TSG SA4 meeting #80
Tdoc S4-140809
3rd-7th August, San Francisco, US

Source:
Samsung Electronics Co., Ltd.

Title:
Object Flow Mapping and Consumption
Document for:
discussion and agreement

Agenda Item:
8
1 Introduction
In earlier contributions, we have proposed a set of backwards-compatible enhancements to address the requirements set out by the FLUTE enhancements work. In this contribution, we provide more details to these solutions to motivate for the corresponding CR in S4-140812.

2 Proposals
The proposals are separated into enhancements for fast processing and enhancements for error robustness. All proposed enhancements are fully backwards compatible in the strongest sense, i.e. Rel-11 UEs will be able to consume the service in the regular way and without any degradation, except for the additional overhead.

2.1 Enhancements for Fast Processing

2.1.1 Object Flows

TS 26.346 enables the usage of multiple download methods that can very well be carried over the same eMBMS bearer. Each session will be configured separately using a separate SDP file. The USD will contain multiple deliveryMethod elements, each of which is pointing to a separate FLUTE session.

In order to help the client identify object flows, we propose that multiple FLUTE sessions be used instead. Each object flow is then mapped to a separate FLUTE session. The semantics of the mapping may be provided as part of the USD metadata. For instance, each DASH Representation may be assigned to a separate deliveryMethod. Legacy UEs will still be able to consume the service nevertheless, as they assume that the content of the service will be made available using multiple delivery methods that it needs to join simultaneously.
2.1.2 Mapping of Object Flows to FLUTE Sessions

In order to signal the mapping between Representation and delivery method, we propose to introduce a new child element of delivery method that establishes this mapping. The following is an example:

	<xs:complexType name="deliveryMethodType">

<xs:sequence>

<xs:element name="contentRelationship" typ="ContentMappingType" minOccurs="0"/>

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</xs:sequence>

<xs:attribute name="accessGroupId" type="accessGroupIdType" use="optional"/>

<xs:attribute name="associatedProcedureDescriptionURI" type="xs:anyURI" use="optional"/>

<xs:attribute name="protectionDescriptionURI" type="xs:anyURI" use="optional"/>

<xs:attribute name="sessionDescriptionURI" type="xs:anyURI" use="required"/>

<xs:attribute name="accessPointName" type="xs:anyURI" use="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:simpleType name="ContentRelationshipType">

<xs:restriction base="xs:string">

<xs:enumeration value="DASH Representation"/>

</xs:restriction>

</xs:complexType>

<xs:complexType name="ContentMappingType">

<xs:attribute name="reference" type="xs:string"/>

<xs:attribute name="relationshipType" type="ContentRelationshipType"/>

</xs:complexType>

2.1.3 Signaling of Object Flow Characteristics

Signaling the characteristics of object flows may be done in a backward compatible way by extending the FDT Instance format to carry that information. The information that is provided here is purely transport related and we believe that it should not be sent as part of the USD information as that would just complicate the service discovery procedure unnecessarily. That information may change also over time, e.g. if new object flows are added. Consequently, in of band signaling of that information is required anyway.

The signaling extensions should only provide information that is not already provided by the FDT Instance as defined in 7.2.10 [2]. The information that is already provided by the FDT Instance at the FDT Instance level of the FDT Instance that contains the additional signaling should also apply to all objects of the object flow, unless overwritten by information at the File level or by LCT header extensions.

In particular, the following information should apply to the object flow whenever present at the FDT Instance level:

· Expires: expires flag is used to indicate that the bindings of the object flow expire at the indicated time.

· Content-Type: when present, indicates that all objects of the object flow are of the same MIME type.

· Content-Encoding: when present, indicates that all objects of the object flow will undergo the same content encoding.

· FEC OTI Information: when present, indicates that the same FEC OTI information will be used for all objects of the object flow.

· Caching Directives: when present, indicates that the same caching directives apply to all objects of the object flow.

· Decryption Key URI: when present, indicates that the same decryption key URI is used for all objects of the object flow.

In addition and in order to support object flows that have different characteristics (e.g. MIME types, URIs, Content Encodings, ...), we propose to use the file grouping mechanism to specify group specific information.

For instance, in a DASH Representation, all segments of that Representation constitute an object flow. The Init segment and the MPD, however, do not share the same characteristics as the media segments and as such different groups are used for these different files of the object flow.

To enable Release 12 UEs to recognize to which group a particular object belongs without reverting to the FDT Instance again, we propose to introduce a new fixed size LCT header extension, the EXT_GRP, which will provide the group id in the LCT header of the packets of the corresponding transport objects.

In order to support object mapping, mapping rules need to be provided to allow the UE to recover the URL of the object out of the (TSI, TOI) information. We propose to support the following mapping rules:

· Templates: a template is provided to enable reconstruction of the URL out of the TOI value.

· URL Lists: a list of URLs is provided together with a starting TOI value or with a one to one mapping to the TOI.

· Start TOI: only the start TOI is provided and the remaining information is provided by the application. For instance for a DASH application, a start TOI is mapped to a segment number and the segment number is then converted into a URL through the information in the MPD.

