Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #79
S4-140585
12 - 16 May 2014

Sophia Antipolis, France
Agenda item:
7.7.1
Source:

Qualcomm Incorporated

Title:
MI-EMO: DASH Robustness Tools for Live Services
Document for
Discussion and Agreement
1 Introduction

This document addresses robustness for DASH-based deployments, especially for live services. This focuses on services distributed as DASH-over-MBMS, but is not limited to this. The issue is motivated in S4-140252 (presented at SA4#77) and an update to the WID to address this issue was agreed in S4-140379. This document now describes actual problems as well as proposed tools for addressing these issues.
Some of the tools are already in TS 26.247, some tools are in ISO/IEC 23009-1, some tools are in draft extensions of ISO/IEC 23009-1 and finally some tools need to be added.

2 Baseline Architectures

2.1 Live Service Architecture

Figure 1 depicts a redundant set-up for Live DASH with unicast. Function redundancy is added to mitigate the impact of function failures. The redundant functions are connected with typically to multiple downstream functions to mitigate link failure impacts.
[image: image1.png]= MPEG-2 TS Feed

| mutibitrate | _ Seg;“:ﬂ':;’ _/L| origin |_ _ | Edge DASH
Encoder 1 A server Server Client

A generator \ \ 7

\ Y

\Y4
1 L4 Y it
— ’ " Media
¢ \| Redundant |, |\ 1\ Player

| predundant § _ 3 Segmenter . _| Y Origin j _ Y Edge
e and MPD Server Server
generator

Content Authoring & DASH Server HTTP Distribution

Figure 1 Typical Deployment Scenario for DASH-based live services

An MPEG2-TS stream is used often as input into the encoder chain. The multi-bitrate Encoder is producing the required number of quality representations. The encoder typically locks to the system clock from the MPEG2-TS stream. The encoder forwards the content to the segmenter, which produces the actual DASH segments and handles MPD generation / updates. Content Delivery Network (CDN) technologies are typically used to replicate the content to multiple edge servers. Note, the CDN may include additional caching hierarchy layers, which are not depicted here.

Clients fetch the content from edge servers using HTTP (Green line) according to the DASH specification. Different protocols and delivery formats may be used within the CDN to carry the DASH segments from the segmenter to the Edge Server. For instance, the edge server may use HTTP to check with its parent server when a segment is not (yet) in the local cache. Or, segments may be pushed using IP Multicast from the origin server to relevant edge servers. Other realizations are possible.

In some deployments, the live service is augmented with ad insertion. In this case, content may not be generated continuously, but may be interrupted by ads. Ads itself may be personalized, targeted or regionalized.
2.2 Distribution over Multicast

This section describes a baseline architecture for DASH Live Services for broadcast distribution. The intention of the baseline architecture is in particular to identify robustness and failure issue and give guidance on procedures to recover.
[image: image2.png]Content
Authoring &
DASH Server

HTTP- Distribution

MBMS UE (incl.
MBMS Client
Download
Delivery)

Cache”
functions

Figure 2 Typical Deployment Scenario for DASH-based live services partially offered through MBMS (unidirectional FLUTE distribution)

The same content authoring and DASH server solution as shown in Figure 1 are considered in this baseline architecture shown in Figure 2. The DASH Segmenter (Figure 1) provides DASH segments of typically one quality representation into the BM-SC, which sends the segments using MBMS Download (as sequence of files using IETF FLUTE protocol) to the MBMS User Equipment (UE). The MBMS UE includes the needed MBMS download delivery client functions to recover the media segments from the FLUTE reception. The MBMS UE makes the segments through a local HTTP Cache function available to the DASH client. The DASH client uses HTTP (green line) to retrieve the segments from the device local cache.

In case the MBMS reception is not possible for that Video Session, the DASH client may use unicast HTTP to acquire the stream (according to previous section).

