Representation, in either multiplexed or non-multiplexed form for media content components, of the DASH-over-MBMS user service, across all Periods of the affiliated Media Presentation. Each entry of basePattern under the r12:broadcastAppService element is for use by the MBMS client to match against a portion of the Segment URL used by the DASH client to request Segments of a parent Representation under its containing Period. The basePattern may comprise the concatenation of the URI scheme, the "authority" part of the URL, and the portion of the "path" part of the URL that extends to and is inclusive of the Representation-ID (value of Representation@id in the MPD). URI scheme, "authority" and "path" are in accordance to the terminology of RFC 3986 [2]. A match implies that the corresponding requested Segment is carried over an MBMS bearer. For example, should the URL associated with a Segment request contain the BaseURL “http://example.com/per-3/rep-512”, and the same BaseURL value appears in an instance of r12:broadcastAppService.basePattern, it means that the Representation with Representation@id = ‘512’ is available over broadcast. The basePattern value may be, but is not required to be, identical to that of the Representation.BaseURL if present in the MPD.

Each r12:broadcastAppService element may contain one or more serviceArea child elements which specify the service area(s) in which that broadcast Representation is delivered/accessible. The semantics of serviceArea, corresponds to the MBMS Service Area Identity as defined in TS23.003[7], TS36.443[8]. A given broadcast Representation may be available in a set of service area(s) in common with, or different from, the service area(s) of any other broadcast Representation. Absence of the serviceArea element implies that the availability of the broadcast Representation is not restricted by service area.
The deliveryMethod element may also include one or more instances of the r12:unicastAppService. Each entry of r12:unicastAppService denotes a single unicast Representation, in either multiplexed or non-multiplexed form for media content components, of the DASH-over-MBMS user service, across all Periods of the affiliated Media Presentation. Similar to r12:broadcastAppService, each entry of basePattern under the r12:unicastAppService element is for use by the MBMS client to match against a portion of the Segment URL used by the DASH client to request Segments of a parent Representation under its containing Period. A match implies that the associated Representation is available over unicast delivery. For example, should the URL associated with a Segment request contain the BaseURL “http://example.com/per-3/rep-256”, and the same BaseURL value appears in an instance of r12: unicastAppService.basePattern, it means that the Representation with Representation@id = ‘256’ is available over unicast. The basePattern value may be, but is not required to be, identical to that of the Representation.BaseURL if present in the MPD.

A given Representation may be available over one or both transport modes. The broadcast version might be deemed as preferable or even required for reception from the service provider policy perspective, for example when the UE is located within MBMS coverage.

The presence of the r12:broadcastAppService and/or r12:unicastAppService element under deliveryMethod signifies that the parent MBMS User Service is an application service which contains content components delivered via broadcast and/or unicast modes. One or both of these child elements of deliveryMethod must be present when its parent userServiceDescription element contains the r12:appService (see clause 4.2.1.5.2.2).
4.2.1.5.2.2
Extension of userServiceDescription element
Presence of the r12:appService child element of userServiceDescription indicates that the associated MBMS User Service is an application service explicitly linked to the r12:broadcastAppService and r12:unicastAppService elements under deliveryMethod. Furthermore, the r12:appService element may contain either or both the child elements identicalContent and alternativeContent.

Each identicalContent element contains two or more interchangeable URLs for an identical Representation, as indicated by the basePattern values. The implication is that that Representation is available over both broadcast and unicast transport and could be interchanged in accordance to coverage condition, policy requirements, etc.

Each alternativeContent element contains two or more interchangeable URLs, as indicated by the basePattern values, corresponding to different Representations available over broadcast and unicast transport but which could be substituted for one another in accordance to coverage condition, policy requirements, etc. In practical deployment of a DASH-over-MBMS service, such switching may require the following conditions to be met:

a) the employed media codecs and configuration information must be identical between the requested and substituted Representations,
b) the request does not contain a byte range, and
c) Segments of the alternative Representations must be time-aligned.
identicalContent and/or alternativeContent may be present under the r12:appService element because Representations listed in the MPD may be encoded differently, or associated with different configurations for a given encoding scheme, as defined by their Initialization Segments (represented by Initialization Segment Description fragments). Therefore, the mere presence of basePattern entries under r12:broadcastAppService and r12:unicastAppService does not imply that the associated Representations are automatically eligible for interchange between broadcast and unicast reception.

The attribute appServiceDescriptionURI of r12:appService references an application service description document, which in this specification is a Media Presentation Description fragment containing the MPD. The attribute mimeType of r12:appService specifies the MIME type of the MPD, which may include the optional 'profiles' parameter. The latter parameter declares the interoperability and signals the use of features associated with the DASH Media Presentation described by this MPD. An example value of mimeType is "application/dash+xml;profiles="urn:3GPP:PSS:profile:DASH10", which denotes an MPD conforming with the 3GP-DASH Release-10 profile.
4.2.2
Potential FLUTE Enhancements
4.2.2.1
Deployment Architecture considerations
4.2.2.1.1
Introduction
This section presents and discusses different deployment architectures for Live Video, which is supported by the 3GPP architecture. 3GPP typically collapses the infrastructure and UE internal functions into one box, each. The specifications focus on the interactions between UE and infrastructure. However, for the MBMS performance improvement discussions, a more detailed understanding of certain implementation is beneficial.

The figure below depicts the 3GPP architecture for PSS (incl. DASH) and MBMS as presented in TS 26.233 [6] and TS 26.346 [2]. Note that the PSS Server according to TS 26.233 [6] includes the HTTP Server functions for DASH. The general description of PSS (incl. DASH) in TS 26.233 [6] does not impose requirements or assumptions on the separation of content preparation functions between Content Source and 3GPP System (PSS Server, incl. the Content Preparation for DASH). That way of specifying allows for multiple infrastructure realizations, depending on the separation and distribution of functions between 3GPP system and content provider. Also in MBMS TS 26.346 [2] there are no requirements or assumptions on the separation of content preparation functions between Content Provider and BM-SC.

[image: image6.emf]3GPP Core and

Radio Network

MBMS

Client

PSS

Client

PSS Server

BM-SC

MDF

Collapsed to “UE”

26.247/

26.234

26.346

Content Source /

Content Provider

Figure 4.2.2-1: 3GPP Architecture for PSS (incl. DASH) and MBMS
4.2.2.1.2
Scenario 1: Managed Live DASH
The figure below depicts a conceptual deployment architecture for managed Live DASH over eMBMS (Media Path only). The term “managed” refers here to the fact, that the operator has a relation with the content provider, so that the DASH Segmenter can be logically in the same network to or even collocated with the BM-SC. The encoder and Segmenter settings can be tuned for the eMBMS transmission, e.g. short segments are selected when low e2e delay is required or longer segments to increase efficiency. In case of OTT content it is expected that the BM-SC pulls the content from CDN, which is certainly increasing the e2e delay, see Scenario 2 for details.

[image: image7.emf]MBMS

Ckient

Dash

Client

Edge

Server

Origin

Server

DASH

Segmenter

Live

Encoder

BM-SC

MDF

Collapsed to “PSS Server” (incl. DASH server)

Collapsed to “BM-SC”

Scope of the 3GPP

SA4 Specs

26.247

26.346

Collapsed to “UE”

Figure 4.2.2-2: Scenario 1: Example deployment architecture for managed Live DASH (Media Path only)
A number of functions are collapsed into the PSS Server, namely CDN components like Edge and Origin servers, as well as the head-end equipment like DASH Segmenter and Encoders. The DASH Segmenter may be operated by the different content provider.

A number of functions are collapsed into the BM-SC, namely the BM-SC Media Distribution Function (MDF), the DASH Segmenter and the Live Encoder. From performance perspective, an implementation, which integrates the BM-SC, the PSS server and the Segmenter on the same node could be beneficial.

The Live Segmenter and Live Encoder functions are very generic functions and can run in different (Non-MBMS) deployment scenarios. The separation of the Segmenter from the BM-SC follows the same argumentation as the separation of the generic DASH client from the MBMS Receiver on the UE side. It is of course one implementation option to collocate the Segmenter with the BM-SC and the MBMS client with the DASH client in order to provide a very good and short e2e delay. However, these are implementation considerations and the new FLUTE enhancement should bring benefits for all four implementation options.

[image: image8.emf]DASH

Segmenter

SA

MDF

MPD & IS

Media Plane

(Segments)

BM-SC

Service Announcement

over HTTP, SMS or MBMS

Segments + In-Band

Fragments

Live

Encoder

Figure 4.2.2-3: Handling Segments and MPD / IS
The DASH Segmenter publishes at least three types of different files for the DASH ISO-BMFF Live Profile, namely the Media Presentation Description (MPD), one or more Initialization Segments (IS) and the media segments. The media segments are handled by the MBMS Delivery Function (MDF), while MPD and IS are handled by the User Service Discovery / Announcement Function (USD/A), shown as SA in Figure 3. The USD/A function announces MBMS services via unicast (HTTP), SMS or MBMS together with all other fragments for the service.

The MBMS TS 26.346 [2] and the DASH TS 26.247 [3] specifications only define the protocol and procedures between the UE and the System (either as a DASH Server, PSS Server or BM-SC, depending on the specification). Conceptually, there is no difference between the DASH Player interacting via HTTP with the DASH Server or the UE internal Web Server.

4.2.2.1.3
Scenario 2: Unmanaged Live DASH

The figure below depicts a conceptual deployment architecture for unmanaged Live DASH over eMBMS (Media Path only). The term “unmanaged” refers here to the fact, that the operator has no strong relation with the content provider. The BM-SC pulls here segments from CDN like any other DASH client.

Some relations with the content provider are certainly needed. For instance, the link between BM-SC and the Edge Server may be QoS provisioned so that the required media bitrate for the Live Service can be ensured. Otherwise, the system risks buffer underruns by the UE. The BM-SC cannot simply forward a different representation (bitrate) in case of link bitrate variations. Pre-Release 12 clients only expect a single video representation available in the MPD. Changing a representation may require the change of the initialization segment, e.g. because the representations use different video resolutions. The new representation may have a different presentation timeline. The Service Announcement for the Live DASH service needs to be updated (in-band and out-of-band).

Of course, the operator may impose requirements on the content authoring, which is actually the same as Scenario 1 “Managed Live DASH”.

[image: image9.emf]Edge

Server

Origin

Server

DASH

Segmenter

Live

Encoder

BM-SC

MDF

Collapsed to “PSS Server” (incl. DASH server)

Collapsed to “BM-SC”

Scope of the 3GPP

SA4 Specs

MBMS

Client

Dash

Client

Collapsed to “UE”

Figure 4.2.2-4: Scenario 2: Example deployment architecture for Unmanaged Live DASH

The DASH over unicast functions are typically collapsed into the PSS Server. The entire transmission chain northbound of the BM-SC, including the Edge and Origin Servers are collapsed into the BM-SC when sending DASH segments over broadcast. From UE and transmission format perspective, the back-end architecture is not visible.

However, certain FLUTE enhancement improvement proposals impose requirements on this architecture, which are not clearly described and highlighted yet. It needs to be discussed, whether the realization of these requirements are feasible for the above presented deployment scenarios or not.

4.2.2.2
High-Level Design Principles
4.2.2.2.1
Error Resilience
HTTP is typically delivered over TCP and objects are expected to be delivered error-free. FLUTE+ should include methods for error resilience, in particular FEC. Also HTTP-based repair of objects as defined in TS26.346[2] should be naturally supported. However, in contrast to FLUTE the error resilience is preferably not integral to the base protocol, but an add-on.

FLUTE provides error resilience tools for file protection that are FEC and file repair. The FEC performance improves with larger source block sizes. File repair procedures are triggered after exhausting other recovery options and takes place over unicast. The advanced FLUTE protocol should enable low delay error resilience tools.
4.2.2.2.2
Self-containment

The client should be able to locate and reconstruct the transmitted resource without having to fetch another object. In FLUTE, the receiver needs to first fetch an FDT instance, which is carried with a TOI 0, and then parse the XML file and locate the TOI for the object of interest. The TOI assignment to a specific is arbitrary because the number of files delivered over the FLUTE session and their order may not be known a-priori. In the Advanced FLUTE, the file should be self-contained, i.e. it should contain its own metadata to enable the client to identify it. Out-of-band signaling is also possible.

The minimization of objects/information that is needed to be received in real-time is required to be available without delay. For example, in a dynamic object generation environment such as live DASH, the avoidance of delivering FDTs along with each object avoids dependency problems.
4.2.2.2.3
Optimization for Real-time Services

Real-time services consisting of a timed sequence of multiple objects (despite delivered over HTTP) generate a significant portion of Internet traffic. Examples are DASH Media Presentations or other HTTP streaming technologies. Optimization for such flow-based services is essential for FLUTE+. It is relevant that for real-time services objects need to be recovered and be available by a certain time. This aspects needs to be taken into account.

FLUTE comes with a FEC building block that divides the file into several source blocks of (almost) equal size and each source block is then divided into equal size packets, so called source symbols. When DASH media segments are being delivered, the source blocks and packets will have arbitrary boundaries inside the segment. The advanced FLUTE protocol should allow arbitrary fragmentation, for example to enable for packetization that takes into account structures of the delivered data.

As discussed in the previous requirement, a whole file is partitioned by the sender and recovered at the receiver. Without having the full file at the sender, transmission cannot be started. Also the whole file needs to be recovered before it can be forwarded to the application layer. The advanced FLUTE protocol should enable progressive delivery without having the full resource available at the sender. This may also allow a client to start consuming the file before it is fully available
4.2.2.2.4
Static and Dynamic Information

Real-time services consisting of a timed sequence of multiple objects (despite delivered over HTTP) generate a significant portion of Internet traffic. Examples are DASH Media Presentations or other HTTP streaming technologies. Optimization for such flow-based services is essential for an advanced FLUTE+. An important aspect in such flows is that certain information is static (assigned to all objects to the flow, e.g. the type, encoding, etc.) whereas other information is dynamic and assigned to each object (object size, URL, etc.). It should be possible to deliver static information out-of-band in a way similar to the SDP.

