3GPP TR 26.947 V1.4.0 (2013-01)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Multimedia Broadcast/Multicast Service (MBMS)
Selection and Characterisation of Application Layer FEC
(Release 11)

[image: image1.jpg]

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, LTE, IP, MBMS, codec, broadcast, multimedia
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2011, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
8
4
Use of FEC in MBMS
8
4.1
 Introduction
8
4.2
 Architecture
8
4.3
 MBMS Bearer in UTRAN
9
4.4
 MBMS Bearer in E-UTRAN
10
4.5
 Streaming Delivery User Service
10
4.5.1
Introduction
10
4.5.2
Transport in streaming delivery service
10
4.5.3
Examples
11
4.6
 Download Delivery User Service
11
4.6.1
Introduction
11
4.6.2
Transport in download delivery service
12
4.6.3
Download Examples
12
4.7
 Streaming using DASH and Download Delivery User Service
13
5
MBMS Bearer Service Channel Modelling
13
5.1
Introduction
13
5.2
Modelling of UTRAN MBMS Bearer
13
5.3
Modelling of E-UTRAN MBMS Bearer
14
6
FEC Evaluation Procedure
17
6.1
Introduction
17
6.2
Simulation Conditions
18
6.2.1
Simulation conditions and assumptions (UTRAN)
18
6.2.2
Simulation conditions and assumptions (LTE eMBMS)
18
6.2
Code Performance
19
6.2.1
Introduction
19
6.2.2
Method 1
19
6.2.2.1
Evaluation Procedure
19
6.2.2.2
Test Cases
21
6.2.2.3
Performance Metrics
21
6.2.3
Method 2
22
6.2.3.1
Evaluation Procedure
22
6.2.3.2
Test Cases
22
6.2.3.3
Performance Metrics
23
6.3
Download Performance
24
6.3.1
Performance Metrics
24
6.3.2
Download Performance over UTRAN
24
6.3.3
Download Performance over LTE
25
6.4
UTRAN Streaming Performance
27
6.5
Streaming Performance over LTE
28
6.6
Implementation-specific Performance Metrics
31
6.7
Device-based Complexity Evaluation
31
6.7.1
Introduction
31
6.7.2
Test Cases
31
6.7.3
Test Conditions & Test Procedure
32
6.7.3.1
Overview Test Platform and Operation Conditions
32
6.7.3.2
Download Delivery
32
6.7.3.2.1
Summary Test Cases
32
6.7.3.2.2
Generate FLUTE Packet Test Streams
33
6.7.3.2.2.1
Process
33
6.7.3.2.2.2
Output
34
6.7.3.2.3
Generate Erroneous Packet Streams
34
6.7.3.2.3.1
LTE Traces
34
6.7.3.2.3.2
Apply to LTE traces to PCAP streams
35
6.7.3.2.3.3
Output
36
6.7.3.2.4
Generate Device Performance Measures
36
6.7.3.2.4.1
Setup
36
6.7.3.2.4.1
Code-specific Tools
37
6.7.3.2.4.1.1
Read from network and write to SD
37
6.7.3.2.4.1.2
Decoding from and to SD card
37
6.7.3.2.4.2
Process
37
6.7.3.2.4.2
Error Free Process
38
6.7.3.2.4.3
Output
38
6.7.3.2.5
Evaluation
38
6.7.3.2.5.1
General
38
6.7.3.2.5.2
Correct Decoding
38
6.7.3.2.5.3
Performance Evaluation
38
6.7.3.2.5.4
Performance Documentation
39
6.7.3.3
Streaming Delivery
40
6.7.3.3.1
Summary Test Cases
40
6.7.3.3.1
Generate FLUTE Packet Test Streams
40
6.7.3.3.1.1
Process
40
6.7.3.3.1.2
Output
41
6.7.3.3.2
Generate Erroneous Packet Streams
42
6.7.3.3.2.1
LTE Traces
42
6.7.3.3.2.2
Apply to LTE traces to PCAP streams
43
6.7.3.3.2.3
Output
43
6.7.3.3.3
Generate Device Performance Measures
44
6.7.3.3.3.1
Setup
44
6.7.3.3.3.2
Decoder
44
6.7.3.3.3.3
Process
45
6.7.3.3.3.4
Error-Free Process
45
6.7.3.3.3.4
Output
45
6.7.3.3.4
Evaluation
46
6.7.3.3.4.1
General
46
6.7.3.3.4.2
Correct Decoding
46
6.7.3.3.4.3
Performance Evaluation
46
6.7.3.3.4.4
Performance Documentation
47
6.7.4
Attachments
47
6.7.5
Verification Process
47
7
FEC Candidates
48
7.1
Introduction
48
7.2
Benchmark Codes
48
7.2.1
Ideal Code
48
7.2.2
MBMS FEC RFC 5053
48
7.3
RS+LDPC
48
7.4
Supercharged Codes
48
7.5
6330 Code
48
8
Performance of FEC Codes
49
8.1
Benchmark Codes: Ideal Code and RFC 5053
49
8.2
Candidate Results
51
8.3
Verification
51
8.3.1
Introduction
51
8.3.1
Verification of RS+LDPC Code
51
8.3.2
Verification of 6330 Code
51
8.3.3
Verification of Supercharged Code
51
9
Other FEC Enhancements
51
9.1
Introduction
51
9.2
Graceful Degradation (GD) - FEC
52
9.2.1
Introduction
52
9.2.2
GD-FEC Operations and Requirements
52
9.2.3
GD-FEC Encoding/Decoding Examples
52
9.2.4
Conclusion on GD-FEC
54
10
Conclusions
54
Annex A Simulation Conditions
55
A.1
Simulation Procedure for download delivery
55
A.2
Simulation Procedure for streaming delivery
55
Annex B Tools for device-based evaluation
57
B.1
Split file into segments and generate MD5
57
B.2
Generate Markov Traces
57
B.3
Root access for Galaxy S2
58
B.4
Time Command on Android Device
59
B.5
USB tethering of Android Devices
59
B.5.1
Requirements
59
B.5.2
Enable USB tethering on Android
59
B.5.3
Network structure
59
B.6
Play a PCAP
59
B.6.1
Windows
59
B.6.2
Unix & Win32/Cygwin
60
B.7
Android SSH server
60
B.8
Verify Segment Decoding
60
Annex <X>: Change history
60