Note, the objective of the client architecture realization here is on using a generic DASH client for unicast and broadcast. More customized implementations are possible.
3 Considered Issues

3.1 Introduction

Based on the deployment architectures in Figure 1 and Figure 2 a few typical problems in DASH-based ABR distribution are explained.
3.2 Client Server Synchronization Issues

In order to access the DASH segments at the proper time as announced by the segment availability times in the MPD, client and server need to operate based on the same time source, in general a globally accurate wall-clock. There are different reasons why the DASH client and the media generation source may not have identical time source, such as

· DASH client is off because it does not have any protocol access to accurate timing. This may for example be the case for DASH clients that are running in the browser or on top of a general-purpose HTTP stack.
· DASH client clock drifts against the system clock and the DASH client is not synchronizing frequently enough against the time-source.
· The segmenter synchronized against a different time source than DASH client.
· There may be unknown delay on the ingest to the server/cache whether the segment is accessible. This is specifically relevant if MBMS is used as the contribution link resulting in transport delay.
· It may also be that the MPD provides the availability times at the segmenter, but the actual availability should be the one on the origin server.
· There may be a delay from segmenter to the origin server which is known by edge/origin, but there may not be sufficient ways to signal this delay.
3.3 Synchronization Loss of Segmenter
The segmenter as depicted in Figure 1 may loose synchronization against the input timeline for reasons such as power-outage, cord cuts, CRC losses in the incoming signals, etc. In this case:
· Loss of synchronization may result that the amount of lost media data cannot be predicted which makes the generation of continuous segments difficult.

· The Segmenter cannot predict and correct the segment timeline based on media presentation timestamps, since the presentation timeline may contain a discontinuity due to the synchronization loss

· a loss of sync (e.g. CRC failure on the input stream)

· a power glitch on the source

· someone pulling a cable

· There are cases where no media segments are available, but the MPD author knows this and just wants to communicate this to the receiver.
3.4 Encoder Clock Drift
In certain cases, the MBR encoder is slaved to the incoming MPEG-2 TS, i.e. it reuses the media time stamps also for the ISO BMFF.
· This may create issues in particular when an existing stream like for satellite is transcoded and segmented into DASH representations.

· Annex A.8 of ISO 23009-1 handles drift control of the media timeline, but the impact on the segment availability time (i.e. MPD updates) is not considered or suggested.

· In particular when the segment fetching engine of the client is only working with the segment availability timeline (so is not parsing the presentation timeline out of the segments), the segment fetching engine will not fetch the segments with the correct interval, leading to buffer underruns or increased e2e delay.
· There is practical evidence that this is a problem in actual deployments, may result in drifts of minutes over hours.
3.5 Segment Unavailability
When a server cannot serve a requested segment it gives an HTTP 404 response.
However, if the segment URL is calculated according to the information given in the MPD, the client can often interpret the 404 response as a possible synchronization issue, i.e. its time is not synchronized to the time offered in the MPD.

In the MBMS case, a 404 response is also likely to be caused by non-reparable transport errors. This is even more likely if it has been possible to fetch segments according to the MPD information earlier. Although the client M/W, which is normally located in the same device as the DASH player, knows what segments have been delivered via broadcast and which ones are missing in a sequence, it cannot indicate this to the DASH client using standard HTTP responses to requests for media segments.
This issue may also occur in other circumstances that segments are lost or unavailable.
3.6 Swapping across Redundant Tools

In order to prevent entire service failures, redundant tools (encoder, segmenter, origin server/CDN) are typically provided in the content provisioning. Redundant tools may be running continuously or may be initiated in case a failure happens. The earlier is referred to hot swap, the latter as warm swaps.

Especially in case of warm swaps, the tools may not have synchronized the state of segment generation, numbering and so on. However, there is desire to indicate service continuity even in case such failures happen.

3.7 CDN Issues
Typical CDN operational issues are the following:
· Cache Poisoning – at times segment generation may be erroneous. The encoder can produce a corrupt segment, or the segment can become corrupted during upload to origin. This can happen for example if encoder connectivity fails in mid segment upload, leading to a malformed segment (with the correct name) being sent to edge and caching servers. The CDN then caches this corrupt segment and continues to deliver it to fulfill future requests, leading to widespread client failures.

· Cache inconsistency – with a dual origin scheme, identically named segments can be produced with slight differences in media time, due to clock drift or other encoder issues. These segments are then cached by CDNs and used to respond to client requests. If segments from one encoder are mixed with segments of another, it can lead to discontinuous playback experiences on the clients.