4.2.2.2.5
Modular, Generic, Extensible and Efficient Design
Despite priority for some use cases such as DASH over MBMS may be given, it is relevant to define FLUTE+ in a modular and generic manner such that any type of content that can be delivered over HTTP can also be delivered over FLUTE+. In addition, efficiency and extensibility are relevant. However, efficiency should always be traded off with complexity, modularity, and extensibility.

4.2.2.3
Recommended Requirements & Evaluation Criteria
The following list provides potential enhancements of FLUTE based on deployment experience:
· Enhance FLUTE delivery of a sequence of related objects: Generally, if a sequence of objects are delivered, e.g. as a DASH Representation then this object flow contains static and dynamic information. The static information may be delivered ahead of time and the dynamic information may be delivered along with the object directly.
· Minimize number of objects needed to receive to recover each portion of content: In particular for receiving an object, not only the object but also the FDT needs to be received. In a dynamic object generation environment such as live DASH, the avoidance of delivering FDTs along with each object avoids dependency problems.
· Provide advance information to FLUTE receivers before objects sent/received: In certain cases some properties of the objects are known prior to the generation of the object. Providing this information to the receivers ahead of time allows more intelligent FLUTE receiver decisions and planning is possible. Specifically sending of known and static metadata of file objects once instead of repeatedly with each file increases the efficiency of file delivery by reducing the amount of overhead transmitted. Furthermore, predictability of time-varying metadata associated with file objects by the download delivery receiver, by using properties of those objects received in advance, enhances file delivery efficiency by not having to transmit that overhead continuously during the download delivery session.

· An object or an object flow may be directly linked to an application, for example to a DASH Representation.
· Enable chunk delivery/reception of objects. In case of live service where multimedia data is generated, this enables reduction of sender latency independent of usage of FEC. In addition, receiver latency reduction may be achieved if FEC is not used at all of if later stall when FEC used is acceptable. Chunked delivery combines the advantages of packet-based streaming with object delivery with or without FEC.
· Enable variable size source packets: Source packet boundaries can be aligned with underlying media structure boundaries if desired. This may improve chunked delivery and may also provide additional error resilience as error concealment may be simplified if only single access units are lost.
· Enable delivery of source content with no FEC semantics: In this case receivers that don’t implement/need/understand FEC can still receive the source stream. In addition, the same source stream can be easily mapped to multiple FEC configurations, e.g. different FEC schemes, different source block sizes, etc. This is in particular possible with systematic FEC codes such as the Raptor code defined TS26.346[2].
· Enable FEC object bundling: Provide FEC protection over multiple objects, which can increase the efficiency of FEC protection.
· Enable that delivered object contains all information of a complete HTTP GET response, i.e. the HTTP header and the HTTP GET response: In many cases the objects delivered through FLUTE are objects that are made available as resources on an http server/proxy/cache. FLUTE can very well be used to feed such HTTP caches, but it is preferable to have all information of a regular HTTP response included in the delivery of the object. Also objects may have certain live/availability times on caches. Signaling for this purpose may be necessary .

· Add timing information to FLUTE delivery: FLUTE packets are time agnostic. By adding timing to FLUTE packets, this enables temporal measurements, e.g. for jitter or delay measurements.
· Reuse current standards, especially FLUTE, as much as possible: For example, it should allow delivery of standard FLUTE objects in same session with FDTs if backward compatibility is necessary.
· A solution including the enhancements corresponding to the recommended requirements of this section is expected to be applicable to both, segment streaming, such as 3GP-DASH delivery, as well as file delivery.
· Multiplexed segments, in particular for environments with higher packet error rates (i.e. when the usage of larger source blocks becomes more efficient) may be recommended when used together with FEC and for simple service offerings.
· using short media segments in order to reduce the e2e delay for Live. There should be an additional note highlighting the tradeoff between e2e delay / short segments and the FEC efficiency. The FEC efficiency is significantly reduced when operating with small source blocks.
· add informational section to the MBMS specification, clarifying the benefit of sending the DASH segment in a different order, if the segmenter is co-located with the BM-SC.
Note 1: All the above recommended requirements for MBMS broadcast are expected to be done in a backward compatible manner; otherwise the specific enhancement related to that requirement is not considered any longer.
Note 2: The gains and/or benefits for FLUTE enhancements is needed for justification.
A protocol that enhances FLUTE is expected to fulfil the following features:

· Delivery of data objects over unidirectional transport to enable HTTP/1.1 similar functionalities

· Delivery of objects that are uniquely named by HTTP-URLs

· Provision of object properties along with the delivery of the object including Content-Type, Content-Encoding, size of extension headers, etc. without dependency on any other objects.
· Delivery and signalling of byte-ranges of a content object

· Chunked transfer of objects

· Enabling caching of objects

· reliable delivery of objects using existing error recovery methods

· by the support of application layer FEC

· by combining FEC protection for multiple objects

· without including/tying the source packets to a specific error recovery scheme

· efficient and reliable support of object flows with timing real-time properties, in particular segmented DASH Representations within a Media Presentation of type dynamic, which includes:

· delivery of static information a priori in a reliable information

· bundling of dynamic information with the media object

· enable the support of timing information to the delivery

· provide generality without tying the base protocol to a specific application or media format

· provide extensibility and modularity

· enable optimizations for specific applications as well as objects and object flows, including

· Application-driven packet sizes and packet fragmentation including signalling of functional properties in packet headers, e.g. random access points in a sense that any packet prior to a random access point is of no value for the application.

· DASH content, for example using predictive information in the MPD also in the signalling of the FLUTE+ protocol

In addition, a protocol that enhances FLUTE preferably provides the following features:

· efficiency in terms of packet overhead

· reasonable complexity

· compatibility to some FLUTE building blocks

If considered beneficial in terms of enhancements of FLUTE, "RFC 3451: Layered Coding Transport (LCT) Building Block" may be replaced with RFC 5651 in TS26.346[2] Rel-12, without breaking backward-compatibility according to Type 1, Type 2 and Type 3 as defined in section 4.2.2.4 of this document.
4.2.2.4
Gap Analysis & Evaluation

Changing FLUTE may be a major step forward and the pros and cons of doing should be considered. However, in order to obtain a better support for the delivery of objects flows as available in DASH and to deliver timed media data, the definition of a new object delivery protocol may be justifiable as long as it is kept as close as possible to what FLUTE provides and possible use a new version of FLUTE to extend as proposed in this document.

In order to progress the work in SA4, a list of potential functional enhancements should be collected and agreed. Based on the list of functional improvements, the decision should be made if and how FLUTE is enhanced and to what extent backward-compatibility is maintained.
4.2.2.4.1
Type 1: Backward compatible towards Rel-11 and earlier UEs
· A Rel-11 and earlier MBMS UE would be able to receive and consume the content from enhanced FLUTE from Rel-12 network. The Rel-11 and earlier MBMS UE ignores Rel-12 specific signaling of FLUTE enhancements (e.g. reserved bits in Rel-11 may be used for enhancements in Rel-12, but just ignored by Rel-11 and earlier MBMS UEs), but is able to receive the content carried over enhanced FLUTE (e.g. could be 3GP-DASH content or file delivery); and
· A Rel-11 and earlier MBMS UE is able to operate normally on reception of Rel-12 FLUTE enhancements; and
· Rel-12 MBMS UEs are able to take advantage of FLUTE enhancements defined in Rel-12.
Note: a Rel-11 and earlier MBMS UE cannot take advantage of any Rel-12 FLUTE enhancements.
4.2.2.4.2
Type 2: Backward compatible towards Rel-11 and earlier Networks

· A Rel-12 MBMS UE is able to receive and consume the content from Rel-11 and earlier network;
4.2.2.4.3
Type 3: Backward compatible towards Rel-11 and earlier Networks and UEs

· The criteria of sections 4.2.2.4.1 and 4.2.2.4.2 apply simultaneously.
If FLUTE+ enhancements refer to backward compatibility without indicating the type of backward compatibility, than the definition in section 4.2.2.4.3 applies.
4.2.2.4.4
Type 4: UEs of Rel-11 and earlier releases ignore content delivered over Rel-12 FLUTE+

· A Rel-11 and earlier UE attempts to receive content carried with Rel-12 enhanced FLUTE. The Rel-11 and earlier MBMS UE detects an unknown FLUTE version (e.g. if a new LCT version number is defined for FLUTE+), and thus ignore the remaining content of this FLUTE packet/object.
4.2.2.4.5
Considered Strictly backward-compatible extensions
4.2.2.4.5.1
General

This section is a collection of potential enhancements that may be performed in a backwards-compatible way.

The following general tools are considered:

· Ability to delivery FDT Instance in USD as a static information

· Extensions to the FDT Instance to signal Object Flows and CodePoints

· Sending existing or newly defined LCT extension headers

· Use of the code point signalling

· Recommendation on the use of certain tools

4.2.2.4.5.2
LCT based on RFC5651

4.2.2.4.5.2.1
Description

As stated in section 4.2.2.3, "RFC 3451: Layered Coding Transport (LCT) Building Block" may be replaced with RFC 5651 in TS26.346[2] Rel-12, without breaking backward-compatibility according to Type 1, Type 2 and Type 3 as defined in section 4.2.2.4 of this document.

The use of RFC5651 is beneficial as 3GPP can

· use existing extension headers to LCT as defined in RFC 5651

· define and register new extension headers with IETF based on the procedures defined in RFC5651

· refer to an RFC that is in standards-track of the IETF.

Therefore, it is proposed to replace RFC 3451 with RFC 5651. In addition, the following restrictions need to be added:

· use the FDT Instance with version 1 according to RFC 3926.

· set reserved bits in the LCT header to zero.

4.2.2.4.5.2.2
Justification
Using RFC5651 enables to use extension headers defined in RFC5651 and to register new extension headers. It also enables to move from an experimental RFC to a standard track RFC.

4.2.2.4.5.2.3
Open Issues

The following issues still need clarification:

· Is ALC also upgraded to RFC5775[5]?

4.2.2.4.5.3
File Delivery Table Instance Descriptor

4.2.2.4.5.3.1
Description

In order to enable providing an FDT Instance out-of-band in the USD a File Delivery Table Instance Descriptor (FID) may be added to the USD as a USD fragment.

The FID fragments may be associated to one download delivery session. Each of the FID expresses sufficient information such that all functionalities of a sequence of FDT Instances can be generated by the receiver based on the FID and information in LCT packet headers, specifically the TOI.

In case of sending DASH over Flute, the BM-SC may generate a new FDT Instance for each new DASH segment.

The FID may be delivered out-of-band or in-band and the attributes of the metadata envelope provide the context for the FID, i.e. its validity period as well as the URL as referred to by the USD.
4.2.2.4.5.3.2
Justification

This extension enables to deliver all static and known information ahead of time and out-of band. By this, dependency on the reception of inband FDT Instanceis reduced and clients understanding this fragment can parse this w/o relying on the reception of the inband FDT instance as all information is provided in the combination of the FID and the LCT headers.
4.2.2.4.5.3.3
Open Issues

Is this FDT Instance Descriptor (FID) only to be sent as USD fragment or is it also to be sent inband.
4.2.2.4.5.4
Extensions to FDT Instance

4.2.2.4.5.4.1
General

The following extensions only apply if the FDT Instance is delivered as a FID as a metadata fragment. Whether any of these extensions are useful for a regular inband FDT Instance is for further study.
4.2.2.4.5.4.2
Object Flows

4.2.2.4.5.4.2.1
Description
An FDT Instance may contain one or more object flow descriptors that are described in the following. This extension element may be added to the FDT Instance to generate equivalent data as provided by one or more File elements in the FDT Instance. Each object flow is identified by an @id.

In order to address DASH based delivery, or general delivery of objects, object flows are defined. Objects are associated to a specific object flow by having a specific pattern of the TOI. A flow is defined by the ObjectFlow@id that if applied to the TOI field results in a match. The object flow identifier may be applied to the TOI or to the (TSI,TOI) fields

If the ObjectFlow element is present, then no File element shall be present that overlaps with the TOI space generated by the Object Flow.

	
	Element or Attribute Name
	Use
	Description

	
	ObjectFlow
	
	specifies the static File Delivery Descriptor

	
	
	@id
	M
	specifies the object flow identifier.

	
	
	@contentType
	O
	identical to Content-Location attribute in FLUTE

	
	
	@contentEncoding
	O
	identical to Content-Encoding attribute in FLUTE

	
	
	FileTemplate
	0...1
	specifies a file template in the body. For details refer to section.

	
	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

4.2.2.4.5.4.2.2
Justification

Using object flows enables to group objects with identical properties and enables to provide this information in a static manner. This reduces the dependency on receiving the FDT Instance as static information that applies to all objects in the flow are summarized in the object flow. This specifically includes the @contentType. Typically this maps to a Representation.
4.2.2.4.5.4.2.3
Open Issues

· What other parameters may be added to the Object Flow, e.g. FEC Parameters?

· Do we want to have the ability to enable describing a range of TOIs using start and end TOI attributes for the file template?

· The relationship to multiple FLUTE sessions needs to be clarified.

· The usage of TOI only, TOI+TSI, or TSI only for object flow id needs to be clarified.

· Handling of the Flute FDT instance expire.

4.2.2.4.5.4.3

File Template

4.2.2.4.5.4.3.1
Description
The static File Delivery Description may include a FileTemplate element. The value of FileTemplate element attribute may contain one or more of the identifiers as listed in Table 4.2.2-1.

The element enables to generate a one to one mapping between a OFI and TOI and URL.
In each URI, the identifiers from Table 4.2.2-1 shall be replaced by the substitution parameter defined in Table 4.2.2-1. Identifier matching is case-sensitive. If the URI contains unescaped $ symbols which do not enclose a valid identifier then the result of URI formation is undefined. The format of the identifier is also specified in Table 16.

Each identifier may be suffixed, within the enclosing ‘$’ characters following this prototype:

%0[width]d

The width parameter is an unsigned integer that provides the minimum number of characters to be printed. If the value to be printed is shorter than this number, the result shall be padded with zeros. The value is not truncated even if the result is larger.

