Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #78
S4-140446
7 - 11 April 2014
update of S4-140431/371
Kista, Sweden
Agenda item:
7.7.1
Source:

Qualcomm Incorporated, Ericsson, Expway

Title:
MI-EMO: FLUTE Basic Enhancements
Document for
Discussion and Agreement
1 Introduction
After lengthy discussions and multiple adhoc meetings, it became obvious there is a certain amount of desire to enhance FLUTE, especially for the purpose of improving the DASH over MBMS. However, it became even more apparent that non-backward compatible enhancements are impossible to become realistic in the time frame of the work item.
Therefore, this document proposes that in the time frame of this work item, only strictly backward-compatible extensions are added to FLUTE. Strictly backward-compatible refers to TR26.848, section 4.2.2.4.3 using type 3.
Strictly backward-compatible proposals are extracted from S4-AHI432.
2 Strictly backward-compatible extensions

2.1 General

This section is a collection of potential enhancements that may be performed in a backwards-compatible way.

The following general tools are considered:

· Ability to delivery FDT Instance in USD as a static information

· Extensions to the FDT Instance to signal Object Flows and CodePoints

· Sending existing or newly defined LCT extension headers

· Use of the code point signalling

· Recommendation on the use of certain tools
2.2 LCT based on RFC5651
2.2.1 Description

Following the analysis and agreement in document S4-140241, "RFC 3451: Layered Coding Transport (LCT) Building Block" may be replaced with RFC 5651 in TS26.346 Rel-12, without breaking backward-compatibility according to Type 1, Type 2 and Type 3 as defined in section X of this document.
The use of RFC5651 is beneficial as 3GPP can

· use existing extension headers to LCT as defined in RFC 5651
· define and register new extension headers with IETF based on the procedures defined in RFC5651
· refer to an RFC that is in standards-track of the IETF.

Therefore, it is proposed to replace RFC 3451 with RFC 5651. In addition, the following restrictions need to be added:

· use the FDT Instance with version 1 according to RFC 3926.

· set reserved bits in the LCT header to zero.

2.2.2 Justification
Using RFC5651 enables to use extension headers defined in RFC5651 and to register new extension headers. It also enables to move from an experimental RFC to a standard track RFC.

2.2.3 Open Issues

The following issues still need clarification:

· Is ALC also upgraded to RFC5775?
2.3 File Delivery Table Instance Descriptor

2.3.1 Description

In order to enable providing an FDT Instance out-of-band in the USD a File Delivery Table Instance Descriptor (FID) may be added to the USD as a USD fragment.

The FID fragments may be associated to one download delivery session. Each of the FID expresses sufficient information such that all functionalities of a sequence of FDT Instances can be generated by the receiver based on the FID and information in LCT packet headers, specifically the TOI.

In case of sending DASH over Flute, the BM-SC may generate a new FDT Instance for each new DASH segment.

The FID may be delivered out-of-band or in-band and the attributes of the metadata envelope provide the context for the FID, i.e. its validity period as well as the URL as referred to by the USD.
2.3.2 Justification

This extension enables to deliver all static and known information ahead of time and out-of band. By this, dependency on the reception of inband FDT Instanceis reduced and clients understanding this fragment can parse this w/o relying on the reception of the inband FDT instance as all information is provided in the combination of the FID and the LCT headers.
2.3.3 Open Issues

Is this FDT Instance Descriptor (FID) only to be sent as USD fragment or is it also to be sent inband.
2.4 Extensions to FDT Instance
2.4.1 General

The following extensions only apply if the FDT Instance is delivered as a FID as a metadata fragment. Whether any of these extensions are useful for a regular inband FDT Instance is for further study.
2.4.2 Object Flows
2.4.2.1 Description
An FDT Instance may contain one or more object flow descriptors that are described in the following. This extension element may be added to the FDT Instance to generate equivalent data as provided by one or more File elements in the FDT Instance. Each object flow is identified by an @id.
In order to address DASH based delivery, or general delivery of objects, object flows are defined. Objects are associated to a specific object flow by having a specific pattern of the TOI. A flow is defined by the ObjectFlow@id that if applied to the TOI field results in a match. The object flow identifier may be applied to the TOI or to the (TSI,TOI) fields
If the ObjectFlow element is present, then no File element shall be present that overlaps with the TOI space generated by the Object Flow.
	
	Element or Attribute Name
	Use
	Description

	
	ObjectFlow
	
	specifies the static File Delivery Descriptor

	
	
	@id
	M
	specifies the object flow identifier.

	
	
	@contentType
	O
	identical to Content-Location attribute in FLUTE

	
	
	@contentEncoding
	O
	identical to Content-Encoding attribute in FLUTE

	
	
	FileTemplate
	0...1
	specifies a file template in the body. For details refer to section.

	
	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

2.4.2.2 Justification

Using object flows enables to group objects with identical properties and enables to provide this information in a static manner. This reduces the dependency on receiving the FDT Instance as static information that applies to all objects in the flow are summarized in the object flow. This specifically includes the @contentType. Typically this maps to a Representation.
2.4.2.3 Open Issues

· What other parameters may be added to the Object Flow, e.g. FEC Parameters?

· Do we want to have the ability to enable describing a range of TOIs using start and end TOI attributes for the file template?

· The relationship to multiple FLUTE sessions needs to be clarified.

· The usage of TOI only, TOI+TSI, or TSI only for object flow id needs to be clarified.

· Handling of the Flute FDT instance expire.

2.4.3 File Template

2.4.3.1 Description
The static File Delivery Description may include a FileTemplate element. The value of FileTemplate element attribute may contain one or more of the identifiers as listed in Table XX.