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The on-going commercialization of LTE networks has precipitated increasing interest in the deployment of eMBMS. As the industry is considering the first deployments of eMBMS it is important to enhance the performance and usability of its core features.

After development of the initial MBMS specifications, SA4 has focused its subsequent work on adding new features to the service. While application layer FEC usage in support of download and streaming delivery methods have been specified since Rel-6, those mechanisms have not been updated to reflect performance improvement developments in more recent years. Examples of ongoing FEC enhancement efforts are the latest activities in IETF’s RMT and FECFRAME working groups. Such FEC improvements can also provide more efficient support of MBMS use cases.

The objective of this TR is to document the progress of the work item to investigate and evaluate proposed FEC technologies and, if appropriate, adopt one which provides the most significant enhancement to the performance of the MBMS system over the Rel-6 application layer FEC in MBMS. Aspects of system performance, which would provide benefit to the system, include, but are not limited to
· Improving the bandwidth efficiency of streaming and download services delivery over MBMS

· Improving the reliability of streaming and download services delivery over MBMS, e.g. by increasing the amount of tolerable lost packets for a given FEC overhead

· Reducing the required computational and memory resources for decoding in UEs

· Addressing backward compatibility issues by considering deployments of pre-Rel-11 MBMS FEC

The evaluation and selection process for the proposed improvements is documented in this TR.
1
Scope

The present document documents the progress of the work item to investigate and evaluate proposed FEC technologies and adopt one which provides the most significant enhancement to the performance of the MBMS system over the Rel-6 application layer FEC in MBMS.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.146: "Multimedia Broadcast/Multicast Service (MBMS); Stage 1".

[3]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[4]
IETF RFC 3926 (October 2004): "FLUTE - File Delivery over Unidirectional Transport", T. Paila, M. Luby, R. Lehtonen, V. Roca and R. Walsh.

[5]
IETF RFC 5053 (February 2004): "Raptor Forward Error Correction Scheme for Object Delivery", M. Luby, M.Watson, A. Shokrollahi, and T. Stockhammer.

[6]
IETF RFC6363, "Forward Error Correction (FEC) Framework," M.Watson, A. Begen and V. Roca, October 2011.

[7]
3GPP TR 36.942, "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios."