The FileTemplate shall be authored such that the application of the substitution process results in valid URIs.
Strings outside identifiers shall only contain characters that are permitted within URIs according to RFC 3986.

Table 4.2.2-1 — Identifiers for File templates

	$<Identifier>$
	Substitution parameter
	Format

	$$
	Is an escape sequence, i.e. "$$" is non-recursively replaced with a single "$"
	not applicable

	OFI
	This identifier is substituted with the object flow identifier ObjectFlow@id the corresponding LCT packet.
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

	ON
	This identifier is substituted with the object number which is represented by the remaining non flow if bits of the corresponding LCT packet
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

4.2.2.4.5.4.3.2
Justification

Using a template enables to create the information @TOI and @contentLocation information contained in the File element in the FDT Instance by using this static information and the TOI.
4.2.2.4.5.5
Extension Headers

4.2.2.4.5.5.1
Deriving Object size

4.2.2.4.5.5.1.1
Description
The information about the object size and the other OTI needs to be delivered with each object to enable FDT-free object recovery.

If the File Template is used, then an extension header permits to send the object size of the object with a specific TOI (combination of object flow id and object number).

One option is to use the general EXT_FTI as defined in RFC3926, section 5.1.1. This may be used to deliver the Transfer Length of the carried object.

Alternatively a new extension header solely carrying the object size may be defined.

This extension header should be sent with every repair packet.

4.2.2.4.5.5.1.2
Justification

In order to enable to rely on static information and information included in the LCT packets only, the transport object size needs to be added to LCT packets.

4.2.2.4.5.5.1.3
Open Issue

The EXT_FTI is initially designed for this purpose. Whether to use the EXT_FTI or define a new headers is unclear
The issue is that TS26.346[2] is currently states:

FLUTE extension header fields EXT_FDT, EXT_FTI , EXT_CENC [9] shall be used as follows:

· EXT_FTI shall be included in every FLUTE packet carrying symbols belonging to any FDT Instance.

· FLUTE packets carrying symbols of files (not FDT Instances) shall not include an EXT_FTI.

· FDT Instances shall not be content encoded and therefore EXT_CENC shall not be used.

In FLUTE the following applies:

· EXT_FDT is in every FLUTE packet carrying symbols belonging to any FDT Instance.

· FLUTE packets carrying symbols of files (not FDT instances) do not include the EXT_FDT.

4.2.2.4.5.5.2

Timing Extension Header

4.2.2.4.5.5.2.1
Description
The LCT Header EXT_TIME extension as defined in RFC 5651 may be used by sender in the following manner:

· The Sender Current Time may be used to occasionally or frequently signal the sender current time depending on the application. This may be used in order to synchronize the clock of the sender and the receiver.

· The Expected Residual Time (ERT) may be used to indicate the expected remaining time for the current object.

· The SLC flag is typically of no use, but may be used to indicate addition/removal of segments.

4.2.2.4.5.5.2.2
Justification

This allows sending timing in band in order to provide synchronization, dejittering and so on.

4.2.2.4.5.5.2.3
Open Issues

The exact interpretation of these timing signals needs to be defined.

For DASH, the usage of this timing may be more explicit.

4.2.2.4.5.5.3
Object Expires

4.2.2.4.5.5.3.1
Description

The object expiry information as currently present in the FDT Instance may have to be sent for certain applications.

4.2.2.4.5.5.3.2
Justification

In order to enable to rely on static information and information included in the FID and LCT packets only..
4.2.2.4.5.5.3.3
Open Issues

· can this be solved with the FID only

· Or do we need an extension header and if so:

· Can an existing extension header be used, like an EXT_TIME header?

· do we need to define a new extension header?

4.2.2.4.5.6
Code Points

4.2.2.4.5.6.1
Description
The FDT Instance may be extended by a code point element. Code points may be used to signal specific information of the packet carrying the data with respect to the object.

4.2.2.4.5.6.2
Justification

This permits to signal application specific aspects associated to individual LCT packets.

4.2.2.4.5.6.3
Open Issues

· Details of the signalling in the FID.

· Examples for application specific signals

· Usage of code points in the existing specification.
4.2.2.4.5.7
Object expiration mechanism for FLUTE enhancements
FLUTE, as defined by RFC3926 and updated into RFC6726, defines file delivery over UDP using LCT and ALC building blocks from IETF. ALC and LCT define the transmission of “objects”, without any additional metadata characterizing the objects, using UDP. FLUTE adds the needed mechanism of associating HTTP like metadata such as a Content-Location and Content-Type to an LCT Transmission Object.
FLUTE defines the so-called File Delivery Table (FDT), which is basically a list containing the association of file metadata to the transport object identifier (TOI). The client maintains the FDT. The sender can add entries by using FDT Instances. Each FDT Instance can provide one or more file association entries. Each FDT Instance is sent as a Transmission Object. Each FDT instance is identified by the same TOI of value zero. Each FDT Instance is marked with a unique FDT Instance Id. The client can use the FDT Instance Id to identify repetitions of already received FDT Instance objects (which are all use the same TOI value of zero).

The mechanisms to add new file associations into the client FDT are clearly defined. The clean-up mechanism to remove file associations (when not needed anymore) is only vaguely defined through the FDT Instance expiry.

FLUTE RFC (RFC 3926 and 6726) contains a mandatory expire mechanism, which allows the sender to define a lifetime for an FDT Instance.

An example transmission is depicted below: The BM-SC partitions a file into a sequence of IP/UDP packets. The BM-SC also adds Repair packets, containing the FEC redundancy.

[image: image10.emf]Transmission

Reception of Client A

Packet Loss

Object successfully

Recovered

Reception of Client B

Packet Loss

Not sufficient data



Discard data or start file repair

Packet Loss

UE side

Start of Object Transmission End of Object Transmission

Source + FEC Packets t

t

t

BM

-

SC

FDT Instances are interleaved

Start of

new object reception

Start of

new object reception

Ignore packets

Figure 4.2.2-5: Example transmission of FLUTE object
The FLUTE FDT Instances, which provides the file metadata for the TOI, are interleaved with the rest of the transmission. The BM-SC starts at some time (marked as “Start of Object Transmission”). The “End of Object Transmission” is the time at which the BM-SC has sent all source and repair packets.

The reception of a new object starts when the client receives a first IP packet of the new transport object. The client can make the object available as file to the higher layers, when sufficient number of packets for object recovery is received. In the figure above, the reception of Client A is finished before all packets have been transmitted. So, the client is actively ignoring / discarding all subsequently received packets of that TOI.

Further, the client should have received the associated file metadata. The client may ignore all subsequent packets of that transmission object (as identified by the TOI), since it has already received the object.

In the example above, the packet losses of Client B are too high for the provided FEC redundancy. So, at some point in time, the client needs to discard all data of that TOI or start file repair (if provisioned) or make a partial file available (UE implementation option).

In order to simplify the network procedure for calculating the expiration time and determining a sufficiently precise transmission delay, a relative timestamp for object expiry is agreed. The solution may re-use the expected residual time (ERT) mechanism to convey the information for object expiry or may define a new extension header, depending on the selected LCT RFC.

Figure 4.2.2-6 depicts the construction as example: The BM-SC has done the file partitioning for the file in the first step and has determined the number of packet needed to carry the file. In the figure, the file plus the FEC overhead is partitioned into 400 IP packets. Due to the target bitrate, one packet needs to be sent every 40ms.

[image: image11.emf]Pkt #1

<ERT>

Payload

Hdr

Pkt #2

<ERT>

Payload

Hdr

Pkt #10

<ERT>

Payload

Hdr

Pkt #50

<ERT>

Payload

Hdr

Expiry

Start

Example:

Packet Transmission Interval: One Packet every 40ms

File Size: The File is partitioned into 400 packets

Timeout: 16sec +X after the last Packet. Example: 17sec

17000ms 16960ms 16640ms 15040ms

Value of new

Expire Header

Define the unit, 1ms vs, 40ms, …

Not every Packet an expiry.

Figure 4.2.2-6: Example for ERT usage
Constant inter-transmit intervals considered here for sake of simplicity. The inter-transmit interval may depend on the segment size, if a transmission duration should be the same for segment at variable segment sizes. For instance segments containing 1sec of media data may vary in size. So, some segments may be partitioned into 380 IP packets, while other segments require 420 IP Packets to be transmitted.

In the example above, the BM-SC needs 16sec to transmit the 400 packets with the 40ms interval (transmission duration excluded).The BM-SC determines the expiry of the segment as 16sec plus a margin of X sec. The BM-SC uses a safety margin of X= 1sec so, the expiry should be 17sec after the reception of the first packet. However, since the first packet might get lost, also subsequent packets should carry timeout information.

The value of the Expected Residual Time header (EXT_TIME with ERT option) is depicted for each packet. Note, the ERT as defined in RFC 5651 has a second precision, not a millisecond precision. The client uses the ERT to calculate the FDT Instance expiration time. The ERT is decrementing with each packet.

To reduce transmission overhead, the EXT_TIME header may be included with a fixed period larger 1. For instance, the EXT_TIME header may be added every 10th Packet.

Note, in case FLUTE FDT instances are interleaved within the FLUTE session e.g. for backward compatible, the object expiry time provided with the FLUTE packets needs to be consistent with the expiry in the FDT instances.
4.2.2.4.5.8
FLUTE packets of DASH Segments in different order
In deployments in which the DASH segments are produced in the same location as the BM-SC, media samples of a segment may be delivered prior to the availability of all samples in order to reduce end-to-end latency. This enables that FLUTE packets are delivered prior to the availability of the full segment, i.e. the delivery object. However, as segments include information about the contained samples in the beginning of the object, the delivery of the initial symbols of an object needs to be delayed as they can only be generated after the full segment is created. In the following a possible way how achieve this is explained.

The delivery of the FLUTE packets composing a DASH segment become technically possible while being compliant to the DASH specification. This may allow to reduce the overall delay for delivering DASH over MBMS. However, creation of DASH segments within the BM-SC is one very specific deployment option, and it is expected that most deployments would have DASH segmentation function not co-located with the BM-SC.

When a DASH media segment is in the 3GPP file format, it can be constructed out of order in the following way. As media samples (video and audio frames etc.) are available, they are appended at an estimated offset at the end of the segment, in what will become the body of the media-data (‘mdat’) box. The estimate needs to be as large as the maximum size of the data that will later be inserted to complete the segment. The size of the movie fragment box may depend on the number of samples provided in the DASH Segment.
In addition, the offset needs to exactly be mapped to an integer symbol boundary of the FLUTE delivery.

When the segment is to be completed, the earlier parts are then constructed and sent; those earlier parts include the segment-type (‘styp’) box, movie fragment (‘moof’) box, and the header of the media-data box. Padding may be needed to fill in to the estimated offset used.

In order to do this, the sender needs to:

· Ensure that the DASH segment is sent as a single source block

· Estimate the size of the earlier parts of the segment, to determine the offset to the first media samples.

· Select a suitable encoding symbol size considering boundary alignment with the start of the media data container

· Send the FDT Instance including FEC Object Transmission Information file partitioning information at the end, as the actual file size of the DASH segment is only known at DASH segment creation. Note that by doing this, this provides a justifiable exception to RFC 3926, section 3.2., to not send the FDT instance prior to sending of the described file within a file delivery session. Receivers should be aware that the FDT instance is received at the end or later and should collect packets associated to a TOI for which no FDT instance is received.
4.2.2.4.6
ALC RFC differences and analysis

4.2.2.4.6.1
Differences
The latest ALC RFC 5775 [5] indicates in section 8 the changes from RFC 3450 [4]:

1. Updated all references to the obsoleted RFC 2068 to RFC 2616.

2. Removed the 'Statement of Intent' from the introduction. (The Statement of Intent was meant to clarify the "Experimental" status of RFC 3450[4].)

3. Removed the 'Intellectual Property Issues' Section and replaced with a standard IPR Statement.

4. Removed material duplicated in LCT.

5. Updated references in this document to new versions of the LCT Building Block and the FEC Building Block, and aligned this document with changes in the new version of the FEC Building Block.

6. Split normative and informative references.

7. Material applicable in a general LCT context, not just for ALC has been moved to LCT.

8. The first bit of the "Protocol-Specific Indication" in the LCT Header is defined as a "Source Packet Indication". This is used in the case that an FEC Scheme defines two FEC Payload ID formats, one of which is for packets containing only source symbols that can be processed by receivers that do not support FEC Decoding.

9. Definition and IANA registration of the EXT_FTI LCT Header Extension.

4.2.2.4.6.2
Analysis

Out of the differences listed in section 4.2.2.4.6.1, items 2, 3, 6 are editorial in nature, so they are not analyzed here. Other items are analyzed one by one.

4.2.2.4.6.2.1
Item 1 – reference to RFC 2616

The old ALC RFC was referring to RFC 2068 HTTP 1.1 for one possible definition of the SDP HTTP/Mime Headers. RFC 2616 does obsolete RFC 2068.

This has no foreseen technical impacts in the context of MBMS.

4.2.2.4.6.2.2
Item 4 – Removed material duplicated in LCT

This item states that there were duplication of text in ALC protocol, compared to LCT, and the duplicated text in ALC was removed. This is a good approach to avoid duplication, and improve readability of the LCT and ALC RFCs. Looking at the new RFC, it is noted that LCT specific protocol operation text (e.g. section 4.2 in old ALC RFC 3450[4]) was indeed moved out of ALC.

This has no foreseen technical impacts in the context of MBMS.

4.2.2.4.6.2.3
Item 5 – Updated references to new building blocks

The new ALC RFC is referencing the new LCT Building Block RFC 5651, as well as the new FEC Building Block RFC 5052.

For LCT, we have agreed that we should refer to the most recent LCT RFC 5651.

For the FEC Building Block RFC, the current TS 26.346 Release 9 onwards refers to that latest FEC Building Block RFC 5052.
The most recent ALC RFC 5775[5] is consistent with existing TS 26.346[2], with respect to referring to the same FEC Building Block RFC 5052.