3.8 High End-to-end Latency

End-to-end latency (also known as hand-waving latency) is defined as the accumulated delay between an action occurring in front of the camera and that action being visible in a buffered player. It is the sum of

1. Encoder delay in generating a segment.

2. Segment upload time to origin server from the encoder.

3. Edge server segment retrieval time from origin

4. Segment retrieval time by the player from the edge server

5. The distance back from the live point at which the player chooses to start playback.

6. Buffering time on the player before playback commences.

In steps 1 through 4, assuming non-chunked HTTP transfer, the delay is a linear function of the segment duration. Overly conservative player buffering can also introduce unnecessary delay, as can choosing a starting point behind the live point. Generally the further behind live the player chooses to play, the more stable the delivery system is, which leads to antagonistic demands on any production system of low latency and stability.
3.9 Buffer Management & Bandwidth Estimation

The main user experience degradations in video streaming are rebuffering events. At the same time, user experience is influenced by the quality of the video (typically determined by the bitrate) as well as at least for certain cases on the end-to-end latency (see sub-section 3.1.8. In order to request the access bitrate, the client does a bandwidth estimation typically based on the history and based on this and the buffer level in the client it decides to maintain or switch Representations.

In order to compensate bandwidth variations, the client buffers some media data prior to play-out. More time buffer results less buffer under runs and less rebuffering, but increases end-to-end latency. In order to maximize the buffer in the client and minimize the end-to-end latency the DASH client would like to request the media segment as close as possible to its actual segment availability start time. However, this may cause issues in the playout as the in case of bitrate variations, the buffer may drain quickly and result in playout starvation and rebuffering.

This is issue is less relevant for broadcast distribution with just a single Representation per Adaptation Set, but for general live services this issue persists.
4 Considered Solutions

4.1 Client Server Synchronization Issues

4.1.1 Options

In order to address synchronization issues, the following options from the DASH standard may be considered

· Time Synchronization API using the UTCTiming descriptor as proposed in Draft Amd.1 of the second edition of ISO/IEC 23009-1. This permits the client to query the time of the media synchronization through one or several defined APIs.

· Using the HTTP Date header to provide the synchronization source of the MPD. This is in line with the above API, but it would require that the a scheme "urn:mpeg:dash:utc:http-head:2014" is used, and the server specified in the @value attribute of the UTCTiming element is the server hosting the DASH segments.
· The Segment Timeline as defined in ISO/IEC 23009-1 with @r>=0 may be used. This permits that the MPD is always documenting the latest available segment, but it also requires that the MPD is generated and provided for every new segment.

· Other options may be considered, but those are not yet documented.

4.1.2 Preferences

Based on the above discussions, the preference is to use the Time Synchronization API using the UTCTiming descriptor, and specifically recommending to use the segment server to provide the Date response. The reason is that this solution is forward-compatible with the existing standard and the timing API is enabling an improved operation.

In the mid-term, the use of the Segment Timeline as well as more advanced client operations may be considered, especially clients that operate based on segment parsing. For discussion on this matter, please refer to the Annex of this document. However, this is considered a more significant work in 3GPP and should be targeted in Rel-13.
4.1.3 Consequences

In order to support this tool,
· the Time Synchronization API using the UTCTiming descriptor should be added to TS26.247 in Rel-12 as part of the updated work item description.
· Recommendations on how to use this tool should be added to the guidelines in TS.26.346.
4.2 Synchronization Loss of Segmenter
4.2.1 Options

In order to address synchronization loss issues at the segmenter, the following options from the DASH standard may be considered

· The server is required to always offer a conforming media stream. In case the input stream or encoder is lost, the content author may always add dummy content. This may be done using a separate Period structure and is possible without any modifications of the standard.

· Empty Periods as proposed in Draft Cor.1 of the second edition of ISO/IEC 23009-1. This permits server to signal that there is an outage of media generation, but that the service is continuing. It is then up to the client to take appropriate actions.

· The Segment Timeline as defined in ISO/IEC 23009-1 with Segment Gaps may be used if only certain components fail. However, there is some lack of understanding how this exactly works and requires more detailed analysis on how segment timeline can be used.

· Other options may be considered, but those are not yet documented.
4.2.2 Preferences

Based on the above discussions, the use of dummy content as well as empty periods provides a robust solution.

In the mid-term, the use of the Segment Timeline as well as more advanced client operations may be considered, especially clients that operate based on segment parsing. For discussion on this matter, please refer to the Annex of this document. However, this is considered a more significant work in 3GPP.
4.2.3 Consequences

In order to support the preferred technologies,

· the Empty Period functionality (as a correction) should be added to TS26.247 in Rel-12 as part of the updated work item description.

· Recommendations to add dummy content, and if not available, use Empty Periods, should be added to the guidelines in TS.26.346.

