TSG SA4#75 meeting	Tdoc S4-130997
23-27 September, 2013, Vancouver BC, Canada
[bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Huawei Technologies Co., Ltd
Title:	Use Cases for Advanced Advertising in DASH
Document for:	Discussion and Agreement
Agenda Item:	8
Introduction
Adaptive streaming is becoming a mainstream delivery mechanism for high-value full-length and broadcast content, evolving into a full-fledged alternative to broadcast, cable and IPTV. Ad spots in internet streaming are currently order of magnitude cheaper than these in traditional cable and IPTV environment, however it is our belief is that the market will enforce parity, both in terms of economics and functionality. As a result, advertisers will start expecting same functionality from DASH-based systems in mobile markets same functionality and precision as expected from the traditional cable and IPTV ecosystems. On the other hand, many operators having both cable/IPTV and mobile operations will strive to reuse of their existing content and their existing cable/IPTV backoffice infrastructure as much as feasible.
A generic OTT service may use the operator-provided bandwidth as a "dumb pipe", using advertising, subscription, and billing infrastructure owned by the OTT service operator. From the mobile operator point of view, these are opaque and it has no control over it beyond generic bandwidth throttling -- while application-specific throttling may be technically feasible, it may be legally problematic due to network neutrality issues.
One business case where operator has control is when a mobile operator provides VoD and/or linear service, having either secured the rights from a content owned or distributor or providing it on their behalf. In cable/IPTV world this is roughly equivalent to "affiliate".
This case agrees with the first working assumption in section 6.17.3 of TR26.938 and is the underlying assumption for the discussion below.

[bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: _Ref367232639]Generic description of ad insertion system
Introduction
An ad insertion system can be described in terms of three concepts: cues, triggers, and ad decision. Cues indicate the locations of ad breaks in the media, which are known at content generation time. Ad decision is a process done in real time (i.e., close to the ad break start time) by an ad server given trigger information. The result of ad decision is the actual content filling the ad break, while the trigger information is a cue description, containing at the least some information identifying the upcoming ad break and its start time.
Thus ad insertion can be completely described as a simple two-stage process, with an ad break scheduled for media time t at content generation time, and ad content for this break determined slightly prior to the absolute wall-clock time T of to which media time t is mapped.
Typical architectures
The possible architectures can be classified based on the location of component that communicates with the ad decision service: a server-based approach assumes a generic DASH client and all communication with ad decision services done at the server side (even if this communication is triggered by a client request for a segment, remote element, or an MPD. The app-based approach assumes an application running on the UE and controlling one or more generic DASH clients.
Server-based approach has to be based on a single MPD describing the complete presentation, including inserted content, while in app-based approach multiple MPDs are expected.
Ad insertion workflows can be roughly classified into linear and elastic. Linear workflows (e.g., live feed from an event) has ad breaks of known durations which have to be taken: main content will only resume after the end of the break and the programmer / operator needs to fill them with some inserted content. Elastic workflows assume that the duration of an ad break at a given cue location is determined only when encountered by the client, thus the effective break length can vary (and can be zero if a break is not taken).