This has no foreseen technical impacts in the context of MBMS.

4.2.2.4.6.2.4
Item 7 – LCT material moved from ALC RFC to new LCT RFC

Though it is not exactly known which part of the ALC RFC was moved to the LCT RCF, this item suggests that since we have agreed to the new LCT RFC, we should go with the new ALC RFC, to avoid requirement duplication if we were to use the new LCT RFC with the old ALC.

This has no foreseen technical impacts in the context of MBMS.

4.2.2.4.6.2.5
Item 8 - The first bit of the "Protocol-Specific Indication" in the LCT Header is defined as a "Source Packet Indication"

With the new LCT RFC, there are 2 reserved bits in the header that have been converted to a 2-bit indicator called PSI. The usage of the PSI is left to the protocol instantiation, such as ALC in our case. The new RFC ALC specifies that one of the PSI bit shall still be set to 0 and ignored by the receiver, and is specifying the usage of the other bit as follows:

PSI bit X - Source Packet Indicator (SPI)
The Source Packet Indicator is used with systematic FEC Schemes which define a different FEC Payload ID format for packets containing only source data compared to the FEC Payload ID format for packets containing repair data. For such FEC Schemes, the SPI MUST be set to 1 when the FEC Payload ID format for packets containing only source data is used, and the SPI MUST be set to zero when the FEC Payload ID for packets containing repair data is used. In the case of FEC Schemes that define only a single FEC Payload ID format, the SPI MUST be set to zero by the sender and MUST be ignored by the receiver.
Setting of this bit makes it easier for the receiver to process the receive packets, knowing from the indicator whether the packet contains source data, or repair data.

In terms of backward compatibility, 2 scenarios are of interest:

1) Pre Rel-12 UE operating in a Rel-12 Network with new ALC RFC

2) Rel-12 UE with the new ALC RFC implemented, and operating in a pre-Rel12 network

For scenario 1), a UE not implementing the new ALC RFC, would ignore the 2-bit PSI all together. So settings of the SPI would be ignored by that UE, and thus the UE operates and receives ALC packet without this new improvements, but is still capable of decoding its content.

For scenario 2), a Rel-12 UE implementing the new ALC RFC expects and reads the SPI. However, since the network has not yet being upgraded, the network is considering that bit as reserved. According to the old LCT RFC 3451, it is specified that:

 Reserved (r): 2 bits

Reserved for future use. A sender MUST set these bits to zero and a receiver MUST ignore these bits.
Thus a Rel-12 UE implementing the new ALC RFC would always see a SPI indicated as 0, indicating FEC Payload ID for packets containing repair data, and that even if it contains source data.

4.2.2.4.6.2.6
EXT_FTI LCT Header Extension registration in IANA

Both the old and new ALC RFC had defined EXT_FTI LCT Header, as an ALC specific extension, coded as 64. The only difference between the old and new RFC is that the EXT_FTI Header Extension is now registered in IANA, thus preventing collision with other future header extension that may be defined.

This has no foreseen technical impacts in the context of MBMS.

Moreover, it is foreseen as an advantage to have this extension registered in IANA to prevent future collision of extension headers, which would come automatically if the new ALC is agreed for usage in MBMS.
4.2.2.5
Assumptions
4.2.2.5.1
Source Data Properties
· A single data file without any specific properties. This data file creates a unit and is only accessible as a whole. Examples are gzipped files, etc. The file may be of different size between several kBytes up to GBytes.

· A collection of data files that are individually accessible, but are only useful together, e.g. objects of a web page, etc.
· A large multimedia file that is available on the BMSC as whole and is distributed without any real-time constraints. However, the consumption at the receiver may only be partial, i.e. access to only a subset done.
· In the latter four cases, in addition to each timely connected segments or subsegments/fragments, there may also be multiple media components that are distributed jointly and played out jointly.

· Mixes of the above, for example non-realtime and real-time data.
4.2.2.5.2
Upgrade to RFC5651
If the upgrade to RFC5651 is deemed impossible for non-understandable reasons, then as an alternative the following is proposed:

· Maintain RFC 3451 in TS26.346[2].

· Define extension headers in 3GPP or IETF based on RFC 5651

· Use any extension headers available for RFC5651 in context of RFC 3451 in 3GPP
4.2.2.6
Solution
4.2.3
Datacasting Services

4.2.3.1
Description
4.2.3.1.1
Use Case #1 – Sports Scores and Statistics
A mobile network operator offers NBA basketball scores and statistics information as an MBMS download delivery service. During the NBA season between October and April, and across evening hours and weekend afternoons, files containing live scores and statistical information on players and teams are broadcast on this service. The size of a given file ranges from 10 kB to 25 kB, with average size of 20 kB. Based on the contractual agreement between the MBMS service provider and the NBA (the content owner) to support fast service acquisition, regardless of when the subscriber chooses to monitor the service, the latest version of service files is transmitted repeatedly, back-to-back, on the allocated MBMS bearer. Files are nominally updated every 120 seconds, although dynamic changes may occur at any time, for example to provide real-time announcement of final scores of games as these occur. Different recommendations on the periodicity for service monitoring, or monitoring period, depending on the user type, are indicated to subscriber devices, towards achieving a balance between anticipated user interest in just-in-time information and efficient battery consumption. For a typical user, the recommended monitoring period might be set to 5 minutes, placing greater emphasis on battery efficiency. For basketball fans who wish to find out final scores or other highlight information as these occur, the recommended monitoring period might be set to 30 seconds, to better enable close-to-live reception of information.
A UE which joins the service less frequently than once every nominal update interval (120 seconds) will miss any real-time updates that may occur within such intervals, as well as changes at those nominal update times when it’s not monitoring the service. However, whenever it joins the service, it will always obtain the latest service snapshot upon reception, such as current scores of ongoing games, updated player and team statistics provided at periodic intervals, previous day final scores, and league standings information. A UE which monitors the service more frequently than the nominal update period can detect final scores closer to real time, as well as more timely reception of asynchronous compilation of statistical information on players and teams.
4.2.3.1.2
Use Case #2 –USD Delivery
MBMS User Service Announcement, a.k.a. USD, is delivered as a download delivery service on a dedicated FLUTE session. While the contents of the USD do not pertain to a MBMS User Service, USD delivery over an MBMS bearer is a form of Datacasting service, for use by the USD client application. Assume that one or more USD fragments are expected to be updated several times a day, for example, every 6 hours which corresponds to the difference between the validFrom and validUntil attributes of the associated MBMS metadata envelope(s). More frequent changes may be necessary to accommodate events for which the actual end time cannot be known in advance. For example, should a live football game go into overtime, the nominal Schedule Description fragment might need to be dynamically updated one or more times to convey temporal extension of the game. As another example, assume that several minutes after the nominal update of existing USD fragments, a new, long-running User Service is added, which requires the addition of the corresponding new USD fragments. As in the previous use case, different monitoring period recommendations are provided to UEs. A mobile phone-based UE (UE1) is recommended to monitor the service announcement session every 15 minutes, whereas for an MBMS-equipped utility meter (UE2), the recommended monitoring period is every 6 hours. In the event that signaling of the newly-added User Service occurs a few minutes after the nominal update time, a UE which abides by the recommended monitoring period for UE1 (i.e. 15 minutes) would miss those newly added USD fragments. However, at the next expected update of the USD fragments, the service announcement information will include that previous update. In other words, USD files contain cumulative service information, thereby ensuring that each new version reflects up-to-date status of the carried MBMS User Services.
4.2.3.2
Recommended Requirements & Evaluation Criteria

Derived requirements from the above use cases are listed below.

· The service provider can inform UEs of different recommended durations of monitoring period.
· The current version of the Datacasting service content file can be transmitted repeatedly on the FLUTE session allocated for the service, in back-to-back or in scheduled and periodic form of delivery, during the entire update interval.
· If the network performs scheduled and periodic Datacasting transmission, the network will inform the UE of the individual session activity times and the nominal periodicity of session recurrences.

· For scheduled and periodic Datacasting, a UE that tunes in to the service right after the end of a session among a recurring series of sessions will be able to acquire contents on the service sooner than having to wait until the next scheduled session occurrence.
· Impact on network-side administrative overhead, USD size, and UE processing complexity as a result of Datacasting service ought to be minimized.
4.2.3.3
Gap Analysis & Evaluation

4.2.3.4
Assumptions
The following working assumption pertaining to Datacasting Services:

· It is important for UEs to be able to immediately acquire the current version of the Datacasting service file whenever it joins the service. Unicast may be optionally used to acquire the very first data set.
· Radio resources are scarce resources. Minimal acquisition time needs to be traded with the needed capacity and the cost of the capacity.
· There is a certain predictable periodicity at which files are updated, with the corresponding time interval referred to as the (nominal) update interval. This is depicted as in Fig. 4.2.3-1 and 4.2.3-2:

 [image: image12.emf]t

= duration of Update Interval (UI)

time

t

t t

UI_(N-1) UI_(N)

UI_(N+1)

Nominal update times of service files

t

(N-1)

t

(N)

t

(N+1)

Figure 4.2.3-1 – Update Interval

[image: image13]
Figure 4.2.3-2 – Scheduled Datacasting
· Although file updates usually occur at the start of update intervals, dynamic file changes are permitted at any time.

· Any additional file update which occur within an update interval may be included or obsoleted by the next update which may be another intervening file update, or one that occur at the start of the next update interval, depending on the application requirements and operator deployment requirements.

· It may be important for certain applications that each received update represents the cumulative changes over a certain time period. For example, considering Fig. 4.2.3-1, each of the file updates that occur at the start of update intervals N and N+1 (i.e. at the times t(N) and t(N+1)), and which may occur within update interval N will convey the cumulative changes between the time interval t(N) and t(N+1). Example application: USD reception.

· If it’s not important for the application to obtain file updates in a cumulative manner, then any file update, occurring either at the start of an update interval, or within an update interval, will obsolete its previous update. Example application: Live sports score and statistics updates.
· Operators / Content providers may optimize the needed resources for the service (cost optimization). Therefore the solution should allow for resource efficient carousel deployment, e.g. by synchronizing UEs to the actual transmission.
4.2.3.5
Solution
The proposed solution involves a modification to the Schedule fragment. Under the sessionSchedule, we propose to add an r12:recurrence element, which will signal the nominal update interval and delivery mode selection between back-to-back and scheduled-and-periodic Datacasting delivery modes. Figures 4.2.3-3 and 4.2.3-4 provide a design view of the modifications proposed to the Schedule Description fragment schema.

[image: image14]
Figure 4.2.3-3 – Design view of the serviceScheduleType in the Schedule Description schema

[image: image15]
Figure 4.2.3-4 – New Release 12 extension of the Schedule Description schema in support Datacasting
Back-to-back Datacasting mode is indicated through the mode attribute set to true.

Scheduled and periodic delivery of Datacasting is indicated through the mode attribute set to false.

The updateInterval element indicates the nominal time interval offile updates for the associated Datacasting service. In the case of scheduled-and-periodic datacasting, the start time in UTC of each session occurrence may be determined relative to the sessionSchedule.start element.

For the case of scheduled and periodic Datacasting, a UE that has tuned in to a Datacasting service after the end of a given session among a recurring series of sessions may encounter a significant delay before it can initially acquire file contents on that service, by having to wait for the next session occurrence. A solution for this might be to allow the UE to perform a unicast request of the most recently transmitted Datacasting content, by using file repair request based solely on Schedule Description fragment information, according to the MI-EMO enhancement called “File Repair without FDT”, see clause 4.2.4 of TR 26.848.
4.2.4
File Repair without FDT
4.2.4.1
Description
4.2.4.1.1
Use Case #1 – Device is tuned to another frequency
Sam is subscribed to a real-time “BBA Live” basketball MBMS video service which allows her to watch live basketball games on her device. The real-time service is broadcast over MBMS using frequency band 1. Sam’s mobile device is also configured to receive software updates via an MBMS Firmware OTA service that is broadcast over frequency band 2. Sam has been watching a live BBA game on her device during the time that a firmware download for her device has been scheduled for delivery over the MBMS FOTA service. Having missed the broadcast delivery window for the file while Sam was watching the game, the device retrieves the software update from a file repair server.
4.2.4.1.2
Use Case #2 –Device is powered-off
Tom is a news junkie who is subscribed to the “CMN” news service which periodically broadcasts news articles throughout the day. Tom regularly commutes between Boston and San Diego for work every week and is diligent about placing his phone in “airplane mode” when he flies. During his flights Tom’s phone is unable to download the news articles that are broadcast while he is in the air. When Tom lands he disables “airplane mode” and his device downloads the missing news articles from the file repair server so that Tom can start catching up on his news feed.
4.2.4.1.3
Use Case #3 –Device is out of MBMS coverage but in good unicast coverage
Beth is a postwoman who delivers mail in some areas without eMBMS coverage (MBMS signal is weak). Her GPS relies on broadcast traffic updates for route selection. While in the areas with low coverage, the device downloads missing traffic updates from the file repair server. Beth’s GPS always selects the best travel routes.
4.2.4.2
Recommended Requirements & Evaluation Criteria
Derived requirements from the above use cases are listed below.

· A UE that is unable to receive a file and its FDT during the scheduled broadcast window is able to fully recover the file from the repair server.

· The UE is able to make the request for the file from symbol-based repair servers and conventional HTTP servers.

· It is desirable for the UE to be able to determine the MD5 of the latest version of the file of interest.

· The UE is able to determine the list of files in a session that do not have a file schedule.

4.2.4.3
Gap Analysis & Evaluation
4.2.4.3.1
Existing Technologies
Clause 7.4 of 3GPP TS 26.346[2] defines OMA Push procedures that a terminal can use to download files of interest from an MBMS Download service when the terminal is not in broadcast coverage. The procedures for using the specified OMA Push mechanism are as follows:

· When the terminal detects that it is outside of broadcast coverage it registers with the BM-SC for an OMA Push of the FDTs for files belonging to the user service. If the terminal is subscribed to multiple user services then it registers for an OMA Push of FDTs for all these services.