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Multimedia Broadcast/Multicast Service (MBMS): See 3GPP TS 22.146 [2].
MBMS user services: See 3GPP TS 22.246 [3].

MBMS delivery method: mechanism used by a MBMS user service to deliver content
There are two MBMS delivery method instances: download and streaming.

MBMS download delivery method: delivery of discrete objects (e.g. files) by means of a MBMS download session

MBMS streaming delivery method: delivery of continuous media (e.g. real-time video) by means of a MBMS streaming session

MBMS download session: time, protocols and protocol state (i.e. parameters) which define sender and receiver configuration for the download of content files

MBMS streaming session: time, protocols and protocol state (i.e. parameters) which define sender and receiver configuration for the streaming of content
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
ALC
Asynchronous Layered Coding

BM-SC
Broadcast-Multicast - Service Centre

ESI
Encoding Symbol ID

FDT
File Delivery Table

FEC
Forward Error Correction

FLUTE
File deLivery over Unidirectional Transport

IP
Internet Protocol

LCT
Layered Coding Transport

MBMS
Multimedia Broadcast/Multicast Service

PSS
Packet Switch Streaming

RTP
Real-Time Transport Protocol

SBN
Source Block Number

TOI
Transport Object Identifier

UDP
User Datagram Protocol
4
Use of FEC in MBMS

4.1

Introduction

Application Layer FEC is used in MBMS to compensate remaining losses on or below the IP layer in unidirectional delivery environments.
4.2

Architecture

Figure 1 depicts the MBMS network architecture showing MBMS related entities involved in providing MBMS user services as specified in TS26.346 [3] with special focus to the FEC component. The FEC is included in the MBMS User Services which are part of the BM-SC on the network side and MBMS receiver on the UE side. FEC is specifically included in the File Delivery over Unidirectional Transport (FLUTE) [4] protocol and the Forward Error Correction (FEC) Framework (FECFRAME) [6] protocol.
[image: image3.png]BM-SC

Core Network

GERAN/UTRAN/E-UTRAN

GGSN/SGSN
FLUTE FECFRAME ||
FEC FEC MBMS-GW
MBMS Receiver
FLUTE FECFRAME Radio Network
FEC FEC GERAN
[| uTraNn
IP/UDP
E-UTRAN

Figure 1 Overview on FEC operation in MBMS

4.3

MBMS Bearer in UTRAN

The MBMS UTRAN Bearer service reuses most of the legacy UMTS protocol stack in the packet-switched domain. Only minor modifications are introduced to support MBMS. The IP packets are processed in the Packet Data Convergence Protocol (PDCP) layer where for example header compression might be applied. In the Radio Link Control (RLC) the resulting PDCP-Protocol Data Units (PDUs), generally of arbitrary length, are mapped to fixed length RLC-PDUs. The RLC layer operates in unacknowledged mode as feedback links on the radio access network are not available for point-to-multipoint bearers. Functions provided at the RLC layer are for example segmentation and reassembly, concatenation, padding, sequence numbering, reordering and out-of-sequence and duplication detection. The Medium Access Control (MAC) layer maps and multiplexes the RLC-PDUs to the transport channel and selects the transport format depending on the instantaneous source rate. The MAC layer and physical layer appropriately adapt the RLC-PDU to the expected transmission conditions by applying, among others, channel coding, power and resource assignment, and modulation.

4.4

MBMS Bearer in E-UTRAN
The MBMS E-UTRAN Bearer service reuses most of the legacy LTE protocol stack in the packet-switched domain. Only minor modifications are introduced to support MBMS. The IP packets are processed in the Packet Data Convergence Protocol (PDCP) layer where for example header compression might be applied. In the Radio Link Control (RLC) the resulting PDCP-Protocol Data Units (PDUs), generally of arbitrary length, are mapped to fixed length RLC-PDUs. The RLC layer operates in unacknowledged mode as feedback links on the radio access network are not available for point-to-multipoint bearers. Functions provided at the RLC layer are for example segmentation and reassembly, concatenation, padding, sequence numbering, reordering and out-of-sequence and duplication detection. The Medium Access Control (MAC) layer maps and multiplexes the RLC-PDUs to the transport channel and selects the transport format depending on the instantaneous source rate. The MAC layer and physical layer appropriately adapt the RLC-PDU to the expected transmission conditions by applying, among others, channel coding, power and resource assignment, and modulation.