2.1.3.1 LCT Header Extensions

Finally, the following information is different for every object and is currently only provided by the FDT and cannot be carried by EXT_FTI:

· Content Length: length of the content without content encoding.

· Content MD5: MD5 hash of the transport object.

In order to deliver this information, we propose to introduce a new LCT header extension, EXT_EH (Entity Head), which carries the entity head of the transport object in a way aligned with RFC 2616. The information provided by the entity header generally overwrites any information that is provided by the Object Flow description.

2.1.3.2 XML schema

In the following table, the discussed XML schema extensions are proposed:

	<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2014:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

targetNamespace="urn:3GPP:metadata:2014:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:element name="OFD" type="OFDType" maxOccurs="unbounded"/>

<xs:complexType name="OFDType">

<xs:sequence>

<xs:element name="ObjectMapping" type="ObjectMappingType" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="GroupID" type="xs:integer" use="optional"/>

<xs:attribute name="Content-Type" type="xs:string" use="optional"/>

<xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>

<xs:attribute ref="mbms2009:Decryption-KEY-URI" use="optional"/>

<xs:attribute ref="mbms2012:FEC-Redundancy-Level" use="optional"/>

</xs:complexType>

<xs:complexType name="ObjectMappingType">

<xs:choice>

<xs:element name="Template" type="TemplateType"/>

<xs:element name="List" type="ListType"/>

<xs:element name="Offset" type="xs:integer"/>

<xs:element name=”Group” type="xs:integer"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="ListType">

<xs:sequence>

<xs:element name="URLMap" type="URLMapType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TemplateType">

<xs:simpleContent>

<xs:extention base="xs:anyURI">

<xs:atrribute name="startTOI" use="required"/>

<xs:attribute name="endTOI" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="URLMapType">

<xs:simpleContent>

<xs:extention base="xs:anyURI">

<xs:atrribute name="TOI"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:schema>

2.1.3.3 Detecting Updates to the OFD

We propose that the Object Flow Description (OFD) be carried as part of the FDT Instance in order to easily locate it and to minimize the number of objects that a receiver has to receive. If it would be carried separately, then the same procedures needed to make the FDT instance parsable by itself would need to be defined again for the OFD.
The mappings defined by the OFD shall be valid until one of the following events is detected:

· FDT Instance that carried the OFD in use has expired

· OFD mappings (e.g. TOI range or list of files) is exhausted

· Expected resource cannot be located, e.g. a template pattern does not match the received transport object
In such case, the FLUTE receiver should start receiving FDT Instances and check for new OFD descriptions.
2.2 Enhancements for Error Robustness

2.2.1 Payload Type Indication

LCT foresees a method to extend LCT headers in a backwards compatible manner. To enable partial recovery of ISOBMFF based files, an ISOBMFF header extension EXT_ISO is defined. The header extension is defined as a variable-length header extension with Header Extension Type (HET) equal to 127.
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | HET=127 | HEL | Type| Reserved=0 |

 +-+

 | movie fragment sequence number |

 +-+

 | sample number |

 +-+

 | offset |

 +-+

Table 1 EXT_ISO header extension

The EXT_ISO contains the information that is necessary to partially recover a movie fragment. The type of the data unit that is included in the payload of the LCT packet may take one of the values in the following table:
	Type
	Description

	0
	The payload contains a moov box.

	1
	The payload contains a moof box.

	2
	The payload contains media data and none of the above.

The movie fragment sequence number becomes useful when a set of consecutive movie fragments is lost and the media units cannot be assigned to the correct movie fragment.

The sample number represents the number of the sample in the movie fragment with the movie fragment sequence number.

The offset field indicates the offset of the current media unit inside the sample with the indicated sample number. This is applicable for samples that contain more than one sub-sample.
2.2.2 Recovery at the Receiver Side

In this section, we are only interested in the recovery of ISOBMFF-based files, as used in progressive download and DASH segments. A DASH media segment may contain 1 or more movie fragments. A progressive download file usually contains many movie fragments.

At the receiver, the following steps are performed:

1.
Receive LCT packet

2.
Check if (TSI, TOI) correspond to transport object that is of interest to the application.

3.
Place packet payload in an object map for the corresponding source block number

4.
Perform FEC decoding

5.
If the transport object has been recovered correctly, extract the file and pass it to the application

6.
If the transport object has not been recovered correctly

a.
traverse object map to detect movie fragment boundaries. This can be performed by examining the ISOBMFF header extension proposed in section 3.

b.
For each detected movie header, detect which samples have been affected by packet loss

c.
remove samples that are completely lost and decide based on the media type whether to completely remove a sample or keep it if at least one of its sub-samples are lost.

d.
adjust the information in every trun box to reflect the removed or reduced size samples.

e.
remove movie fragments for which the “moof” box could not be recovered

For progressive download applications and DASH applications where segments contain more than one movie fragment, the partial error recovery is performed periodically instead of for the whole transport object.

Note that partial object recovery is not possible when Content Encoding is applied.

The error recovery procedure is depicted in the following figure:

[image: image1.png]
Figure 1 Partial Recovery