· If a file for any of the registered services is sent over the MBMS bearer the BM-SC sends the corresponding FDT to the terminal via an OMA Push.

· Upon receipt of the FDT, the terminal uses a unicast bearer to download the corresponding file from the repair server.

· When the terminal detects that it has entered broadcast coverage it should then de-register from receiving FDTs via OMA Push. This is needed to avoid wasting unicast bearer capacity with the unnecessary Push of FDTs to the terminal.
4.2.4.3.2
Consequences of Existing Technologies
The following clauses analyze the applicability of the OMA Push procedures to the above agreed use cases.

· OMA PUSH for Use Case #1 – Device is tuned to another frequency

Using the above described OMA Push procedures for this use case would cause the terminal to register and de-register each time the user tuned in and out of a higher priority program on another frequency band. This process can become frequent when the user is channel surfing between frequency bands. Hysteresis can be applied to reduce the number registrations and de-registrations but the amount of hysteresis has to be tempered against the probability that the terminal will miss a Push or receive an unnecessary Push of the FDTs. Furthermore, if the terminal is subscribed to multiple services being sent on the frequency it is tuning away from, the terminal has to register and de-register for all these services.

Result: Using the OMA Push procedures for this use case can cause frequent and/or multiple registrations and de-registrations by the terminal.

· OMA PUSH for Use Case #2 – Device is powered-off or in airplane mode

When a device is powered off or is set to airplane mode it does not have the opportunity to register for an OMA Push of the FDTs. If the file(s) of interest is/are broadcast while the device’s radio is off the device will not be pushed the FDT(s) of the file(s) when the device returns to coverage. The result is that the device will not be able to retrieve the file(s) of interest.

Result: If the terminal relies on the OMA Push procedures for this use case then the device does not receive the FDTs and is unable to retrieve the missing files of interest.

· OMA PUSH for Use Case #3 – Device is out of MBMS coverage but in good unicast coverage

To avoid unnecessary push of the FDT the terminal de-registers when it can access the MBMS broadcast bearer. As the terminal travels through areas where broadcast coverage is spotty, the terminal registers and de-registers for the OMA Push. Hysteresis can be applied to reduce the number registrations and de-registrations but again, the amount of hysteresis has to be tempered against the probability that the terminal will miss a Push or receive an unnecessary Push of the FDT. If the user is subscribed to multiple services then the terminal has to register and de-register for all of these services.

Result: Using the OMA Push procedures for this use case can cause frequent and/or multiple registrations and de-registrations by the terminal.

4.2.4.3.3
Summary of Gap Analysis
The key limitation of the OMA Push procedure is that to enable efficient delivery of files or FDTs, the terminal has to notify the network when the terminal can and cannot receive broadcasts. This procedure does not sufficiently address all of the above use cases as it cannot deliver the FDTs or files in cases where the terminal is unable to register for the OMA Push. Furthermore, the procedure introduces additional signalling overhead in other use cases.

One other consideration is that the OMA Push mechanism is an optional procedure that may not be deployed in some networks. Providing a simpler alternative for delivering the FDT info could be useful in these scenarios.

It is recommended that other mechanisms be considered to address the above use cases that can reliably deliver the FDT or file of interest to the terminal and do not introduce any additional signalling overhead

4.2.4.4
Assumptions
The following working assumptions are made for this use case:
· The UE is able to obtain the Associated Procedure Description and the Schedule Description Fragment for the file that the UE is interested in downloading.

· The Schedule Description Fragment has a File Schedule for the file of interest and/or a Session Schedule for the session in which the file of interest is broadcast.

· If the File Schedule for the file of interest is present it may or may not have the MD5 of the file.

4.2.4.5
Solution
The Schedule Description specified in 3GPP TS 26.346[2] enables the UE to determine the following information from the Session Schedule and File Schedule:

· The stop/end time after which a file of interest is no longer going to be broadcast

· The fileURI and fileMD5 of the file of interest

With the above information and the Associated Procedure Description, the UE can determine when and where to retrieve a file which it was unable to receive over the broadcast bearer. By making use of information already available to the UE, this mechanism does not require use of OMA Push procedures nor any additional signalling. This also supports reliable delivery of the relevant FDT information in all of the use cases identified in clause 2.

Minimum Required Changes

Even though the relevant information is made available to the UE in the Schedule Description, the current procedures in 3GPP TS 26.346[2] do not specify that the UE can be triggered to initiate a file repair/download when reaching the stop time of the session schedule or the end time of the file schedule. These additional triggering conditions would need to be clarified in the specification.

Further Enhancements

In the following cases the UE does not already have the information needed to download the missing file from the file repair server:

· When the File Schedule is not provided in the Schedule Description fragment

· The file of interest is to be retrieved from a conventional HTTP-based repair server

The above cases can be addressed by adding a URL in the Session Schedule that points to an FDT for the file(s) belonging to the session. This is illustrated in figure 4.2.4-1 below. Once the UE determines that it has missed the broadcast of the file(s) of interest the UE can retrieve the FDT from the URL and then download the file(s) from the repair server.

[image: image1.jpg]

[image: image16.png]B atributes.

reoccurenceStartStopType

[image: image29.png]I

Start time of
first occurrence (UTC)

Figure 4.2.4-1 – Adding URI of FDT to sessionSchedule
The solution described above can also be used by a terminal to make a fast acquisition of datacasting information when the terminal tunes-in to a scheduled datacasting session. If the terminal tunes-in some time before the next scheduled broadcast it can use the FDT referenced in the sessionSchedule to quickly download the initial datacasting information.
4.2.5
Zapping Portal Services
4.2.5.1
Description
4.2.5.1.1
Use Case #1 –Fast Zap Video
A mobile network operator provides an MBMS streaming service whereby fast zapping between the offered channels is enabled. The user is able to browse the available channels while receiving the live video and audio content of the currently selected channel, without any perceivable delays when switching between each channel.
4.2.5.1.2
Use Case #2 –Mosaic Service
A mobile network operator offers a “Mosaic channel service”, as an MBMS streaming service, as well as linear services like broadcast TV. A “mosaic channel” provides a mosaic of small video images that offers convenient access to each of the streaming services.
When a user taps a point on the mosaic screen, the pointed (small) video is highlighted and the associated audio is presented.
Alternatively, when the mosaic channel application starts, the top-left mosaic element is highlighted by default and its associated audio is presented. When the user navigates among the mosaic elements, the respective video element is highlighted and its associated audio is presented instead.

One further use case variant is when the mosaic elements are different views of the same live event. In this case the audio stream could be the same for all of the mosaic video elements.
When the user flicks the screen, another mosaic channel appears. Mosaic channels can be provided as groups of thematically categorised channels, for example one mosaic containing only sports channels, the next containing only news channels, etc. In this way the user’s search and selection of a channel to view can be aided.
When the user double-taps a point on the mosaic screen, the pointed service is selected and the user exits the mosaic service. Then the video is presented on the full screen together with the associated audio.

4.2.5.2
Recommended Requirements & Evaluation Criteria
The following general requirements are considered:

· The service is supported through MBMS broadcast

· The service may also be supported through unicast or enhanced/extended by unicast.
· It should be possible to enable a solution based on DASH

· The solution enables lip-synced presentation of thumbnail video and audio

· The solution enables the continued presentation of audio while switching/transitioning video from thumbnail to main
Detailed presentation layout is out-of-scope of the EMO work item, but presentation layer aspects may be considered in 3GPP.
The following requirements pertain to the server-generated mosaic approach:
· The solution might rely on a presentation layer that enables the service provider to realise the navigation of the component video streams embedded within a single video stream that is provided to the UE.
The following requirements pertain to the UE-generated mosaic approach:

· All components of the mosaic service are carried in the same broadcast bearer.
· The delivery of the different service components is done such that is power and network-efficient.

· The UE implementation supports decoding of multiple thumbnail video streams. It might make sense to determine what is the reasonable assumption of how many streams can be decoded and presented concurrently, also to allow UE implementations to work around the limitation in concurrent stream decoding and presentation by way of concessions, e.g. displaying a less frequently updated, or static still picture for some component streams.
4.2.5.2.1
Fast Zap Video

One possible approach to enabling zapping-optimized video streams is to constrain the “fast zap video” stream as follows;

· Short RAP time period, and RAPs shall be able to be signalled to the UE.

· Small DASH segment size, to be switchable frequently.
With this approach it may be appropriate for the UE to be able to;
· find “fast zap video” streams and to consume those streams through the MBMS broadcast/multicast bearer.

· switch to the original channel stream with which the fast zap video stream is associated, when the end user selects the channel to watch.

4.2.5.2.2
Mosaic Service
In principle there are two distinct approaches to facilitate the mosaic service: server-generated mosaic, and UE-generated mosaic.

In both approaches,the UE is able to;
· find mosaic channel stream and to consume that stream through MBMS bearer.

· switch between component audio streams as the active/highlighted thumbnail video stream is changed.
· resolve the source of original channel stream to consume when the user selects one of the video thumbnails.
· Consume preferred mosaic channel over MBMS bearer.
The two approaches are described in the following sub-sections.

4.2.5.2.2.1
Server-generated Mosaic
In this approach the server (BM-SC or external entity) provides the mosaic video stream by encoding a single video stream that contains miniature versions of each service’s video that is to appear in the mosaic, e.g. a 2x2 mosaic as depicted in figure 4.2.5-1. This video stream is embedded in an application whereby the navigable elements of the user interface include four virtual screen selections around each of the mosaic video components. The application logic translates between the highlighted or selected user interface element and the underlying video component, so that the appropriate component of the mosaic is presented, along with its associated audio, when selected by the user.

[image: image17.png]Supplementary
Information
Panel for
Mosaic Element 1

Live ticker for mosaic element

Figure 4.2.5-1: Example 2x2 mosaic application screen

The server-generated mosaic relieves the UE of the burden of decoding multiple video components simultaneously, since this capability might not be common among UE implementations so far.

4.2.5.2.2.2
UE-generated Mosaic
In this approach the server (BM-SC or external entity) provides reduced spatial resolution versions of each available service’s video. The UE offers a set of these on the screen by decoding the miniature versions, e.g. four of them in a 2x2 mosaic, and presenting them on the screen within an application that enables the user to select any one of them for presentation. Only the audio from the highlighted service is presented.

This approach enables more customisation of the mosaic at the UE but it requires that the UE is capable of decoding and presenting multiple component video streams simultaneously.

An alternative variant for UEs that are not capable of decoding and presenting multiple video streams concurrently is where the UE decodes and presents only the highlighted mosaic video component and the other mosaic elements contain either an icon and/or a decoded still picture from the respective service. As the user navigates among the mosaic elements, decoding and presentation only of the highlighted element resumes.

4.2.5.3
Gap Analysis & Evaluation
4.2.5.3.1
Fast Zap Video
· Signalling may need to be defined to signal that the service streams are optimized for the fast zapping use case.
4.2.5.3.2
Mosaic Service
· Signalling may need to be defined to signal that the service stream is for mosaic channel.
· No means in MPD [which shall reference MPEG-DASH or 3GPP-DASH] is defined:
· Signal that the component audio streams are associated with the main video stream in the mosaic service, and that those audio streams are switchable.
· Signal the case when a single audio stream is associated with all component video streams (multi-view event use case).

· Indicate navigation anchors to resolve associated original streaming services being converted to configure main mosaic video stream.

As one possible solution for a single USD, the mosaic channel service can be supported by the following means with existing TS26.247[3] and TS26.346[2] specifications:

· Associate 1 MPD with each "channel". The MPD contains at least the following:

· one Adaptation Set for the Thumbnail video

· one Adaptation Set for the Main Video

· one Adaptation Set for the Audio

· Note that the Adaptation Set may contain multiple Representations and some of them may be available through unicast.

· Provide a DASH over MBMS in the USD that includes a reference to the "TV channel" MPD.

· Deliver all thumbnails videos in one FLUTE session that is mapped to a TMGI
· Enable the delivery of the each of the main video/audio in a different FLUTE session/TMGI than the FLUTE session carrying the thumbnails.
· Enable the delivery of certain components of unicast
Based on the above solution outline, following are additional procedures may be considered to support the mosaic channel service:

· Specify procedures for the distribution of a TV channel over multiple FLUTE sessions/TMGIs.
· Specify details if, and how, MPD updates are delivered
The above considerations for mosaic service are relevant for MBMS.

Different requirements, not directly applicable to MBMS, arise for each of the possible mosaic service variants:

· For the server-generated mosaic service, presentation layer functionality needs to be considered in order to be able to present and navigate the mosaic components on the UE.

· For the UE-generated mosaic.
· The service provider should provide the thumbnail version of the video component of each service, as well as the full-resolution version.
· The UE capability as regards the concurrent decoding and presentation of multiple video components needs to be considered.

4.2.5.4
Assumptions
4.2.5.5
Solution
4.2.6
Joint object protection

4.2.6.1
Description
4.2.6.1.1
Use Case
A live event is expected to generate a lot of interest among mobile users, so the mobile operator decides to offer it via MBMS. To reduce content preparation overhead, the service is offered as is over MBMS, i.e. using DASH. The content was prepared with separate Adaptation Sets and Representations for each media component (Audio, Video, Text, …). The transmission power is required to be used efficiently in the SFN area, which results in fair to poor reception quality at some spots of the SFN area.

The media data is protected against channel errors and packet losses using FEC. The user is able to consume the service at acceptable quality for all media components and with reasonable start up delay.

