TSG SA4#74 meeting 	Tdoc S4-130714
8-12 July, Dublin, IE	 
Source:	Samsung Electronics Co., Ltd.
Title:	Alternative Reference Architecture for DASH over MBMS
Document for:	for discussion and agreement
Agenda Item:	7

Introduction
DASH over MBMS has been introduced as early as Release 9. DASH segments are treated as regular files and are transported as transport objects in a FLUTE session. DASH over MBMS relies on an implicit assumption, which is that the segments referenced by the MPD using HTTP URLs will be carried over FLUTE under exactly the same URL reference. In other words, the FLUTE FDT will identify the segments using their MPD references and thus provides a different URL resolution mechanism. In regular DASH over unicast, the URL of a segment is resolved using DNS to the IP address of a web server that will serve that segment. In DASH over MBMS, the URL of a segment will be resolved to the MBMS download session configuration and the TOI of the transport object that carries that segment.
The DNS resolution in the unicast case is fully transparent to the DASH client, as it is performed by the socket API, which is used by the HTTP stack implementation at the client. 
It was proposed several times that a similar approach is realized for the DASH over MBMS case, so that the resolution of the HTTP URL to a FLUTE transport object should remain transparent to the DASH client. A possible way of doing this is to server the HTTP requests from the DASH client from a proxy server that is located in the UE (or in a node in the home network) and aliment the proxy server with the DASH segments via MBMS. This approach was proposed in [1]. However, this approach may lead to a design of a system that is optimized for this reference architecture, whereas it is rather an unrealistic implementation option. Deploying a proxy server on the UE is costly and may result in significant traffic delays due to the proxy server processing at the UE. 
In this contribution, we propose an alternative reference architecture that makes use of HTTP caches to realize the interface between the DASH client and the MBMS FLUTE receiver.
Alternative Reference Architecture
The following figure provides the reference architecture for a DASH over MBMS client.


Figure 1 DASH over MBMS - Reference Client Implementation
According to this reference client implementation, a DASH client uses a local application web cache to serve its requests. The application web cache is shared with the MBMS client that implements a FLUTE receiver. Upon reception and reconstruction of DASH media segments over FLUTE, the segments are inserted into the application web cache. 
In order to ensure that segments are served from the cache, the segments need to be present in the cache by the time of the request, which may be as soon as the segment’s availability time. It is the responsibility of the BM-SC to ensure that the segments are distributed well before their segment availability time over MBMS to allow for correct reception and caching. 
Another challenge is the DASH client’s representation switching behavior. As segments are being served from the cache, the segment fetch time will be very short. This might be misinterpreted by the DASH client as high bandwidth availability and the client might want to switch to a higher bandwidth Representation. A solution to this could be the indication to the DASH client that the segment was served from an intermediate cache. This fact should then be taken into account by the DASH client, which should stick to the same Representation as it is available locally. 
Example Implementations 
HTML 5 defines a web storage API. A manifest file is referenced from the HTML 5 file and provides a list of files that are to be stored locally for later consumption. That file may be used to indicate that all segments from the MPD are to be stored in the cache. The browser will check the local storage when playing the DASH presentation and will retrieve the segments from there whenever possible and as instructed by the manifest file.

Android also provides the ability for the HTTP client to use a local cache for serving its requests. A shared cache file can be created in the external cache directory, which can be located using the getExternalCacheDir() function. An application cache can then be installed in a file in that folder and may be shared by both the DASH client and the FLUTE receiver. The cache is installed using the HttpResponseCache class. Requests are then sent using the HttpURLConnection class. 
[bookmark: _GoBack]Conclusion
We propose to adopt the proposed architecture as a possible DASH over MBMS client architecture and to ensure any developed solution also works with this architecture. 
References
[1] S4-130418, DASH and MBMS: Baseline Reference Architecture 
image1.emf
DASH ClientApplication Web CacheFLUTE Receiver


Microsoft_Visio_Drawing1.vsdx
DASH Client
Application Web Cache
FLUTE Receiver