4.5

Streaming Delivery User Service
4.5.1
Introduction

The purpose of the MBMS streaming delivery method is to deliver continuous multimedia data (i.e. speech, audio, video and DIMS) over an MBMS bearer. The streaming delivery method is particularly useful for multicast and broadcast of scheduled streaming content. RTP is the transport protocol for MBMS streaming delivery. RTP provides means for sending real-time or streaming data over UDP.

TS26.346 defines a generic mechanism for applying Forward Error Correction to streaming media. The mechanism consists of three components:

(i)
construction of an FEC source block from the source media packets belonging to one or several UDP packet flows related to a particular segment of the stream(s) (in time). The UDP flows include RTP, RTCP, SRTP and MIKEY packets.

(ii) modification of source packets to indicate the position of the source data from the source packet within the source block

(iii) definition of repair packets, sent over UDP, which can be used by the FEC decoder to reconstruct missing portions of the source block.

The details on transport for the streaming delivery service are provided below.

An alternative way to deliver streaming services over MBMS is the use of DASH and FLUTE. This is use case is discussed in section 4.7.

4.5.2
Transport in streaming delivery service

The MBMS streaming framework operates on RTP packets or more precisely UDP payloads, incoming at same or different UDP ports. According to TS26.346, clause 8.2.2, the FEC layer for streaming delivery is based on top of the UDP layer. The legacy RTP packets and the UDP port information are used in order to generate FEC repair symbols. Original UDP payloads become FEC source packets by appending a 3 byte FEC source payload ID field at the end of each UDP payload. These packets are then UDP encapsulated and transported on the IP multicast bearer.

According to Figure 1 a copy of these packets is forwarded to the FEC encoder and is arranged in a source block with row width T bytes at the first empty row. The encoding symbol starts at the beginning of a new row, but it is preceded by a 3 byte field containing the UDP flow ID (1 byte) and the length field (2 bytes). In case the length of the packet is not an integer of the symbol the remaining bytes in the last row are filled up with zero bytes. The source block is filled up to k rows whereby k is flexible and can be changed dynamically for each source block. The selection of k depends on the desired delay, the available terminal memory and also might depend on aspects such as desired zapping time in mobile TV applications. Typically for a streaming service a protection period is defined and the value of the protection period dynamically determines the source block size.