App-driven ad insertion
Introduction
In an app-driven approach, there is a presentation layer application ("app"), that controls one or more DASH clients. The app itself handles communication with ad servers, tracking, etc. DASH is used to convey information that is needed to trigger ad decision process, while the resulting ad content may be described by a different MPD.
This architecture does not assume multiple decoders – with careful conditioning it is possible to do traditional splicing where inserted content is passed to the same decoder. Moreover, it is possible to implement this with a single instance of a DASH client, where a client context can be switched (i.e., state can be saved and restored, in a way similar to processes in an operating system)
The benefit of such architecture is that it lets complex use cases be implemented by a layer above the DASH client, keeping the latter simple. The downside is lack of interoperability, as there is no specification for the "app" and its interfaces.
Use Cases
Same as in all other ad insertion use cases – any use case that can be handled by a single DASH client and a single MPD, can be handled by an architecture providing for multiple clients and multiple MPDs.
More complex use cases such as ones described in sec. 3.2.3, lend themselves to easier implementation using app-driven approach, as client context switching is powerful enough to permit ad playout at an arbitrary place within the main content.
Working assumptions
App control
An app is able to control multiple DASH clients. This implies the existence of an underlying DASH client API, which can be instantiated with an MPD and (optionally) session state.
Multiple MPDs
A complete presentation may be described by more than one MPD. One possible case would be main content having a single MPD, while inserted ads having their own MPDs ore a single MPD for a complete ad break.
DASH as a transport layer
DASH will be used as means of triggering ad decision (and consequent context switch). It is possible to preload a complete out-of-band schedule of ad breaks at the beginning of VOD playback (this is how IAB VMAP operates), however this is impractical in live service due to unpredictability of arriving ads.
Trusted app
The app and the client have been vetted by the operator and/or by the content owner. It is possible to verify that both app and client are the trusted ones. . There is an MPEG CE on alternatives, which may invalidate this assumption
Analysis
The add-driven ad insertion in live cases is enabled by DASH events (added in ISO/IEC 23009-1:2012 AMD1). Events are used to carry information needed to trigger the app communication with ad servers.
Typically SCTE 35 is used as trigger information. Originally SCTE 35 was defined only for MPEG-2 TS, however the upcoming SCTE 35 2013 also defines a container-independent XML representation.
Media-centric workflow
In this approach all information needed to trigger ad decision is expressed in the media segments themselves. This way, inband `emsg` boxes will carry trigger information (typically – XML representation of SCTE 35). The `emsg` event timing would indicate the intended splice time in media time.
MPD-centric workflow
MPD Validity Expiration event is inserted into a media segment the moment a cue message .
This event triggers an MPD update, and not an ad decision, hence the Validity Expiration event should appear early enough to allow for both MPD update and ad decision.
As opposed to the media-centric approach above, this approach also requires dynamic MPD.
Gap analysis
Tools introduced in DASH AMD1 are both essential and sufficient to cover the app-driven approach.
Tracking
Use case
Operator Camelot Wireless has the rights to an ad-supported Camelot News Network programming. The Spam, Egg and Bacon, LLC is an advertiser purchasing ad slots from Camelot Wireless. Camelot Wireless bills Spam, Egg and Bacon by impression, and needs to verify that an ad is actually played in order to be able to bill them.
Analysis
A working assumption here is existence of a trusted client, vetted by both the advertiser and operator. There is an MPEG CE on alternatives, which may invalidate this assumption.
It is currently possible to log HTTP GET requests and derive tracking information from it.

Generic alternative: hybrid server/app architecture
In a hybrid server/app architecture, a single-MPD server-based client is augmented with additional information using non-DASH format. The standard DASH client is still able to play the presentation and resolve remote periods into ads, however extended functionality will be available to clients that have modules handling these non-DASH XML-based formats.
The reason for use of non-DASH formats is avoiding reinventing the wheel and making integration with existing ecosystem easier – e.g., there is a widely deployed VAST standard that provides sufficiently rich information.
Same approach can be used to implement additional auxiliary functionality w/o complicating the DASH client architecture.
As in the app-based approach, support for DASH events is the enabler for this architecture -- the most reasonable way of conveying e.g. VAST information is event payload.

Random access and trick modes in context of ad insertion
Use Cases
Use Case 1: Skipped ad replay
Arthur is watching his favourite movie, "The Holy Grail". When shrubbery is discussed, an ad break starts, with ads for local shrubberers and home and garden supply stores. Then the movie is resumed. Arthur promptly pauses a shrubberer's ad, places an order, and goes back to his movie. As the movie resumes, Arthur realizes he forgot why was the shrubbery needed in the movie and rewinds back. As he starts the movie playout before the ad break, the ad break is skipped and the movie goes on uninterruptedly.
Use Case 2: Jump
Arthur starts viewing his favourite movie. After the first ten minutes he decides to skip to the scene of Sir Galahad's memorable visit to Castle Anthrax. The movie is authored in a way that there are several ad breaks between Arthur's current position in the movie and his desired position within the movie. Before the playout is resumed at the desired scene, the ad break immediately preceding the scene is played, however the rest of the breaks are skipped.
Use Case 3: Trick modes within ad break
Arthur is watching his favourite movie, "The Holy Grail". He already knows that an ad for spam takes one minute. As it starts, he attempts to fast forward through the ad. Unfortunately, he is unable to that and he can only rewind, pause, and view the ad normally. The next ad is for an antidepressant, so Arthur pauses the playback to look into the matter. Having finished the order, he resumes playback.
Use Case 4: Replay of an ad break.
Arthur is watching some tournament content he recorded a few days ago. He distinctly remembers that an ad for spam took one minute, and was followed by a 30-sec antidepressant ad.
However, this time he sees a 30-sec ad for reverse mortgage on castles and a 3-min trailer for a new movie from Camelot Entertainment.
Use Case 5: Progress bar
Arthur is looking at the user interface of his DASH player. He notices that there is a progress bar over the whole movie displaying its correct duration. The bar disappears when an ad is played, and returns back when the movie resumes. Arthur also notices that any time he jumps to the 42nd minute into the movie he arrives at the same place. He carefully recorded the amount of time it took him to get there by uninterrupted playback, and his results varied between 50 and 67 minutes.