· Some proposed client actions should be provided as well.
4.3 Encoder Clock Drift
4.3.1 Options
To address encoder clock drift and the issue with wrong segment offerings, the following options may be considered:
· the encoder needs to correct this issue for itself and can not rely on non-synchronized playback. Strict requirements may be provided

· Periods may be inserted more frequently in order to ensure the a proper synchronization of the segment availability compared to the wall-clock time. In order to ensure continuous playout at the client without any glitches, insertion of Periods should be done in a continuous manner such that the client can continue playout without media pipeline re-initialisation. Period continuity is added to the draft specifications in DVB and DASH-IF, and under discussion in MPEG. For some background refer to Annex B.

· usage of the producer reference time box and the DASH client parses the media segments in order to identify potential drift in the segment offering
4.3.2 Preferences

In order to support robust offering even under encoder drift circumstances, the segmenter should avoid being synced to the encoder clock. In order to improve robustness, Periods should be added in a period continuous manner and the producer reference box should be added to media streams in order for the media pipeline to be aware of such drifts.
4.3.3 Consequences
In order to support the preferences above the following actions are recommended:
· add continuous Period offering to TS26.247 in Rel-12 as part of the updated work item description.

· Add the following recommendations to the guidelines in TS.26.346:
· Encoder drift should be avoided, and encoder drift if happening should not influence segment availability offerings, i.e. the segmenter should be synchronized to global accurate timing.

· Periods should be added with some frequency in order for clients to resynchronize their segment numbering and templating. If provided, period should be offered in a continuous manner.

· The producer reference box should be added.

· Some proposed client actions should be provided in order to properly use the tools provided by the content author.
4.4 Segment Unavailability
4.4.1 Options and Preferences

To address signalling of segment unavailability between the client and server and to indicate the reason for this, the following has been considered

· using just regular 404 responses in order to indicate such changes

· using 404, but provide newly defined extension headers to indicate the reasons for non-availibility

· using 404 and providing the server time back to the client in order for the client to understand whether the unavailability was due to a loss or due to a sync issue
· using other response codes or status information of the server

· the MBMS middleware may change the MPD to reflect missing segments in the MPD.

· others
4.4.2 Preferences

It is preferred to use regular 404s with the Date-Header specifying the time of the server. This solves all mentioned issues. The client know that if its time is matching the Date Header, then the loss is due to a segment loss.

More advanced extension headers may be added in the future, if considered suitable. Coordination with MPEG on their SAND core experiments is encouraged.
4.4.3 Consequences
In order to support the preferences above the following actions are recommended:

· add the UTC Timing with Head methods to TS26.247. This is already discussed in section 4.1.3

· add guidelines to TS26.346 on how this can be used for robust operations.
4.5 Swapping across Redundant Tools

4.5.1 Options and Preferences

To enable swapping across redundant tools doing hot and warm swaps, the following may be considered

· the content author is offering the service redundant to the client (for example using multiple BaseURLs) and the client determines the availability of one or the other. This may be possible under certain circumstances
· Periods may be inserted at a swap instance in order to provide the new information after swap. If possible, the offering may be continuous, but the offering may also be non-continuous from a media time perspective.

· A completely new MPD is sent that removes all information that was available before any only maintains some time continuity. However, this tool is not fully supported yet in any DASH standard and not even considered.
· other options not yet documented or considered
4.5.2 Preferences

There is a clear preference for the bullets above in their order 1, 2 and 3 as the service continuity is expected to be smoother with higher up in the bullet list. At the same time, it may be the case that the failure and outages are severe and only the third option may be used.
4.5.3 Consequences

In order to support the preferences above the following actions are recommended:

· Add the following tools to TS26.247:

· Period Continuity

· MPD Resetting, i.e. the ability that an updated MPD erases all previous information and starts with a completely new start time
· Add recommendations and guidelines to TS26.346

· To provide redundant offerings at the server as far as possible and enable service continuity in this way

· use Periods to restart any changes in segment offerings, preferably in a continuous manner if possible

· use MPD resetting if a full loss of state is considered

· Add appropriate client guidelines to support this.
4.6 CDN Issues
This issue may be considered with lower priority.
4.7 Latency Reductions

This issue may be considered with lower priority.
5 Proposal

Based on the discussions in this document, the following is proposed:
· add sections 2 and 3 to the Technical Report for MI-EMO to discuss DASH deployment issues. Alternatively add this to TR26.938
· add section 4 to the Technical Report for MI-EMO to discuss DASH deployment issues.