[image: image4.emf]UDP Flow 0 UDP Flow 0

UDP Flow 1

Media Payload

RTP Header

Media Payload

RTP Header

Media Payload

RTP Header

0 0 0 0 0 0

B

2,102

B

2,101

B

2,100

B

2,99

B

2,98

B

2,97

B

2,96

B

2,95

B

2,94

B

2,93

B

2,92

B

2,91

B

2,90

B

2,89

B

2,88

B

2,87

B

2,86

B

2,85

B

2,84

B

2,83

B

2,82

B

2,81

B

2,80

B

2,79

B

2,78

B

2,77

B

2,76

B

2,75

B

2,74

B

2,73

B

2,72

B

2,71

B

2,70

B

2,69

B

2,68

B

2,67

B

2,66

B

2,65

B

2,64

B

2,63

B

2,62

B

2,61

B

2,60

B

2,59

B

2,58

B

2,57

B

2,56

B

2,55

B

2,54

B

2,53

B

2,52

B

2,51

B

2,50

B

2,49

B

2,48

B

2,47

B

2,46

B

2,45

B

2,44

B

2,43

B

2,42

B

2,41

B

2,40

B

2,39

B

2,38

B

2,37

B

2,36

B

2,35

B

2,34

B

2,33

B

2,32

B

2,31

B

2,30

B

2,29

B

2,28

B

2,27

B

2,26

B

2,25

B

2,24

B

2,23

B

2,22

B

2,21

B

2,20

B

2,19

B

2,18

B

2,17

B

2,16

B

2,15

B

2,14

B

2,13

B

2,12

B

2,11

B

2,10

B

2,9

B

2,8

B

2,7

B

2,6

B

2,5

B

2,4

B

2,3

B

2,2

B

2,1

B

2,0

103 1

0 0 0 0 0 0 0 0 0

B

1,51

B

1,50

B

1,49

B

1,48

B

1,47

B

1,46

B

1,45

B

1,44

B

1,43

B

1,42

B

1,41

B

1,40

B

1,39

B

1,38

B

1,37

B

1,36

B

1,35

B

1,34

B

1,33

B

1,32

B

1,31

B

1,30

B

1,29

B

1,28

B

1,27

B

1,26

B

1,25

B

1,24

B

1,23

B

1,22

B

1,21

B

1,20

B

1,19

B

1,18

B

1,17

B

1,16

B

1,15

B

1,14

B

1,13

B

1,12

B

1,11

B

1,10

B

1,9

B

1,8

B

1,7

B

1,6

B

1,5

B

1,4

B

1,3

B

1,2

B

1,1

B

1,0

52 0

0 0 0

B

0,25

B

0,24

B

0,23

B

0,22

B

0,21

B

0,20

B

0,19

B

0,18

B

0,17

B

0,16

B

0,15

B

0,14

B

0,13

B

0,12

B

0,11

B

0,10

B

0,9

B

0,8

B

0,7

B

0,6

B

0,5

B

0,4

B

0,3

B

0,2

B

0,1

B

0,0

26 0

Source Symbol Length T

S

B

L

ESI 0

ESI 1

ESI 2

ESI

(k-1)

Length 26

Length 52

Length 103

Figure 2 MBMS Streaming Framework

After processing all packets to be protected within one source block, the FEC encoder generates n-k FEC repair symbols of size T by applying FEC. The generated FEC repair symbols can be transmitted individually or as blocks of symbols as payload of a single UDP packet. Each FEC source and repair packet contains sufficient information such that the receiver can correctly insert them in the receiver source and repair block.

4.5.3
Examples

Examples are audio streaming applications or video streaming applications with bitrates ranging from 32 kbit/s to one or several MBit/s. The protection period is typically in the range of several seconds.
4.6

Download Delivery User Service

4.6.1
Introduction

According to TR26.946, the MBMS Download Delivery Method allows the error-free transmission of files via the unidirectional MBMS Bearer Services. The files are "downloaded" and stored in the local files-system of the user equipment. Files may contain multimedia content or any other binary data. The MBMS Download Delivery Method allows the transmission of an arbitrary number of files within a single data transfer phase.

[image: image5.emf]FDT inst.

#y

File 1

MBMS Download Session #n

MBMS Bearer Service #x

MBMS Download User Service

File 2

FDT inst.

#(y+1)

File 1

MBMS Download Session #n+1

File 2 File 3

t

FDT inst.

#y

File 1

MBMS Download Session #n

MBMS Bearer Service #x

MBMS Download User Service

File 2

FDT inst.

#(y+1)

File 1

MBMS Download Session #n+1

File 2 File 3

t

Figure 1: Definition of MBMS Download Sessions

Figure 1 is an example of an MBMS User Service based on the Download Delivery Method. The file transmission events are organized in MBMS Download Sessions. Each session is started with a File Delivery Table (FDT) instance, which describes in this example each file within the MBMS Download Session in terms of file name and file type (MIME Content Type). The service operator and the actual service determine the timing of MBMS Download Sessions. Depending on the service type, the MBMS Download session may require strict or more relaxed time-constraint delivery of content.

4.6.2
Transport in download delivery service

This clause explains briefly how files are constructed for and transported during a FLUTE session. The BM-SC takes a file, e.g. a video clip or a still image, which is used as the transport object for FLUTE (see figure 2). The BM-SC constructs source blocks by breaking the file into contiguous portions of approximately equal size. Each source block is broken into source symbols. One or more encoding symbols are carried as the payload of a FLUTE packet, thus the FLUTE packet size must be divisible by the encoding symbol size. The target FLUTE packet size is configured by the BM-SC and, together with the file size, is used to determine the encoding symbol length. When FEC is used it may be beneficial to include several symbols in each FLUTE packet. Based on the transport object size, the encoding symbol size and the maximum source block length, FLUTE calculates the source block structure (i.e., the number of source blocks and their length).

[image: image6.wmf]Constructing FLUTE Packets

=

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

file

transport

object

source

block(s)

00000

00000

encoding

symbol(s)

11111

11111

Header

FLUTE packet

11111

FLUTE/

UDP/

IP

packet

Figure 2: Constructing FLUTE packets

The BM-SC communicates the transport object size, the encoding symbol size and the file size to the receivers within the FLUTE session transmission such that the receiver can also calculate the source block structure in advance of receiving a file.