A typical ad break takes a few minutes and is typically subdivided into several slots that are filled with the actual advertisement or promotional content. The decision on ad break composition is taken close to its start time.
Analysis
Mutable ad decision
In case of on demand content (VoD, pre-recorded or time-shifted content), the same point on media timeline can be presented several times during the same presentation, due to trick modes. Ad presented at the same splice point may, consequently, be different every time the splice point is reached, sometimes resulting in a choice not to use an available ad break.
The upcoming 2nd edition of ISO/IEC 23009-1 has XLink improvements that allow repeated resolution of remote elements if a dereferenced element contains the @xlink:href attribute. Moreover, a special URN in the @xlink:href attribute indicates that next time the element will be ignored.

 Ad-level trick mode restrictions
Restricting trick modes are a very common use case. Advertisers and service providers are e.g. not interested in viewers skipping ads by fast forward, however they may want to allow pause/resume functionality.
There is nothing in DASH that suggests trick mode behavior.
What needs to be expressed is a set of allowed trick play speeds or speed ranges. Such a restriction needs to be expressed at a Period level.

[bookmark: _Ref367230763]Trick play over ad breaks
As a rule, ads skipping is frowned upon – they may not be skipped at a first playout, but different business policies can cover playout when trick modes skips "over" one or more ad breaks.
A consequence of this is that operation causing random access past an ad trigger has to trigger dereferencing of a remote element.
At the dereferencing time there is also no interoperable way to provide state information (e.g., say "we are dereferencing while in trick mode").
The behaviors that can be achieved now (as of 2nd edition) are:
· Treating all ads as normal content;
· Skipping ad breaks that were already taken (by using the <<<tba>>> URN in @xlink:href attribute
More complex behaviors occurring in adaptive streaming deployments on fast forward include showing ads at normal speed after the end of the fast forward operation, where the ad breaks taken can be e.g. the last ad break prior to the point at which the user resumes playback, or (more inhumanely) showing several or all skipped breaks. Similar policies are often applied to random access – i.e., starting playout at an offset.
Some of the behaviors that cannot currently be expressed:
· Which ads need to be played out immediately when normal playback is resumed (note that this may occur in the middle of the period).
· Whether dereferencing needs to occur when the remote element is accessed during trick mode. Note that cookies are not overly useful in this context, as there is no way of distinguishing trick mode requests for segments from ones needed for normal playback.

While there seemingly is a gap in functionality, use cases that make client implementation overly complex should be avoided – more complex cases may need to be deferred to an architecture based on presentation layer controlling one or more of DASH clients, rather than solved at the DASH client level.

Ad Insertion in DASH over eMBMS
Use cases
Use Case 1: Localized ad insertion
New England Mobile is a mobile operator providing linear programming using DASH over eMBMS in the densely built New York. The New White Rose Foods supermarket chain has multiple small stores scattered around the megapolis. It runs a campaign and wants to attract shoppers to closest locations. Both Henry and Margaret are watching the Tournament Network. During an ad break, Henry, who is at the corner of avenue H and 42nd street, will see an ad for the New White Rose store at 39th and H, while Margaret who is at A and 42nd will see the one for the corner of B and 42nd.
Use Case 2: Coarse targeting
New England Mobile analyzed age and credit score of its subscribers, creating several classes of customers. It decides to do rough targeting, hence customers over 65 with credit rating of 740+, will see reverse mortgage ads, while at the same time customers with credit score lower than 600 and who are in their twenties and thirties.
Analysis
Use cases for DASH over eMBMS are same use cases as ones for any live service, and are transparent for a DASH client. With that said, the cost of unicast may be significant enough to try eliminating or minimizing requests for non-cached media and MPD. The ideal solution would allow both use cases with minimal unicast traffic.
DASH provides enablers for both use cases with no unicast traffic. MPD Patch events introduced in AMD1 can be used to update MPD with new remote events, while the remote period files can be provided over eMBMS.
Different BaseURLs can be used to provide personalization to XLink URLs (which need to be relative). This requires generation of personalized MPDs for each class of subscribers.

Proposal

It is proposed to create a single section on ad insertion instead of two separate ones in TR 26.938, which separately cover live and on-demand cases. We suggest starting it with the description provided in sec. 2.
It is proposed to add the remaining sections to the unified ad insertion section.
3