· encourage specification work on the all aspects that are document in "Consequences" in section 4 for TS26.247 (adding relevant features) as well as TS26.346 (adding deployment guidelines in the new Annex)

· exchange information with the relevant organisations MPEG and DASH-IF on the progress of this matter

· continue work on latency reduction, robustness, and other DASH aspects as part of new work in future Releases.
Annex A Consistent Service Offering

A.1 General

In the context of these discussions, it was identified that by having different options, consistent implementations get difficult. In addition, there confusion on service providers, on what clients support. Therefore, two different client models are discussed.
A.2 Client Models

A.2.1
Overview
Two different client models are show in Figure 3, a basic client and an advanced client. The operations are described in the following
[image: image3.png]Media
Decode
Download suffer N
Engine and
Rendering
Basic Client
MPD
Server
Media
Segment Download Decode
Server Engine and
L Rendering |
Segment
Parsing
Advanced Client

Figure 3 Basic and Advanced client
A.2.2
Basic Client Model
The following example client behaviour may provide a continuous streaming experience to the user:

1) The client parses the MPD, selects a collection of Adaptation Sets suitable for its environment based on information provided in each of the AdaptationSet elements.

2) Within each Adaptation Set it selects one Representation, typically based on the value of the @bandwidth attribute, but also taking into account client decoding and rendering capabilities.

3) The client creates a list of accessible Segments at least for each selected Representation taking into account the information in the MPD and the current time JOIN in the client and in particular the segment closest to the live edge referred to the live edge segment. Specifically, the client creates a list of accessible Segments at least for each selected Representation taking into account the information in the MPD and the current time NOW by using the Period end time of the last Period as FetchTime + MUP.
4) The client downloads the initialization segment of the selected Representations and then accesses the content by requesting entire Segments or byte ranges of Segments. Typically at any time download the next segment at the larger of the two: (i) completion of download of current segment or (ii) the Segment Availability Start Time of the next segment. Based on the buffer fullness and other criteria, rate adaptation is considered. Typically the first media segment that is downloaded is the live edge segment, but other decisions may be taken in order to minimize start-up latency.

5) Media is fed into buffer and at some point in time, the decoding and rendering of the media is kicked off. The downloading and presentation is done for the selected Representation of each selected Adaptation. The synchronization is done using the presentation time in the Period. For synchronized playout, the exact presentation times in the media shall be used.

Once presentation has started, the playout process is continuous. The playout process expects media to be present in the buffer continuously. If the MPD@suggestedPresentationDelay is present, then this value may be used as the presentation delay PD. If the MPD@suggestedPresentationDelay is not present, but the client is expected to consume the service at the live edge, then a suitable presentation delay should be selected, typically between the value of @minBufferTime and the value of @timeShiftBufferDepth. It is recommended that the client starts rendering the first sample of the downloaded media segment k with earliest presentation time EPT(k) at PSwc[i] + (EPT(k) - o[r,i]) + PD.

6) The client may request Media Segments of the selected Representations by using the generated Segment list during the availability time window.

7) Once the presentation has started, the client continues consuming the media content by continuously requesting Media Segments or parts of Media Segments and playing content that according to the media presentation timeline. The client may switch Representations taking into updated information from its environment, e.g. change of observed throughput. In a straight-forward implementation, with any request for a Media Segment starting with a stream access point, the client may switch to a different Representation. If switching at a stream access point, the client shall switch seamlessly at such a stream access point.

8) With the wall-clock time NOW advancing, the client consumes the available Segments. As NOW advances the client possibly expands the list of available Segments for each Representation in the Period.

9) Assume the client consumes media in the last announced Period. Once the client is consuming media contained in the Segments towards the end of the announced Period, i.e. requesting segments with segment availability start time close to the validity time of the MPD defined as FetchTime + MUP, them, then the DASH client needs to fetch an MPD at its initial location if no MPD.Location element is present, or at a location specified in any present MPD.Location element.

If the client fetches the updated MPD using HTTP, the client should use conditional GET methods as specified in RFC 2616, clause 9.3 to reduce unnecessary network usage in the downlink.

The client parses the MPD and generates a new segment list based on the new FetchTime and MUP of the updated MPD. The client searches for the currently consumed Adaptation Sets and Representations and continues the process of downloading segments based on the updated Segment List.

