TSG SA4#75 meeting 	Tdoc S4-131029
23-27 September, Vancouver, CA	
Source:	Samsung Electronics Co., Ltd.
Title:	Backwards compatibility to FLUTE
Document for:	discussion and agreement
Agenda Item:	8

Introduction
In this document, we discuss the issue of backwards-compatibility to FLUTE and ALC/LCT and how maintaining the backwards-compatibility may hinder the fulfilment of the requirements for the new protocol
Discussion

ALC/LCT
FLUTE uses ALC which in turns uses a set of building blocks such as the LCT transport protocol, the multi-rate congestion control building block, the FEC building block, the packet identification building block.
ALC reuses the semantics of a session that LCT defines. As a consequence, it supports multiplexing multiple sessions to be multiplexed over the same SSM multicast flow (i.e. coming from the same source IP address and port number and targeted for the same multicast IP address and port number). At the same time it supports the concept of multiple channels, where the same session, sharing the same source IP address and port number may be sent to multiple different destination IP address and port numbers. While this flexibility may seem to be a benefit, it in fact results in complicated client implementations, which has led current deployments to restrict their usage (e.g. no channel support).
The usage of multiple building blocks was supposed to simplify the instantiation of new protocols. However, this feature complicates the instantiation of a protocol and creates cross dependencies which are not obvious to spot. For instance, the consequences on building the packets according the FEC building block may have consequences on the rate adaptation or packet authentication building blocks. Rate adaptation building block on the other hand expects packets to be of the same size (with few exceptions). Also building blocks may define header extensions to the LCT packet header. It becomes more difficult to process the transmission of a transport object at the sender building block by building block separately. The result is typically a vertical implementation of the protocol instantiation.
The impacts of the different building blocks are also visible when addressing the requirements for the new protocol. For instance the FEC building block imposes the creation of equal size encoding symbols and the appending of the FEC information to each packet. This stands in contradiction to the following requirements:
1. Enable variable size source packets: Source packet boundaries can be aligned with underlying media structure boundaries if desired. This may improve chunked delivery and may also provide additional error resilience as error concealment may be simplified if only single access units are lost.
2. Enable delivery of source content with no FEC semantics: In this case receivers that don’t implement/need/understand FEC can still receive the source stream. In addition, the same source stream can be easily mapped to multiple FEC configurations, e.g. different FEC schemes, different source block sizes, etc. This is in particular possible with systematic FEC codes such as the Raptor code defined TS26.346.
3. Enable FEC object bundling: Provide FEC protection over multiple objects, which can increase the efficiency of FEC protection.
The FEC building block also limits the capability of a receiver to partially recover data. The transport protocol was designed to deliver complete transport objects, thus the usage of equal size source blocks and encoding symbols. If the object is partially received, there is no ability for the receiver to make any meaningful usage of the received data because of the arbitrary handling. Also identifying meaningful boundaries in correctly received data requires extensive parsing and knowledge of the carried data, which is why an object will be reconstructed in its entirety before it gets passed to the application. This restriction is not acceptable for applications such as DASH over MBMS.
The LCT header is defined as follows:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | V | C |PSI|S| O |H|Res|A|B| HDR_LEN | Codepoint (CP)|
 +-+
 | Congestion Control Information (CCI, length = 32*(C+1) bits) |
 | ... |
 +-+
 | Transport Session Identifier (TSI, length = 32*S+16*H bits) |
 | ... |
 +-+
 | Transport Object Identifier (TOI, length = 32*O+16*H bits) |
 | ... |
 +-+
 | Header Extensions (if applicable) |
 | ... |
 +-+

 Figure 1: Default LCT Header Format
From the LCT packet header, it becomes clear that most of the information provided here are not used by most of the CDPs. For example, in the case of MBMS delivery, the information in the CCI, TSI, PSI (at least parts thereof). The usage of the A and B flags is not reliable, which makes them useless. Finally, the codepoint indication provides information that is replicated in FLUTE. Consequently, the potential for bit rate saving if those fields are removed amounts to more than 9 bytes per packet, which corresponds to about 1%.
FLUTE
FLUTE is a protocol instantiation that uses ALC and adds a file delivery table with a reserved TOI value. The main addition of FLUTE is the way to carry the metadata of the transport object as well as the information related to the delivery configuration (e.g. FEC-related information). This by itself is a mix of information that are not related to each other and ought to be separated. When using FLUTE for the purpose of streaming, e.g. in the DASH over MBMS, several issues arise such as lack of connection between the transport object that are related, lower error resilience performance due to the FEC building block, processing delays at sender and receiver due again to the FEC building block, manipulation of source packets even if FEC is not used, dependency on the FDT. These issues have been already discussed in detail and were used to motivate for the creation of a new protocol.
Conclusion and Proposal
[bookmark: _GoBack]From the above discussion, it is obvious that the FEC building block, among others, is responsible for many of the issues that arise when using FLUTE for streaming purposes. However, the FEC building block is a core part of ALC/LCT and by consequence of any protocol instantiation that builds up on them. The other building blocks are mainly not used but still consume space in each packet. We propose that the new protocol be developed independently of ALC/LCT and in a way to avoid the issues that the usage of ALC/LCT results in.
References
[1]	IETF RFC 5775, Asynchronous Layered Coding (ALC) Protocol Instantiation
[2]	IETF RFC 6726, FLUTE – File Delivery over Unidirectional Transport
[3]	IETF RFC 5651, Layered Coding Transport (LCT) Building Block