4.2.6.2
Recommended Requirements & Evaluation Criteria
The following requirements apply:

· The solution should minimize the delay to recover and acquire the media content that is protected by FEC from the time the loss is detected until the time the recovered data is made available to the application

· The solution should provide improved error resilience that results in equal protection for all media components of the content

4.2.6.3
Gap Analysis & Evaluation

4.2.6.4
Assumptions
The following working assumptions are extracted:

· The solution should be based on FEC

· The importance of all components of the media presentation should be the same

· The FEC protection period should be aligned among the different components of the media presentation so not to jeopardize media synchronization

4.2.6.5
Solution
4.2.7
Multiple FLUTE Sessions for an MBMS User Service
4.2.7.1
Use Case Descriptions
4.2.7.1.1
Multiple Media Streams of a DASH-over-MBMS service

A mobile network operator offers a DASH-over-MBMS service comprising multiple media streams. One such service is a live sports event for which multiple camera angle views are provided from which the user may choose to watch as an inset window along with the main display of the game. Alternatively, the user may select a specific camera angle view as the primary display. Another DASH-over-MBMS service delivers popular TV episodes, for which different audio languages are offered. The user is able to choose the preferred audio language track for play-out along with the video stream. In a third service offering, two different resolution quality versions of the same program are offered, to cater to different user devices – for example a smartphone with a smaller display vs. a tablet or PC with larger screen size.

4.2.7.1.2
Hybrid Service Comprising Streaming and Auxiliary File Contents

A mobile network operator offers hybrid MBMS services which contain a real-time audio/video stream along with one or more auxiliary file delivery components. The first service offering is a live car race which is associated with two auxiliary file delivery components. The first file delivery component is synchronized race statistics providing information on the leader including his/her instantaneous and average speed, and current race standings. The second file component is the delivery of targeted advertisements associated with location filtering criteria. The second service offering is that of a live music concert associated with information on the performers and upcoming tour calendar and related information.

4.2.7.2
Recommended Requirements & Evaluation Criteria
The following are recommended requirements in support of the agreed use cases and assumptions on multiple FLUTE sessions per service.

· The service provider is able to provision and operate MBMS user services in which the multiple media and/or content components of a given service are delivered on different FLUTE sessions as defined by separate Session Description instances which are in turn referenced by deliveryMethod instances.

· The MBMS receiver is able to unambiguously determine the type of media component or content item (streaming audio, streaming video, timed text, advertisements, Datacasting files, etc.) carried in each of the FLUTE sessions employed in the delivery of the overall MBMS user service.
· The delivery schedule of a particular media component or content item, in association with the FLUTE session over which it is carried, can be provisioned independently of the delivery schedule of any other media component/content item.
· The delivery schedule of any given media component or content item, in association with the FLUTE session over which it is carried, can be unambiguously determined by the MBMS receiver.
· It is possible for the service operator to unambiguously assign, and the MBMS receiver to unambiguously identify, one or more FLUTE sessions for carryinginband USD metadata fragment updates.
· The service provider is able to specify service area dependent availability of one or more individual media components of the MBMS service.
· It is possible for each Reception Report message from the UE to explicitly identify the FLUTE session delivering the content to which the report pertains.
4.2.7.3
Gap Analysis & Evaluation
The description below cites some deficiencies in the existing TS 26.346[2] for supporting the recommended requirements listed in Section 4.2.7.2.

4.2.7.3.1
Application Identification

It is not possible using the existing USD schema, for example the SDP, to unambiguously announce/identify the specific content type carried on a given transport session. For example, different file contents might include targeted ads and game statistics (the latter representing Datacasting file contents delivered in conjunction with a live streaming sports event). While these might be generically identified as application-specific content by assigning the media line (“m=”) in the SDP with the value ‘application’, that is insufficient, and a more fine-grain means for identifying different file contents is desirable.
4.2.7.3.2
Schedule to Session Mapping

The current Schedule fragment does not provide sufficient capability to ensure that unambiguous binding, between the indicated session schedules and the multiple FLUTE sessions over which the contents affiliated to those schedules are transmitted, can always be attained. For example, in download delivery services whereby only the session schedule for each FLUTE session is present in the Schedule Description fragment, (i.e. fileSchedule is not instantiated), the Schedule Description schema does not identify the Session Description associated with each instance of sessionSchedule. This is illustrated by the content model of the Schedule Description fragment in Fig. 4.2.7-1 below.

[image: image30.png][&] (recurrenceType)

@ mode boolean
€8 anyAttribute
[e] updatelnterval duration

7] any 0.7]

[image: image31.png]" [GemviceScheduleType) | &) reoccurenceStartStopType
@ serviceld anyURI T anyAttribute
@ serviceClass string [¢] start dateTime
9 anyAttribute] stop dateTime
[€] sessionSchedule [0.7] reoccurenceStartStopType [€] reoccurencePattern [0.1] string
[€] sessionScheduleOverride [0..*] (sessionScheduleOverrideType) [€] numberOfTimes [0.1] unsignedint
[fileSchedule [0.7] (fileScheduleType) [€] reoccurenceStopTime [0.1] dateTime
FE any 0.7 o [€] index [0.1] unsignedint

4] receptionFiltering [0.1] (receptionFilteringType)
deazer

1#] recurrence (recurrenceType)

—

%) delimiter

2 any 0.7
| [(sessionScheduleOverrideType)

@® index unsignednt

@ cancelled boolean

[€] start dateTime
5 €] stop dateTime

[&] (fileScheduleType)

& sessionld string

£ fileMD5 base64Binary

B anyAttribute

[¢] fileURI (fileURIType)

[€] deliverylnfo [0.7] (deliverylnfoType)
w4 receptionFiltering [0.1] (receptionFilteringType)

%) delimiter byte

A€ any 10.7]

[image: image18.png]scheduleDescriptionType

reoccurenceStartstopType

Figure 4.2.7-1 – Schedule Description schema
4.2.7.3.3
Service Area Specific Availability of Media Components
In the current USD, the availabilityInfo element enables the designation of RF frequency/frequencies and associated service area(s) for which a given MBMS User Service is available for reception. The serviceArea element under infoBinding, if present, indicates the one or more service areas in which the entire MBMS User Service (i.e. all of its content components) is available for reception. In contrast, it is desired for the Rel-12 service area dependence feature to apply to individual content components of the MBMS User Service, not the entirety of contents belonging to that service. The service area specific components are assumed to be available in the same frequency. A means already exists via the USD to signal the available service area(s) of individual streaming media components of a DASH-over-MBMS service carried over separate FLUTE sessions. However, it is not possible to define the available service area(s) availability of individual non-real-time (NRT) file content items of an MBMS user service, each carried on a separate FLUTE session.
4.2.7.3.4
Inband USD Metadata Fragment Delivery

Currently, inband delivery of certain USD metadata fragments (Session Description, Associated Delivery Procedure Description, Schedule Description and Filter Description) is specified in TS 26.346[2]. However, it is not possible to designate a specific transport session (one or more such FLUTE sessions) to carry either all or a portion of the inband metadata fragment updates. A downside consequence of the current specification is that inband metadata fragment updates must be carried in all of the FLUTE sessions. Doing so is undesirable in the consumed bandwidth for inband delivery of metadata fragment updates, or may impose practical limitation on the frequency of metadata updating on each session.
4.2.7.3.5
Unambiguous Identification of FLUTE Session Associated with Reception Report
The XML syntax of a Reception Report message, also referred to as a reception report request, as currently defined in TS 26.346[2] is shown in Figure 4.2.7-2 below.

[image: image19.png][receptionreportrype 1

receptionAcknowledgement

o [raciType

o [receptionReporiType

Figure 4.2.7-2 – Reception Report message XML syntax as currently defined in TS 26.346

For an MBMS User Service whose content components are delivered on separate FLUTE sessions, reception reporting may be required for a multiplicity of those sessions, in accordance to an Associated Delivery Procedure Description. As seen in Fig. 1, when the receptionAcknowledgement child element of receptionReport is present, the Reception Report message is the "RAck" type, conveying successful file reception information. When the statisticalReport child element of receptionReport is present, the Reception Report message is the "StaR" type, providing statistical reception information. The RAck report type does not contain explicit identification of the FLUTE session delivering the content to which the report pertains. Although the structure of a statistical report includes an optional sessionId attribute (under medialevel_qoeMetrics), the use of media-level QoE metrics is only applicable to statistical reporting of RTP streaming, not for a DASH-over-MBMS service. In order to use medialevel_qoeMetrics@sessionId as identifier of the FLUTE session, it would be necessary to change the implied semantics in TS 26.346[2] for the usage of media-level QoE metrics in a StaR type of reception report.
4.2.7.3.6
Multiple MBMS Bearers Consideration

Assume that the following conditions are applicable:

· The network distributes the content components of a MBMS User Service using multiple FLUTE sessions over multiple MBMS bearers, and

· Those content components required for the consumption of a given MBMS application service are delivered on separate MBMS bearers.

In that situation, users of MBMS UEs which only support a single MBMS bearer at a time and therefore could only acquire a subset of the contents of that MBMS application service would be subject to a degraded user experience. The advantage of the multiple FLUTE sessions over multiple MBMS bearers feature cannot be fully utilized by such UEs.

The potential for user service degradation, due to multiple FLUTE sessions carried over multiple MBMS bearers, should be taken into consideration.

4.2.7.4
Assumptions
The following list of working assumptions is associated with the use cases described in Section 4.2.7.1.
· The network operator may wish to optimize or increase the flexibility of the delivery of an MBMS service containing multiple streaming media or discrete file data component. Reasons may include, but are not limited to: a) allowing different data rates, and FEC parameters to be specified for the delivery of each content component, b) configuration of file repair or reception reporting parameters, or carousel repetition rate to be provisioned per delivery session and not simply per MBMS User Service, and c) simplified scheduling – any content component belonging to the MBMS User Service can be sent at a unique transmission window independent of the transmission times of the other content components.
· An MBMS user service that comprises multiple media components/content items may be delivered or over multiple FLUTE sessions, each of which corresponds to a specific FLUTE Session Description referenced by one or more instances of deliveryMethod.
· The MBMS service provider may wish to define unique service areas in which particular media component(s) of an MBMS User Service containing multiple media streams are delivered or available for reception. For example, for a sports event comprising an overall stadium-level camera view, and additional field-level camera views, the service provider may wish for the field camera views along with the stadium camera view to be made available only to viewers situated at the stadium or its immediate vicinity. On the other hand, the service provider wishes to impose the restriction that only the stadium camera view is accessible to the national or regional audience which subscribes to the same MBMS User Service.
· An MBMS capable UE is only required to support reception of a single MBMS bearer service at a time i.e. reception of more than one MBMS bearer service is up to UE implementation.
4.2.7.5
Solution
The solution components pertaining to multiple FLUTE sessions for an MBMS sevrice, in support of the requirements and gap analysis indicated in clauses 4.2.7.2 and 4.2.7.3 are described in this clause.

4.2.7.5.1
Schedule to Session Mapping

A central requirement in TR 26.848 is the ability of the service provider to provision and operate MBMS user services in which the multiple content components of a given service are delivered on different FLUTE sessions. This means the individual content components of an MBMS service, be that a continuous media stream (e.g. audio or video), or discrete media (e.g. a text or image file), can be carried/received on separate FLUTE sessions, each of which is described by an SDP file referenced by an individual deliveryMethod child element of the element userServiceDescription. In addition, there is requirement that the delivery schedule of a particular media component or content item (in association with the FLUTE session over which it is carried) can be provisioned independently of the delivery schedule of any other media component/content item.

As described in the gap analysis in clause 4.2.7.3.2 of TS 26.848, it is desirable but currently not possible to use the sessionSchedule element of the Schedule Description to indicate the transmission schedule of the contents carried in any given FLUTE session. This is due to the absence in the sessionSchedule of an identifier for the associated FLUTE session. A simple fix is to add an optional sessionDescriptionURI attribute to sessionSchedule, identifying the FLUTE session to which this session schedule applies. This is shown in Figure 4.2.7-1 below:

[image: image20.png]voe [xsunsignednt_|

‘scheduleDescriptionType [}

I

[peTosioyte |

d

E

Figure 4.2.7-1 – Addition of Session Description reference to sessionSchedule
4.2.7.5.2
Inband USD Metadata Fragment Delivery

One of the identified gaps in multiple FLUTE sessions per MBMS service pertains to inband delivery of USD metadata fragments (one or more types among Session Description, Associated Delivery Procedure Description, Media Presentation Description, Schedule Description and Filter Description) as specified in TS 26.346[2]. As described in TR 26.848, Sec. 4.2.7.3.4, currently it is not possible to designate one of those FLUTE session to carry all of the metadata fragment eligible to be delivered in-band with an MBMS download session ("in-band delivery" for short). The downside consequence being that in-band metadata fragment updates must be carried in all of the FLUTE sessions, which is undesirable in wasting bandwidth resources for in-band delivery of metadata fragment updates, or may impose practical limitation on the frequency of metadata updating on each session.
The proposed solution is to add an optional attribute r12:inbandMetadata under the deliveryMethod element in the USD. This attribute, when set to "true" or "1" indicates that all metadata fragments eligible for in-band delivery are carried along with the media/content on the FLUTE session associated with that deliveryMethod instance. From the UE behavior perspective, it should listen to the FLUTE session designated for carrying all in-band delivery of fragment updates, even if the UE elects not to consume content delivered on that FLUTE session.

The XML schema of the deliveryMethod element with addition of the r12:inbandMetadata child element is shown below in Figure 4.2.7-2.
[image: image21.png]deliveryMethodType [}

Figure 4.2.7-2 – Addition of r12:inbandMetadata attribute under deliveryMethod
4.2.7.5.3
Application Identification

It should be possible to unambiguously announce/identify the specific content type carried on a given transport session. One of the use cases in TR 26.848 is a hybrid MBMS service containing a real-time audio/video stream along with one or more auxiliary file delivery components, with these content components carried on separate FLUTE sessions. As described in TR 26.248, clause 4.2.7.3.1, the use of the <media> parameter in the "m=" line of the SDP (RFC 4566, [2]) is inadequate for identifying different auxiliary file components, for example, game statistics, targeted advertisements, and upcoming events information, that are associated with a live football game.

The proposed solution framework is to add a parameter to the User Service Bundle Description fragment to identify the content component(s) carried by each FLUTE session of the associated MBMS User Service. Specifically, it is proposed that a new (optional) child element r12:appComponent be added to the deliveryMethod element, since each FLUTE session of the MBMS service is described by an SDP file (or Session Description fragment) referenced by a separate instance of deliveryMethod. One or more instances of r12:appComponent may be present under a given deliveryMethod instance, to indicate the same number and types of content component(s) carried on the associated FLUTE session. The collection of r12:appComponent names across all deliveryMethod instances of an MBMS User Service represents the entire set of content components types comprising that service.