The FLUTE packet is constructed from FLUTE header and payload containing one or more encoding symbols.

The distinction between file and transport object is that the file is the object provided to the BM-SC and played-out or stored at the MBMS UE. Within the scope of FLUTE sessions, content encoding may be used, for instance to compress the file with gzip for delivery. In the presence of FLUTE session content encoding, the file and the transport object will be different binary objects, and in the absence of content encoding the transport object will be identical to the file. Any symbol calculations (including FEC) are performed on transport objects.

4.6.3
Download Examples

In a typical use case, multimedia files typically in 3GP or MP4 format are distributed through download delivery method. In this case the delivery rate and the media rate may be completely different as no real-time consumption is considered.

Table 1 shows some typical examples of file sizes for different types of multimedia content.

Table 1 Examples for Download delivery use cases

	Number
	File Size
	Example

	1
	50 kByte (51 200 bytes)
	JPEG coded logo

	2
	1 MByte (1 048 576 bytes)
	AAC encoded audio clip

	3
	3 MByte (3 145 728 bytes)
	MP3 audio clip

	4
	128 MByte (134 217 728) bytes
	30 min SD movie coded at 500 kbit/s

	5
	1.8 GByte (1 887 436 800) bytes
	2 hours HD movie coded at 2 MBit/s

4.7

Streaming using DASH and Download Delivery User Service

In another use case as indicated in TS26.346, section 5.6, the download delivery method may be used to distribute DASH formatted content over MBMS. MBMS is designed to serve large receive groups with same content. The MBMS Download Delivery Method is designed to deliver an arbitrary number of (binary) files via MBMS to a large receiver population. MBMS Download defines several methods to increase reliability such as file repair. The download delivery method supports the delivery of media segments and even media presentation descriptions. Media segment URIs are described using the FDT in FLUTE.

In this case the media bit-rate and the delivery bitrate are typically the same to maintain real-time delivery capabilities and therefore the delivery delay of a segment is typically lower bounded by the segment duration.

Table 2 shows some typical examples of DASH media segment files for live services. In these examples, only one representation with constant media rate is being delivered over download delivery service.

Table 2 Examples for DASH segments

	Number
	Segment duration and media rate
	FLUTE object (one segment) Size

	1
	1 sec DASH segment 250 kbit/s stream
	32 kByte (32 768 bytes)

	2
	1 sec DASH segment for 1 Mbit/s stream
	128 kByte (131 072 bytes)

	3
	2 sec DASH segment 250 kbit/s stream
	64 kByte (65 536 bytes)

	4
	2 sec DASH segment for 1 Mbit/s stream
	256 kByte (262 144 bytes)

	5
	4 sec DASH segment 250 kbit/s stream
	128 kByte (131 072 bytes)

	6
	4 sec DASH segment for 1 Mbit/s stream
	512 kByte (524 288 bytes)

5
MBMS Bearer Service Channel Modelling

5.1
Introduction

In order to investigate the performance of application layer FEC in the context of UTRAN and E-UTRAN, appropriate modelling of radio bearers is necessary.

5.2
Modelling of UTRAN MBMS Bearer

During the initial MBMS specification phase for Release-6, appropriate settings for UTRAN bearers for the simulation of FEC parameters had been defined and are summarized in Table 3.

Table 3 Typical UTRAN bearer parameters

	UTRAN Bearer parameters
	

	
	Bearer rates
	64 kbit/s, 128 kbit/s, 256 kbit/s

	
	RLC PDU size
	640 bytes, 1 280 bytes, 1 280 bytes respectively

	
	RLC BLER
	1%, 5%, 10%, 15%, 20%, 30%

	
	RLC block loss pattern
	Independent random loss

5.3
Modelling of E-UTRAN MBMS Bearer
To obtain some representative numbers for the performance of an FEC code in an LTE MBMS environment, some simple models are necessary for AL-FEC evaluation.

Figure 3 shows the mapping of RLC-SDUs to RLC-PDUs. RLC-SDUs in the context of MBMS are IP packets. The RLC header is 1 byte if the RLC SDU consists of 1 IP packet. The header is longer, if multiple IP packets are multiplexed in an RLC-SDU. A reasonable assumption is to use 3 byte header of the RLC-PDU assuming a 5 bit sequence number. The loss of one RLC-PDU results in the loss of all IP packets included in the RLC-PDU.