The element enables to generate a one to one mapping between a OFI and TOI and URL.
In each URI, the identifiers from Table XX shall be replaced by the substitution parameter defined in Table XX. Identifier matching is case-sensitive. If the URI contains unescaped $ symbols which do not enclose a valid identifier then the result of URI formation is undefined. The format of the identifier is also specified in Table 16.

Each identifier may be suffixed, within the enclosing ‘$’ characters following this prototype:

%0[width]d

The width parameter is an unsigned integer that provides the minimum number of characters to be printed. If the value to be printed is shorter than this number, the result shall be padded with zeros. The value is not truncated even if the result is larger.

The FileTemplate shall be authored such that the application of the substitution process results in valid URIs.
Strings outside identifiers shall only contain characters that are permitted within URIs according to RFC 3986.

Table XX — Identifiers for File templates

	$<Identifier>$
	Substitution parameter
	Format

	$$
	Is an escape sequence, i.e. "$$" is non-recursively replaced with a single "$"
	not applicable

	OFI
	This identifier is substituted with the object flow identifier ObjectFlow@id the corresponding LCT packet.
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

	ON
	This identifier is substituted with the object number which is represented by the remaining non flow if bits of the corresponding LCT packet
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

2.4.3.2 Justification

Using a template enables to create the information @TOI and @contentLocation information contained in the File element in the FDT Instance by using this static information and the TOI.
2.5 Extension Headers

2.5.1 Deriving Object size
2.5.1.1 Description
The information about the object size and the other OTI needs to be delivered with each object to enable FDT-free object recovery.

If the File Template is used, then an extension header permits to send the object size of the object with a specific TOI (combination of object flow id and object number).
One option is to use the general EXT_FTI as defined in RFC3926, section 5.1.1. This may be used to deliver the Transfer Length of the carried object.
Alternatively a new extension header solely carrying the object size may be defined.

This extension header should be sent with every repair packet.
2.5.1.2 Justification

In order to enable to rely on static information and information included in the LCT packets only, the transport object size needs to be added to LCT packets.
2.5.1.3 Open Issue
The EXT_FTI is initially designed for this purpose. Whether to use the EXT_FTI or define a new headers is unclear
The issue is that TS26.346 is currently states:
FLUTE extension header fields EXT_FDT, EXT_FTI , EXT_CENC [9] shall be used as follows:

· EXT_FTI shall be included in every FLUTE packet carrying symbols belonging to any FDT Instance.

· FLUTE packets carrying symbols of files (not FDT Instances) shall not include an EXT_FTI.

· FDT Instances shall not be content encoded and therefore EXT_CENC shall not be used.

In FLUTE the following applies:

· EXT_FDT is in every FLUTE packet carrying symbols belonging to any FDT Instance.

· FLUTE packets carrying symbols of files (not FDT instances) do not include the EXT_FDT.

2.5.2 Timing Extension Header
2.5.2.1 Description
The LCT Header EXT_TIME extension as defined in RFC 5651 may be used by sender in the following manner:

· The Sender Current Time may be used to occasionally or frequently signal the sender current time depending on the application. This may be used in order to synchronize the clock of the sender and the receiver.

· The Expected Residual Time (ERT) may be used to indicate the expected remaining time for the current object.

· The SLC flag is typically of no use, but may be used to indicate addition/removal of segments.

2.5.2.2 Justification

This allows sending timing in band in order to provide synchronization, dejittering and so on.
2.5.2.3 Open Issues

The exact interpretation of these timing signals needs to be defined.

For DASH, the usage of this timing may be more explicit.

2.5.3 Object Expires

2.5.3.1 Description

The object expiry information as currently present in the FDT Instance may have to be sent for certain applications.
2.5.3.2 Justification

In order to enable to rely on static information and information included in the FID and LCT packets only..
2.5.3.3 Open Issues

· can this be solved with the FID only

· Or do we need an extension header and if so:

· Can an existing extension header be used, like an EXT_TIME header?

· do we need to define a new extension header?
2.6 Code Points

2.6.1 Description
The FDT Instance may be extended by a code point element. Code points may be used to signal specific information of the packet carrying the data with respect to the object.
2.6.2 Justification

This permits to signal application specific aspects associated to individual LCT packets.

2.6.3 Open Issues

· Details of the signalling in the FID.

· Examples for application specific signals

· Usage of code points in the existing specification.
2.7 Considered Recommendations
· Multiplexed segments, in particular for environments with higher packet error rates (i.e. when the usage of larger source blocks becomes more efficient) may be recommended when used together with FEC and for simple service offerings.
· using short media segments in order to reduce the e2e delay for Live. There should be an additional note highlighting the tradeoff between e2e delay / short segments and the FEC efficiency. The FEC efficiency is significantly reduced when operating with small source blocks.
· add informational section to the MBMS specification, clarifying the benefit of sending the DASH segment in a different order, if the segmenter is co-located with the BM-SC.
3 Backward-compatibility Considerations

A Rel-12 receiver and beyond will be able to make use the information to increase more robust information, especially as it can access the information without requiring the inband FDT Instance. This information may also improve the access time to objects as the FDT Instance delivery is not necessary. It may also allow that the FDT Instance is not sent redundantly and in a non-backward compatible deployment the sending of the FDT Instance may no longer be done at all.
Receivers prior to Rel-12 will ignore the information and rely on the FDT Instance.
4 Proposal

Based on this discussion in this document, the following is proposed:
· Add Section 2 of this document as "Considered Strictly backward-compatible extensions for FLUTE Enhancements" to the MI-EMO TR
- 1/2 -