The values of r12:appComponent are defined and controlled by MBMS applications, and similar to the serviceClass element in the USD, are outside the scope of 3GPP standardization,. r12:appComponent values are passed from the MBMS client to the UE application associated with that MBMS User Service, thus enabling the application to determine the content component offerings for that MBMS User Service. Subsequently, the application can inform the MBMS client of which components to be acquired (received) over MBMS delivery and forwarded to the application.

It is assumed here that one FLUTE channel is allowed per FLUTE session.
The XML schema of the deliveryMethod element with addition of the r12:appComponent child element is shown below in Figure 4.2.7-3:

 [image: image22.png]rBalternativeAccessDelivery

Svidelimiter

deliveryMethodType

r2:appComponent

o [xssing

Figure 4.2.7-3 – Addition of r12:appComponent element under deliveryMethod
4.2.7.5.4
FLUTE Session Association with Reception Report

As described in section 4.2.7.3.5, an additional requirement for multiple FLUTE sessions per MBMS service is that it should be possible for each Reception Report message sent from the UE, regardless of the report type, to explicitly identify the FLUTE session delivering the content to which the report pertains. The proposed solution is as follows. First, it is proposed to add to the Reception Report message, whose XML syntax is defined in TS 26.346[2], Sec. 9.5.3, the optional attribute sessionId under the receptionAcknowledgement element, as shown below in Figure 4.2.7-4.

 [image: image23.png]receptionReportType

Blatributes

receptionAcknowledgement

oe [rackiype
derivedBy | extension

receptionReport

[0 [receptionReporiTyp

Figure 4.2.7-4 – Addition of sessionId attribute under receptionAcknowledgement element of Reception Report message
In addition, the use of the sessionId attribute under the StaR type of reception reports (i.e. StaR, StaR-all and StaR-only), specifically, receptionReport.statisticalReport.qoeMetrics.medialevel_qoeMetrics@sessionId, will serve to identity the FLUTE session for a given StaR type reception report. Note also since the medialevel_qoeMetrics element is nominally used to declare QoE metrics associated with RTP streaming content, only the sessionId attribute (i.e., none of the other attributes of this element) shall be present under medialevel_qoeMetrics in a StaR type reception report pertaining to media components of a DASH-over-MBMS service.
4.2.7.5.5
Service Area Specific Availability of NRT Content Components of a Service

As described in section 4.2.7.3.3, it is not possible to define service area dependent availability of non-real-time (NRT) file contents of an MBMS user service carried over multiple FLUTE sessions. The proposed solution, as shown below in Figure 4.2.7-5, is to add to the deliveryMethod element a child element r12:serviceArea. One or more instances of r12:serviceArea may be present, each of which specifies the service area in which the NRT contents delivered on the FLUTE session associated with that instance of deliveryMethod. The semantics of r12:serviceArea complies to the MBMS Service Area Identity as defined in TS 23.003 [7] and TS 36.443 [8].
It is assumed here that one FLUTE channel is allowed per FLUTE session.
[image: image24.png]rBalternativeAccessDelivery

Svidelimiter

e ge

deliveryMethodType [}

r2broadcastAppService.

Svidelimiter

e ge

Figure 4.2.7-5 – Addition of r12:serviceArea element under deliveryMethod
4.2.8
Targeted Ad Insertion
4.2.8.1
Description
The growth of video distribution services (e.g., streaming, download, broadcast, TV, etc.) has driven advertisers to better target users by personalized advertisements and increase the likelihood of viewing for their ads by the users and their relevance to the users’ needs/interests. In the meantime, in broadcast networks such as those based on e-MBMS, from the point of view of ad insertion, a typical approach today is to insert the ads before broadcast and distribute ads via broadcast just like the main video content. This gives little opportunity to target ads to obtain a better return on investment, since all the users would be receiving the same advertisements.

Use Case:

Two major soccer teams of a populated city are to play a derby match against each other over the weekend. Since the game is expected to generate a lot of interest among the fans, the operator plans to offer the service over MBMS to its subscribers. The operator plans on delivering separate sets of targeted ads to the club fans, i.e., to be played back during the game breaks, etc., toward promoting the products from the fan stores of each soccer club, sharing club related news, etc.
4.2.8.2
Recommended Requirements & Evaluation Criteria

· It is possible to support targeted ad insertion in MBMS.
· It is possible to broadcast main content and ads, and enable insertion of targeted ads with the support of the client.

· For live events, it is possible to schedule delivery of targeted such that they can be inserted into the main content in real-time.

· It is possible for the MBMS clients to selectively receive ads delivered through MBMS according to user traits.
4.2.8.3
Gap Analysis & Evaluation
The following gaps are identified:

· Targeted ad content delivery over MBMS is only possible by sending all ad related resources over the same FLUTE session on the same TMGI. Then reception is typically done with the promiscuous approach as defined in section 7.2 of TS 26.346[2] due to the inability to associate ad content with a specific group identified by specific user traits.

· It is not possible to allow MBMS clients to selectively receive ad content delivered through MBMS according to user traits, in order to enable the one-copy operation to instruct FLUTE to receive a copy of one or more specific files (identified by the fileURI or potentially other patterns).
4.2.8.4
Assumptions
The following is a set of proposed assumptions associated with the use case, requirements and gap analysis defined for targeted Ad insertion. It is assumed that targeted Ad insertion operates in the context of a streaming service delivered as DASH formatted contents over MBMS.

· The occurrence time(s) of the Ad break(s) may or may not be known at the time of MPD generation.
· If the Ad break occurrence (i.e., its start time) is known at the MPD generation time, a corresponding XLink reference to a remote Period element will be contained in that MPD
· If the Ad break occurrence is unknown at the MPD generation time, either synchronous or asynchronous MPD update mechanism may be used to provide an XLink reference to a remote Period, or Ad-related event information may be carried inband in Media Segments.

· If Ad provider provides classification information associated with Ads to the BM-SC, the BM-SC may broadcast the classification information as filter data via the USD or through FDT.
· Classification information on the user is known or derived by the application, which provides that information to the MBMS client via the DASH client.
· The mechanism used by the application to acquire or derive the user classification information for the purposes of targeted/personalized Ad insertion is outside the scope of 3GPP.

· The MBMS client uses the classification information in conjunction with the filter data to perform selective download and caching of Ad(s) personalized/targeted for the local user.
· The DASH client is agnostic of the transport mode of Ads and will fetch Ad Segments using the Segment URLs indicated by/derived from the inserted Period element.
4.2.8.5
Solution

4.2.8.5.1
Proposed Architecture

A reference system architecture comprising functional entities involved in the delivery of metadata, MPD updates, DASH-formatted media content and targeted Ads from the content provider and ad source to the UE is shown below in Figure 4.2.8-1.

[image: image25.emf]MBMS Client

USD fragments

(incl. MPD

updates) and

Segments

over FLUTE

Application/

Player

DASH

Client

Segments

and timing

XLink

Resolver

XLink

HTTP

Proxy

Cache

Period

MPD and

Segments

Request

MPD and

Segments

Ad Decision

Server

Remote Period

Provisioning

Program and

Ad contents

Ad Insertion

Cues

Content Packaging and

MPD Generation

MPD/updates

Content and

MPD validity notification

Ad

Provider

Content

Provider

BM-SC

USBD

ad

ad

ad

content

content

content

ad

ad

ad

content

content

content

MPD

Figure 4.2.8-1 – Example System Architecture for Targeted Ad Delivery in DASH-over-MBMS

4.2.8.5.1.1
User Classification

It is assumed that the MBMS service application (e.g. the 'XYZ Football App') is aware of the user classification for Ad personalization purposes. How this is done (e.g. the App may have access to user profile/preference information, subscription data, content consumption history, or a content recommendation engine) is outside the scope of TS 26.346[2]. For simplicity, assume that user classification information can be summarized by a group identifier or groupID value which is passed from the App to the DASH client. In turn, the DASH client will forward this value to the MBMS client.

4.2.8.5.1.2
Ad Break and MPD Updating

Remote Period elements in the MPD inform the DASH client of the description and access information for Ad contents. There are two scenarios and associated means for informing the DASH client, via the remote Periods, about impending Ad breaks:

1) If the occurrence time(s) of Ad break(s) is known at the time of MPD generation, an MPD which contains one or more remote Period elements could be sent to the DASH client well in advance of the Ad break occurrence. Updates of the MPD, if any, will be provided via existing procedures, i.e. the use of MPD@minimumUpdatePeriod.

2) If the occurrence time(s) of Ad break(s) is unknown at the time of MPD generation, MPD update functionality, for example based on synchronous MPD updates with periodicity defined by MPD@minimumUpdatePeriod, is used to signal an impending targeted Ad insertion event.

Scenario 2, involving unpredictable occurrence of Ad breaks which trigger dynamic MPD updates will be assumed in the remaining discussion. The nominal interaction between the DASH client and the MPD server (latter assumed to reside in the UE, and part of the MBMS client which may include a local HTTP proxy and cache) for acquisition of the latest MPD is periodic. However, the occurrence of Ad breaks can be strictly unpredictable in time, for example as result of an injury time-out during a football game. Depending on the expected set-up time of the Ad break – starting from the triggering event (e.g. the time-out) to the actual splice time of the Ad insertion, the MPD@minimumUpdatePeriod value can be adjusted accordingly so that such dynamic event will not be missed by the DASH client. When updated, the MPD will carry a pointer to a remote Period element via Period@xlink:href.
4.2.8.5.1.3
XLink Resolution and Customized Periods

To signal an impending Ad break, a notification or "cue" message indicating the upcoming splice point is received by the MPD generator, which then creates a new/updated MPD for the same program, by adding reference to a remote Period in the updated MPD. Personalization/targeting parameters derived from the cue message are inserted into the Period@xlink:href attribute of the inserted Period. For example, the xlink:href for the remote Period is represented as "http://adservice.com/?group="value", to prompt the DASH client to pass its groupID value in the URL for XLink resolution. Upon receiving the updated MPD, DASH_client_A (of Device_A) submits to the MBMS client (acting as the XLink resolver) the XLink URL "http://adservice.com/?group=X", whereas DASH_client_B submits the XLink URL "http://adservice.com/?group=Y", and DASH_client_C submits the XLink URL "http://adservice.com/?group=Z". XLink resolution is performed by the MBMS client to subsequently return a customized Period element to each DASH client, based on the provided groupID value. Each DASH client will then fetch Segments of the Ad content using its Period, whose Period@start attribute defines the actual ad splice_time() translated into the Media Presentation timeline for proper playout of the targeted Ad. Alternatively, if Ad break occurrences are known at the time of MPD generation, the presence of Period@duration in the Period elements of the main program enables the start of Ad breaks to be pre-determined. An Ad insertion Period needs only to contain Period@duration to specify its end, as its start time would be already known.

4.2.8.5.1.4
Selective Ad Reception

It is not necessary for the MBMS receiver to download and cache all broadcast Ads (targeted to different user classifications/groupID's), since it will have access to filter data associated to the scheduled delivery of each Ad content. For each Ad, its filter data will be identical to the XLink URL sent by the DASH client for XLink resolution and Period acquisition, i.e. a customized remote Period URL, for example "http://adservice.com/?group=X", "http://adservice.com/?group=Y" or "http://adservice.com/?group=Z". The MBMS client can subsequently match its remote Period URL with the filter data to perform selective downloading and caching of Ads broadcast according to their delivery schedules. Different ways are possible to convey the URL-based filter data for the associated Ads to support selective ad reception by the MBMS client. For example, the existing Filter Description fragment could be extended by adding a new child element groupFilter under the filterData element, as identifier for the corresponding ad file whose delivery schedule is announced by an instance of file schedule. It may also be possible for a FLUTE FDT extension attribute groupID to be specified for the Ad file identified by the TOI and Content-Location. We favor the use of the former mechanism for two reasons:

1) The Filter Description fragment is designed for extensibility in carrying general-purpose filtering information for targeted/personalized reception of different contents by the MBMS receiver, with location-based filtering initially defined in Rel-11 TS 26.346[2].
2) Content filtering at the FDT level means that the MBMS receiver must be powered on at the start of each broadcast ad, and can only be powered off after having determined the absence of a match between the remote Period URL and the filter data. It is more battery power efficient for the MBMS receiver to have a-priori knowledge of whether a particular Ad delivery session is of interest, which is enabled by use of the Filter Description fragment, available to the MBMS receiver prior to the broadcast delivery of contents.
It should be possible for broadcast transmission of Ads to occur well in advance of the ad break (e.g. overnight before the football game the next day), or closer in time preceding the actual Ad break. Selective download and caching of Ads by the MBMS client is achievable by assuming that it performs the XLink resolution (and therefore can perform URL matching against the filter data) prior to the scheduled broadcast of the corresponding Ad.

Note that the filter criterion is not restricted to a remote Period in DASH. The filter is general with the following semantics:

· If the filter contains a single URL, then the download delivery session shall deliver all objects referenced directly or indirectly by the URL during the announced schedule.

· If the filter contains a regular expression ("regex") pattern, i.e. a sequence of characters that forms a search pattern, then the download delivery session shall deliver all objects for which the pattern matches the FDT's "Content-Location" attribute of that object during the announced schedule.

4.2.8.5.2
Example Call Flow

An example call flow illustrating targeted ad insertion for a DASH-over-MBMS service based on the architecture and procedures described in Sec. 4.2.8.5.1 is shown below in Figure 4.2.8-2. Note that in step 14 of the call flow, broadcast Ad files are likely to be delivered on a separate FLUTE session from that/those carrying DASH media streams. This is due to the possibly large bandwidth requirement to send a sizeable number of multimedia Ad files (for selective reception by UEs using the filte data in the USD).

[image: image26.emf]DASH Client Application BM-SC Ad Provider

Ad Decision

Server

Content

Provider

MBMS Client (

incl.