Once the client is consuming media contained in the Segments towards the end of the announced media in the Representation, and the Representation is contained not in the last Period, then the DASH clients generally needs to reselect the Adaptation Sets and a Representation in same manner as described in bullet 1 and 2. Also steps 3, 4, 5 and 6 need to be carried out at the transition of a Period. Generally, audio/video switching across period boundaries may not be seamless. According to ISO/IEC 23009-1, section 7.2.1, at the start of a new Period, the playout procedure of the media content components may need to be adjusted at the end of the preceding Period to match the PeriodStart time of the new Period as there may be small overlaps or gaps with the Representation at the end of the preceding Period. Overlaps (respectively gaps) may result from Media Segments with actual presentation duration of the media stream longer (respectively shorter) than indicated by the Period duration. Also in the beginning of a Period, if the earliest presentation time of any access unit of a Representation is not equal to the presentation time offset signalled in the @presentationTimeOffset, then the playout procedures need to be adjusted accordingly.

The client should play the content continuously across Periods, but there may be implications in terms of implementation to provide fully continuous and seamless playout. It may be the case that at Period boundaries, the presentation engine needs to be reinitialised, for example due to changes in formats, codecs or other properties. This may result in a re-initialisation delay. Such a re-initialisation delay should be minimized. If the Media Presentation is of type dynamic, the addition of the re-initialisation delay to the playout may result in drift between the encoder and the presentation engine. Therefore, the playout should be adjusted at the end of each Period to provide a continuous presentation without adding drift between the time documented in the MPD and the actual playout, i.e. the difference between the actual playout time and the Period start time should remain constant.
A.2.3
Advanced Client Model

A.2.3.1
General
In contrast to the basic, the advanced client requires parsing of segments in order to determine the following information:

· to expand the Segment List, i.e. to generate the Segment Availability Start Time as well as the URL of the next Segment by parsing the Segment Index.

· to update the MPD based on Inband Event Messages using the 'emsg' box with scheme_id_uri="urn:mpeg:dash:event:2012" and @value either set to 1 or set to 2.
Assumes that the client has access to an MPD, it contains the following information:

· MPD@minimumUpdatePeriod is set to 0

· MPD@publishTime is included and the value is set to PUBTIME

· At least on Representation is present that contains an InbandEventStream element with scheme_id_uri="urn:mpeg:dash:event:2012" and @value either set to 1 or set to 2.

· A SegmentTimeline for the Representation

In an extension of bullet 7, 8 and 9, the following example client behaviour may provide a continuous streaming experience to the user as documented in the following.

A.2.3.2
MPD Validity expiration and Updates
The DASH client shall download at least one Representation that contains InbandEventStream element with scheme_id_uri = "urn:mpeg:dash:event:2012" and @value either set to 1 or set to 2. It shall parse the segment at least up to the first 'moof' box. The DASH client shall parse the segment information and extract the following values:

· ept the earliest presentation time of the media segment

· dur the media presentation duration of the media segment

If an 'emsg' is detected scheme_id_uri = "urn:mpeg:dash:event:2012" and @value either set to 1 or set to 2, the DASH client shall parse the segment information and extract the following values:

· emsg.publish_time the publish time documented in the message data of the emsg, either directly or from the patch.

· emsg.ptd the presentation time delta as documented in the emsg.
· emsg.ed the event duration as documented in the emsg
After parsing, the Segment may either be dumped (if the Representation is only used to access the DASH event) or forwarded to the media pipeline (if it also used for rendering).

If no 'emsg' validity expiration event is included, then

· the current MPD can at least be used up to a media presentation time ept + dur
else if an 'emsg' validity expiration event is included, then

· the MPD with publish time equal to emsg.publish_time can only be used up to a media presentation time ept + emsg.ptd. Note that if dur > emsg.ptd, then the Period is terminated at ept + emsg.ptd.
· any MPD with publish time can greater than emsg.publish_time can at least be used up to a media presentation time ept + emsg.ptd
· prior to generating a segment request with earliest presentation time greater than ept + emsg.ptd, the MPD shall either

· be refetched and updated by the client.

· or if @value=2, it may patched and then updated

A.2.3.3
Extended Segment Information
The DASH client shall download the selected Representation and shall parse the segment at least up to the first 'moof' box. The DASH client shall parse the segment information and extract the following values:

· ept the earliest presentation time of the media segment

· dur the media presentation duration of the media segment

Extend Segment information and Segment Timeline
A.3
Service Offering Models

A.3.1
General

Service offerings may be classified in 3 types:

1. Dynamic Offering without MPD Updates

2. Basic Service offering that does not require segment parsing

3. Advanced Service offerings with segment parsing requirements

This is depicted in Figure 4 showing which clients can access which type of offerings.

