TSG SA4#74 meeting 	Tdoc S4-130712
8-12 July, Dublin, IE	 
Source:	Samsung Electronics Co., Ltd.
Title:	Advanced FLUTE
Document for:	for discussion and agreement
Agenda Item:	7

Introduction
In the SA4 meeting #73, we agreed to study the potential for a new, optimized, transport protocol that fixes the shortcomings of FLUTE based on the contribution in [1]. It is expected to be more suitable for streaming applications over multicast/broadcast channels such as DASH over MBMS and progressive download. In this contribution, we provide some requirements that the new protocol needs to satisfy. 
Requirements for FLUTE Advanced
The following list provides and discusses a set of requirements for the new protocol.
· Self-contained Objects: the client should be able to locate and reconstruct the transmitted resource without having to fetch another object. In FLUTE, the receiver needs to first fetch an FDT instance, which is carried with a TOI 0, and then parse the XML file and locate the TOI for the object of interest. The TOI assignment to a specific is arbitrary (although it is assigned in incremental order) because the number of files delivered over the FLUTE session and their order may not be known a-priori. Proposals for splitting the TOI space would also not work because the TOI is required to be incremented by one for each new file and gaps are not allowed. In the Advanced FLUTE, the file should be self-contained, i.e. it should contain its own metadata to enable the client to identify it. Out-of-band signaling is also possible. 
· Media Awareness: FLUTE comes with a FEC building block that divides the file into several source blocks of (almost) equal size and each source block is then divided into equal size packets, so called source symbols. When DASH media segments are being delivered, the source blocks and packets will have arbitrary boundaries inside the segment, which means that each packet or source block will by itself be useless to the application layer. Recovery is performed source block by source block, which is useless because a source block by itself is of no use. Note also that in a streaming application, there is little time to perform file repair to recover from losses. The advanced FLUTE protocol should allow for media aware packetization of the data, so that almost any received data can be useful and used by the application layer.
· Partial Access: As discussed in the previous requirement, a whole file is partitioned by the sender and recovered at the receiver. Without having the full file at the sender, transmission cannot be started. Also the whole file needs to be recovered before it can be forwarded to the application layer. This is not suitable for a streaming application, where quick transmission and quick access to the media data is required. The advanced FLUTE protocol should enable partial access to the transported resources at the client. It should also enable partial transmission of the resource (without having the full resource available) at the sender. 
· [bookmark: _GoBack]Error Resilience: FLUTE provides error resilience tools for file protection that are FEC and file repair. Both mechanisms are medium to high delay mechanisms. For instance, the FEC erasure correction performance diminishes with the decreasing size of the source block. So for meaningful error correction, larger source block and by consequence longer delays are required. File repair requires setting up a unicast channel connection and fetching the missing data over unicast. This happens after exhausting error recovery efforts over broadcast and will significantly increase the delay. These approaches are not acceptable for a streaming application such as DASH over MBMS. The advanced FLUTE protocol should enable low delay FEC protection and other error resilience tools, such as identification and retransmission of important media units. 
Conclusion
We propose to adopt the above list of requirements as part of the requirements for the new transport protocol. 
References
[1] 	S4-130419, MI-EMO: Potential FLUTE Enhancements