Local HTTP Proxy and

Xlink Resolver

)

0. Business agreement between MBMS operator, content provider

and Ad provider on content/Ad provisioning and format of MPD

4. Nominal broadcast delivery and consumption of DASH-over-MBMS

Media Presentation (process continues in parallel with steps 5 through 15,

stops during steps 16-18, and resumes at step 19)

3. Acquire MPD; DASH client polls

for MPD updates according to

MPD@minimumUpdatePeriod

2. MPD URL and user

classification as

“groupID” value

8. Download and cache

all remote Periods

9. Inband delivery of updated MPD

7. Broadcast delivery of same

three remote Period element files

10. Timely acquisition of updated MPD

according to MPD@minimumUpdatePeriod (MPD

indicates remote Period with

Period@xlink:href= “http://adservice.com/

?group=”value” and@xlink:actuate= “onLoad”

19. Resume nominal broadcast delivery and consumption of DASH-over-MBMS

Media Presentation until end of program; additional Ad insertion events may

occur later in program, whereby steps 9-10 and 12-19 will be repeated

18. Repeat steps 16 and 17 for all subsequent

Segments of Ad described by remote Period element

16. As time T1 approaches, DASH client

fetches 1

st

Segment of (Ad) content

described by remote Period element

17. Provide 1

st

Segment to

Application to start Ad playout

12. Delivery of Period element associated with

BaseURL = “http://adservice.com/?group=X”

11. Request resolution of remote Period element by issuing

XLink URL = “http://adservice.com/?group=X”

1. Broadcast delivery of

USD (incl. MPD fragment)

14. Broadcast of Ad content files according to Schedule delivered in

USD fragments in Step 1; ad Segment URLs are derived from the

remote Period elements; each Ad is associated with filter data

comprising HTTP URL identical to XLink URL

15. Matching of filter data with

previously received XLink URL from

DASH Client to perform selective

download and caching of Ad

13. Provisioning of Ads

5. Cue message of impending ad break

6. Provisioning of three files corresponding to remote Period

elements with BaseURLs of 1) http://adservice.com/?group=X, 2)

http://adservice.com/?group=Y and 3) http://adservice.com/

?group=Z, each with Period start at future time T1

‘Content Provider’ to BM-SC

BM-SC, expected to be HTTP

GET request/response

LEGEND

API between App

and DASH client

HTTP interaction

between DASH client

and MBMS client

BM-SC to MBMS

Client interface

(nominal scope of TS

26.346)

Figure 4.2.8-2 – Example Call of Targeted Ad Insertion for DASH-over-MBMS based on architecture in Fig. 4.2.8-1
4.2.9
Generic Application Service Delivery over MBMS
4.2.9.1
Description
4.2.9.1.1
Example 1: Broadcast of MPEG-DASH
In this case an MPEG-DASH service is mapped to the Application Service concept introduced in section 3.

Assume a basic DASH service with the following MPD:

	<?xml version="1.0"?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 minBufferTime="PT1.500000S"
 type="dynamic"
 mediaPresentationDuration="PT0H10M53.79S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011">

 <BaseURL>http://example.com/</BaseURL>
 <Location>example.mpd</Location>

 <Period id="P1" duration="PT0H10M53.79S">
 <AdaptationSet segmentAlignment="true">
 <Representation id="A1" mimeType="audio/mp4" codecs="mp4a.40.1d" audioSamplingRate="44100" startWithSAP="1" bandwidth="64839">
 <SegmentTemplate timescale="44100" duration="440294" media="ED_a_$Number$.mp4" startNumber="1" initialization="ED_a_init.mp4"/>
 </Representation>
 </AdaptationSet>
 <AdaptationSet mimeType="video/mp4" segmentAlignment="true" width="1280" height="720" frameRate="2997/100" par="16:9" codecs="avc1.4d401f" startWithSAP="1">
 <SegmentTemplate timescale="2997" duration="26999" startNumber="1"/>
 <Representation id="V1" bandwidth="972840">
 <SegmentTemplate media="ED_1M_v_$Number$.mp4" initialization="ED_1M_v_init.mp4"/>
 </Representation>
 <Representation id="V2" startWithSAP="1" bandwidth="1936362">
 <SegmentTemplate media="ED_2M_v_$Number$.mp4" initialization="ED_2M_v_init.mp4"/>
 </Representation>
 <Representation id="V3" bandwidth="4172303">
 <SegmentTemplate media="ED_4M_v_$Number$.mp4" initialization="ED_4M_v_init.mp4"/>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Assume the following scenario:

1. The audio and the V2 video of the above Media Presentation is distributed over MBMS

2. They are all included in one FLUTE session

3. The MPD and the Initialization segment are delivered as part of the USD fragment
4.2.9.1.2
Example 2: Combined Unicast/Broadcast DASH
In this case the same service as in 1 is available, but in addition different Representations are available on unicast, but the DASH client is not made aware of the different delivery methods. In addition, the DASH formats are conforming to a specific profile and the service provider wants to signal this in order for clients to be able to accept/reject the service based on this signalling.

Assume the following scenario:

1. The audio and the V2 video of the above Media Presentation is distributed over MBMS

2. They are all included in one FLUTE session

3. The MPD and the Initialization Segment are delivered as part of the USD fragment

4. All data is also available on unicast.

4.2.9.1.3
Example 3: Combined Unicast/Broadcast DASH with Transport Awareness in DASH client
In this case the same service as in 2 is available, but the DASH client is made aware of the different delivery methods.

Assume the following scenario:

1. The audio and the V2 video of the above Media Presentation is distributed over MBMS

2. They are all included in one FLUTE session

3. The MPD and the Initialization segment are delivered as part of the USD fragment

4. All data is also available on unicast.

5. The DASH client is made aware of different delivery methods.

4.2.9.1.4
Example 4: Apple HLS
In this case parts of an HLS service are provided through MBMS, namely the playlist and one Representation. Assume the following basic setup
· A master index file may reference alternate streams of content. HLS offers alternate streams with different bitrates so that the client automatically switches to the optimal bitrate based on the network conditions for a smooth quality playback experience.

· Both the master index file and the alternate index files are in .m3u8 playlist format. The master index file is downloaded only once, but for live broadcasts the alternate index files are reloaded periodically.

·
The first alternate listed in the master index file is the first stream used and after that the client chooses among the other alternatives by available bandwidth.

·
The master m3u8 looks like this:

#EXTM3U

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=2300000

http://example.com/high.m3u8

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=500000

http://example.com /low.m3u8
The different high and low m3u8 are updated periodically with new segment URLs.

The service provider wants to distribute such a service in a smart manner using the capabilities of MBMS to deliver static data, data through unicast, data through broadcast and also reuse exiting HLS clients. Figure 4.2.9-1 shows an example for this case.

[image: image27.png]High Bit rate Lowsitate

network e

A . @ A_,@ 3GPP HLS

| [
1 Generator
p—
HITP Server Precpete,
TN e
R S NN [
. e
& ’
.
l niay
FLUTE Tx L
:
FEC —> FLUTE
Rx

Figure 4.2.9-1 HLS delivery through MBMS

4.2.9.1.5
Example 5: Web Page
TBD
4.2.9.2
Recommended Requirements & Evaluation Criteria

4.2.9.3
Gap Analysis & Evaluation

4.2.9.4
Assumptions
4.2.9.5
Solution
4.2.10
Improve MBMS OTA efficiency
4.2.10.1
Description
4.2.10.1.1
Use Case #1 –Keep Updated Data Service
The user is interested in software updates for his smartphone or some of the applications in his smartphone. Because those applications are very popular, the operator wants to avoid that a significant amount of downloads of the same resource occur at the same time over the unicast channel. Instead, the updated resources are delivered over MBMS for more economical resource usage. The UEs are informed about file updates of interest to them. The UEs then join the dedicated MBMS service to receive these updates.

4.2.10.2 Recommended Requirements & Evaluation Criteria
The following requirements are derived from the keep updated use case:

· The BM-SC can inform the clients about the availability of a keep updated service and how the UE can use it.

· The keep updated service is flexible enough to carry a changing set of different types of content.

· The BM-SC is able to select or elect what file it wants to offer via the keep updated service based on the number of interested receivers for that file.

· The solution would reuse existing signalling and metadata formats as much as possible.

· The solution would be scalable.

4.2.10.3 Gap Analysis & Evaluation
A keep updated service based on the MBMS delivery method is already defined in TS 26.346[2]. However, this service assumes that all UEs will remain tuned to the MBMS service even if there are currently no updates available. It also does not have any tools to enable the BM-SC to deliver file updates that are of interest to the UE, so that the UE has no control about what files are delivered.

The USD defines several metadata fragments that are used to describe the content of the service. In particular the schedule description metadata fragment is relevant for this use case, as it enables the BM-SC to inform UEs about the scheduled files for delivery.

There is also need to ensure that MBMS user services may have silence gaps, where there is no need to establish MBMS bearers and no data broadcast is taking place. Alternatively, each time a new update set is made available, a new USD service is established and the client is informed. Depending on that, the configuration of the keep updated service may differ.4.2.10.4
Assumptions
The following working assumptions pertain to the keep update service:

· The UEs is able to acquire the file either via broadcast or as a fallback via unicast.

· Depending on popularity, efficient use of network resources would be targeted by offering the content over eMBMS whenever possible.
4.2.10.4
Assumption
4.2.10.5
Solution
As described in the use case, a UE has an app management application, which keeps track of installed applications and provides access to the application store (i.e. it acts as a front end to the app store). In order to assist the app management application and optimize the resource usage, an operator may decide to make use of the MBMS delivery channel to deliver the app and firmware updates. The operator offers a keep updated service for this purpose.

The app management application and the MBMS middleware are configured to recognize and use the keep updated. The app management application is made aware of the service and it provides its install base to the MBMS middleware. The MBMS middleware registers the apps with the BM-SC based on the description provided in the USD of the keep updated service. The MBMS middleware registers with the OMA PUSH client to receive updates of the USD and USD fragments. Whenever a set of updates becomes available, the BM-SC sends over OMA PUSH a schedule description fragment that contains a description of the files that are contained in that update set. The MBMS middleware tunes in to the keep updated MBMS service and receives the file of interest for the receiver and makes it available to the app management application directly or via a cache. If the file is only available over unicast, the MBMS middleware will inform the app management application about that, so that it will be downloaded over the unicast channel.

The procedure is described in the following figure.

[image: image28]
Figure 4.2.10-1 Keep-Updated Service
4.2.11
Multi-Program Support:
4.2.11.1
Description
4.2.11.1.1
Use Case #1 –Portal and Association
A service provider attempts to offer multiple programs/channels using DASH over MBMS user services. In order to do so, the service provider wants to optimize the bundling of the different multiple programs in order to optimize the delivery and presentation of the user service, for example to create a portal. For this purpose the service provider wants to provide metadata to signal that several user services form one multiprogramming offering and may provide data that is relevant for a portal service or for all services within the bundle. The service provider also want to associate the TV programs on the delivery level.
4.2.11.1.2
Use Case #2 –Fast Start-up and Rapid Channel Change

When offering multiple TV programs in a portal using DASH over MBMS user services, the service provider uses application layer FEC for each for each of the services in order to provide good and consistent user experience. In addition, the service provider wants to provide excellent user experience when accessing the service and especially when changing channels within the service. Fast start-up and fast channel change should be enabled. The MBMS client may be connected to unicast or may be in broadcast only mode. The service provider wants to provide good user experience in both cases. Note that the service provider may have deployment cases where it is interested in both low end-to-end latency and low channel change and access time, and other cases where it is only interested in low channel change and access time, but not necessarily in low latency.
4.2.11.2
Recommended Requirements & Evaluation Criteria

4.2.11.3
Gap Analysis & Evaluation

4.2.11.4
Assumptions
4.2.11.5
Solution

4.2.12
Robust DASH operation in live services

4.2.12.1
Description
4.2.12.2
Recommended Requirements & Evaluation Criteria

4.2.12.3
Gap Analysis & Evaluation

4.2.12.4
Assumptions
4.2.12.5
Solution
4.3
Related Change Requests

The changes required have been included is TS 26.346 [2].
5
Conclusion
Annex A:
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	04/18/13
	SA4#73
	S4-130552
	
	
	Agreements during SA4#73
	
	0.0.2

	07/12/13
	SA4#74
	S4-130880
	
	
	Agreements during SA4#74
	
	0.4.0

	09/28/13
	SA4#75
	S4-131095
	
	
	Agreements during SA4#75
	
	0.5.1

	11/07/13
	SA4#76
	S4-131333
	
	
	Agreements during SA4#76
	
	0.6.0

	01/24/14
	SA4#77
	S4-140258
	
	
	Agreements during SA4#77
	
	0.7.0

	04/11/14
	SA4#78
	S4-140442
	
	
	Agreements during SA4#78
	
	1.2.0

	05/16/14
	SA4#79
	S4-140742
	
	
	Agreements during SA4#79
	
	1.5.0

	08/08/14
	SA4#80
	S4-140930
	
	
	Agreements during SA4#80
	
	1.7.0

Add FDT Location URI

absence of session description reference in

sessionSchedule

fileSchedule is not present

absence of session identifier for RAck, and use of the sessionId attribute under StaR type of reports needs to be clarified

_1460616477.vsd
Remote Period
Provisioning

MBMS Client

_1460632021.vsd
DASH Client

BM-SC

Ad Provider

19. Resume nominal broadcast delivery and consumption of DASH-over-MBMS Media Presentation until end of program; additional Ad insertion events may occur later in program, whereby steps 9-10 and 12-19 will be repeated

Ad Decision
Server

1. Broadcast delivery of USD (incl. MPD fragment)

8. Download and cache all remote Periods

Content
Provider

Application

MBMS Client (incl.
Local HTTP Proxy and
Xlink Resolver)

_1435041260.vsd
Encoding and
DASH formatting

DASH client

BM-SC and HTTP server (e.g. proxy) functions

MBMS client
(MBMS receiver +
FLUTE cache +
HTTP proxy server)

USD (pre Rel-12 MPD +
Rel-12 MPD)

Broadcast Segments over FLUTE