[image: image4.png]Dynamic
Offering
w/o MPD
Update

Basic
Service
Offering

Advanced
Service
Offering

MPD-based
Client

MPD and
Segment-
based
Client

Figure 4 Service offerings

It would suitable for MPEG-DASH do clearly mark an Media Presentation being one of the three types by a profile parameter or something alike and then provide clear service requirements for these services. The exact requirements must be collected and this is already done in the work of the DASH-IF.
Annex B

Playback Across Periods
B.1
Background

Typically, no continuity is necessary at Period boundary in terms of content offering. The content may be offered with different codecs, language attributes, content protection and so on. It is expected that the client plays the content continuously across Periods, but there may be implications in terms of implementation to make the playout fully continuous and seamless.
Generally, audio/video switching across period boundaries may not be seamless. According to ISO/IEC 23009-1, section 7.2.1, at the start of a new Period, the playout procedure of the media content components may need to be adjusted at the end of the preceding Period to match the PeriodStart time of the new Period as there may be small overlaps or gaps with the Representation at the end of the preceding Period. Overlaps (respectively gaps) may result from Media Segments with actual presentation duration of the media stream longer (respectively shorter) than indicated by the Period duration. Also in the beginning of a Period, if the earliest presentation time of any access unit of a Representation is not equal to the presentation time offset signalled in the @presentationTimeOffset, then the playout procedures need to be adjusted accordingly.
However, under certain conditions seamless continuation of the presentation across Periods may be achieved, especially if the content is properly conditioned. This section provides an overview on content offering requirements and recommendations across Periods and the client behaviour when downloading and presenting content across periods.

Note that this section applies to static and dynamic Media Presentations and it is independent of the use of xlink. The rules apply for the case after remote elements are dereferenced.

Figure 5 shows a couple of situations for playout at period boundaries. In the first case a period is generated from the same content. This means that the content is continuous, but an add splicing opportunity is added. If the Period is played as is, the client should continue the playout seamlessly despite of overlaps of the media. In the second case media is inserted between the Periods, for example for add splicing. In this case the media is not continuous. It may be necessary to avoid overlaps of media over period boundaries.

[image: image5.png]presentationTimeOffset = 2000

Figure 5 Period Boundaries

B.2
 Use Case
Content with multiple Periods may be created for different reasons, for example:

to enable splicing of content, for example for advert insertion

to provide a synchronization point to avoid drift in segment numbering

to remove or add Representations in an Adaptation Set

to remove or add Adaptation Sets

to add or remove content offering on certain CDNs

to enable signalling of shorter segments, if produced by the encoder

Typically, no continuity is necessary at Period boundary in terms of content offering. The content may be offered with different codecs, language attributes, content protection and so on. It is expected that the client plays the content continuously across Periods, but there may be implications in terms of implementation to make the playout fully continuous and seamless.

Generally, audio/video presentation across period boundaries is not expected be continuous. According to ISO/IEC 23009-1 [1], section 7.2.1, at the start of a new Period, the playout procedure of the media content components may need to be adjusted at the end of the preceding Period to match the PeriodStart time of the new Period as there may be small overlaps or gaps with the Representation at the end of the preceding Period. Overlaps (respectively gaps) may result from Media Segments with actual presentation duration of the media stream longer (respectively shorter) than indicated by the Period duration. Also in the beginning of a Period, if the earliest presentation time of any access unit of a Representation is not equal to the presentation time offset signalled in the @presentationTimeOffset, then the playout procedures need to be adjusted accordingly.
However, under certain conditions seamless continuation of the presentation across Periods may be achieved, especially if the content is offered properly. This section provides an overview on content offering requirements and recommendations across Periods and the client behaviour when downloading and presenting content across periods.

Note that this section applies to static and dynamic Media Presentations and it is independent of the use of xlink. The rules apply for the case after remote Periods are dereferenced.

B.2
 Content Offering with Multiple Periods

B.2.2.1
General

If content is offered with multiple Periods, then the content provider should offer the content such that the total media presentation time of a Representation is as close as possible to the actual Period duration. It is recommended that the Period duration is the maximum of the presentation duration of all Representations contained in the Period.