The MAC PDU consists of a number of MAC SDUs, where a MAC-SDUs is an RLC-PDU. The MAC multiplexer notifies the RLC layer of the available bits. The RLC layer would then create an RLC PDU that fits exactly into the available space in the MAC PDU. There is no need for fragmentation of MAC SDUs across subframes. Based on this, it can be assumed that the loss of one MAC-PDU results in the loss of one RLC-PDU.

[image: image7.png]RLC SDU

n+

n+2

3

RLC header

le
|

RLC PDU.

Figure 3 Mapping of IP packets (RLC-SDUs) to RLC-PDUs (see TS 36.300, section 6.2.2)
LTE MBMS defines modulations and coding schemes with a MAC-PDU size ranging from 680 bit to 18336 bit for a 5 MHz bandwidth.

Each MAC-PDU is mapped to a subframe. At allocation level 1, LTE MBMS can use up to 6 out of the 10 subframes of a 10ms frame. Each subframe is 1ms.

The interleaving for MBMS in LTE is the same as for regular unicast LTE delivery of 1ms.

In communication with RAN1 and RAN2, it was agreed to use a two-state Markov model for the simulation of LTE RLC-PDU losses as shown in Figure 3.

[image: image8.png]p

_ Good Bad

1 px b
q

Figure 4 Markov model for LTE RLC-PDU losses
The model was parametrized based on the D1 simulation settings of 3GPP TR 36.942 [7] as reported in Table 4.

Table 4 Parameter Settings for MBMS LTE simulations

	Parameter
	Setting

	Center Frequency (MHz)
	2000

	Cell radius (m)
	288

	Bandwidth (MHz)
	5

	Penetration Loss (dB)
	20

	Speed (km/h)
	3

	Antenna Down tilt (degree)
	15

	Antenna Height (m)
	30

	Antenna Clutter Height (m)
	15

	Dhb (m)
	15

	Slope
	37.6

	I
	128.1

	Average EIRP (dBW, 5MHz)
	33

	eNB Tx Power (dBW)
	13

	UE Antenna Loss (dB)
	6

	Implementation Loss (dB)
	3

	Noise Figure (dB)
	6

	Penetration Loss (dB)
	20

	Receiver Height (m)
	1.5

	Vertical Beamwidth (degree)
	10

	Horizontal Beamwidth (degree)
	70

The simulation is carried out with a 19 sites configuration as shown in Figure 4. Each site has 3 cells. All sites have 100% SFN operation. 30 UEs are uniformly dropped into the center site (dark green one) in each simulation run of 50 sec. In total 900 UEs are dropped and the SNR is sampled accordingly. The overall SNR distribution is also shown in Figure 4.

[image: image9.emf][image: image10.jpg]CDF

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

S

10 15
SNR(dB)

20

25

30

Figure 5 Simulation Grid and SNR distribution
Based on those SNR traces, two representative traces were selected that in combination with MCS24 result in a 1%, 5%, 10% and 20% target BLER.

The parametrization of the Markov model is as follows:

· each state persists for 10ms, and

· a state is good if it has

· less than 10% packet loss probability for the 1% and 5% BLER simulations,

· less than 40% packet loss probability for the 10% and 20% BLER simulations.

· MCS=24 was used for all cases and then users at different 'MBMS geometry' were picked to get the different average error rate.

The parameters for Markov channel modelling are provided in Table 5.

Table 5 Markov channel parameters

	Parameter
	Meaning

	[image: image11.emf]
	transition probability from Good state to Bad state

	[image: image12.emf]
	transition probability from Bad state to Good state

	[image: image13.emf]
	BLER in Good state

	[image: image14.emf]
	BLER in Bad state

	[image: image15.emf]
	Average Length of Bad state segment

	[image: image16.emf]
	Average length of Good state segment

The time in a good state Tg or time in a bad state Tb may be computed by multiplying the average length of a good (bad) segment by the sampling period. The probability of the good state and probability of a bad state may be computed as q/(p+q) and p/(p+q), respectively.

Specifically, the following parameters for the LTE MBMS channel simulations:

· MCS=9 and MCS=21 with 498 byte RLC-SDU size and 1332 byte RLC-SDU size.