In certain circumstances the Content Provider may offer content in the next Period that is a continuation of the content in the previous Period, possibly in the immediately following Period or in a later Period. The latter case applies for example after an advertisement Period had been inserted.
B.2.2.2
Associated Adaptation Sets across Periods

The content provider may express that the media components contained in two Adaptation Sets in two different Periods are associated by assigning equivalent Asset Identifiers to both Periods and by identifying both Adaptation Sets with identical value for the attribute AdaptationSet@id.

If Adaptation Sets in two different Periods are associated, then the following parameters shall be identical for the two Adaptation Sets:

the language as described by the @lang attribute,

the media component type described by the @contentType attribute,

the picture aspect ratio as described by the @par attribute,

any role property as described by the Role elements,

any accessibility property as described by the Accessibility elements,

any viewpoint property as described by the Viewpoint elements,
For audio Adaptation Sets, all attributes and elements listed in [REFER TO SECTION]
In addition, Content Protection schemes in the associated Adaptation Sets shall be consistent.

B.2.3
Period Continuity

Content Providers may explicitly signal that Adaptation Sets across periods are continuous.

For this purpose a supplemental descriptor with @scheme_id_URI set to "urn:dvb:dash:period_continuity:2014" may be provided for an Adaptation Set with the AdaptationSet@id being AID contained in a Period with Period@id contained PID2. If such a supplemental descriptor is present with @value attribute of the descriptor being PID1 and if a Period is present in the MPD with Period@id set to PID1, and this Period contains an Adaptation Set with Adaptation Set Id set to AID, then the following shall hold:
All Representations in the Adaptation Set with AdaptationSet@id set to AID in Period with Period@id set to PID1 shall share the same value EPT1 for the earliest presentation time.

All Representations in the Adaptation Set with AdaptationSet@id set to AID in Period with Period@id set to PID2 share the same value EPT2 for the earliest presentation time.

· The Adaptation Sets in two different Periods with the same AID shall be associated as defined in section 10.3.2.2.

· The presentation duration of each Representation in the Adaptation Set with AdaptationSet@id set to AID in Period with Period@id set to PID1 shall be EPT2 - EPT1, where the presentation duration of a Representation identical to the difference between the end presentation time of the Representation and the earliest presentation time of any access unit.
· If Representations in both Adaptation Sets have the same value for @id,
· then they shall have functionally equivalent Initialization Segments, i.e. the Initialization Segment of Period with PID1 may be used to continue the play-out the Representation in Period with PID2, and

· then the concatenation of the Initialization Segment in Period with PID1 and all consecutive Media Segments in the Representation in Period with PID1 and all consecutive Media Segments in the Representation in Period with PID2 shall represent a conforming Segment sequence as defined in clause 4.5.4 of ISO/IEC 23009-1 conforming to the media type as specified in the @mimeType attribute for this Representation.
Content authors should signal period-continuous Adaptation Sets.
10.4

Client Requirements and Recommendations

Typically, at Period boundary no continuity in terms of content offering is ensured. The content may be offered with different codecs, language attributes, different protection and so on.

The client should play the content continuously across Periods, but there may be implications in terms of implementation to provide fully continuous and seamless playout. It may be the case that at Period boundaries, the presentation engine needs to be reinitialised, for example due to changes in formats, codecs or other properties. This may result in a re-initialisation delay. Such a re-initialisation delay should be minimized.

If the Media Presentation has @type="static", then any delay caused by re-initialisation should not lead to "missed" content, but instead viewer should find the overall duration of playback has taken longer than expected. However the times reported by the client to an application or the viewer shall not be affected by these delays (so media time stands still during the delay). If the Media Presentation has @type="dynamic" then there is a risk that such re-initialisation delays will cause the client to slowly drift behind live. If this drift accumulates to a significant size, then the client may need to jump forwards to rejoin the live edge or play it faster that real-time to rejoin the live edge.

If the client presents media components of a certain Adaptation Set in one Period, and if the following Period has assigned an identical Asset Identifier, then the client should identify an associated Adaptation Set (as defined in 10.3.2.2) and, in the absence of other information, continue playing the content in the associated Adaptation Set.

If furthermore the Adaptation Set is period-continuous (as defined in 10.3.2.3), i.e. the presentation times are continuous and this is signalled in the MPD, then the client shall seamlessly play the content across the Period boundary under the constraints in section 11.1. Most suitably the client may continue playing the Representation in the Adaptation Set with the same @id, but there is no guarantee that this Representation is available. In this case the client shall seamlessly switch to any other Representation in the Adaptation Set.
- 22/22 -