· RLC-SDU distance of 10ms and 40ms for MCS=21

· RLC-SDU distance of 10ms for MCS=9

· Channel model with Markov model loss rate of 1%, 5%, 10% and 20% target BLER as introduced in TDoc R1-120831, Annex B, Table 1 section 3.2 with speed 3 kph. The table is duplicated below as Table 6 with a resolution of an inconsistency in the average BLER.

· Channel model with Markov model loss rate of 1%, 5%, 10% and 20% target BLER as introduced in TDoc R1-120831, Annex B, Table 2 section 3.2 with speed 120kph. The table is duplicated below as Table 7.

Table 6 Markov parameters for 3km/h

	Table 1

3km/h
	
	
	
	

	
	BLER = 1%
	BLER = 5%
	BLER = 10%
	BLER = 20%

	 p
	0.58%
	1.80%
	2.79%
	4.61%

	q
	36.13%
	24.01%
	20.90%
	16.80%

	sg
	98.42%
	93.02%
	88.23%
	78.48%

	sb
	1.58%
	6.98%
	11.77%
	21.52%

	pg
	0.03%
	0.06%
	0.56%
	1.16%

	pb
	59.47%
	70.54%
	82.30%
	89.20%

	BLER
	0.97%
	4.98%
	10.19%
	20.12%

	Tg (ms)
	1724
	555
	359
	217

	Tb (ms)
	28
	42
	48
	60

Table 7 Markov parameters for 120 km/h

	Table 2

120km/h
	
	
	
	

	
	BLER = 1%
	BLER = 5%
	BLER = 10%
	BLER = 20%

	 p
	6.06%
	27.07%
	46.48%
	35.60%

	q
	94.30%
	70.95%
	50.95%
	63.29%

	sg
	93.97%
	72.39%
	52.29%
	64.00%

	sb
	6.03%
	27.61%
	47.71%
	36.00%

	pg
	0.00%
	0.00%
	0.00%
	9.72%

	pb
	17.31%
	19.54%
	22.33%
	40.40%

	BLER
	1.05%
	5.40%
	10.66%
	20.77%

	Tg (ms)
	165
	37
	22
	28

	Tb (ms)
	11
	14
	20
	16

Regarding the MCS selection, the optimum operating MCS strongly depends on the deployment scenario, including site-to-site distance, operating frequency, interference conditions at MBSFN area boundaries, etc. Therefore, one specific value is not suitable. Using two different MCS cases can give some diversity in the assumptions, hence a good approach to use the following two values

· higher value MCS=21 resulting in RLC-SDU size of 1332 byte.

· lower value corresponding to 1bit/s/Hz, with MCS=9 resulting in RLC-SDU size of 498 byte.

It is additionally from the following list of available simulation conditions the following were selected as a good candidate representative
· RLC-SDU distance of 10ms and 40ms for MCS=21

· RLC-SDU distance of 10ms for MCS=9

This results in total in 24 different channel configurations as summarized in Table 8.

Table 8 Typical LTE MBMS bearer parameters

	LTE eMBMS Bearer
	

	
	Bearer bitrates
	398.4 kbit/s,
	266.4, 1.0656 Mbit/s

	
	RLC-SDU size
	498 byte
	1332 byte

	
	RLC-SDU frequency
	10ms
	40ms, 10ms

	
	MAC PDU loss pattern
	Markov
	Markov

	
	Speed
	3 and 120 km/h
	3 and 120 km/h

	
	MAC-PDU loss probability
	1%, 5%, 10%, 20%
	1%, 5%, 10%, 20%

6
FEC Evaluation Procedure

6.1
Introduction

An Evaluation Procedure is defined for FEC evaluation and selection. This includes procedures to measure theoretical FEC code performance, FEC performance in 3GPP services as well as high-level and detailed decoder performance.
6.2
Simulation Conditions

6.2.1
Simulation conditions and assumptions (UTRAN)

The simulation conditions for UTRAN-based MBMS are provided in Table 9.

Additional details on the simulation methodology are provided in Annex A and should be viewed as simulation guidelines in case there are any ambiguities.

Table 9 Simulation Conditions for UTRAN-based MBMS

	UTRAN Download
	

	
	Bearer rates
	64 kbit/s, 128 kbit/s, 256 kbit/s

	
	RLC-PDU size
	640 bytes, 1 280 bytes, 1 280 bytes respectively

	
	RLC-PDU BLER
	1%, 5%, 10%, 15%, 20%, 30%

	
	RLC-PDU block loss pattern
	Independent random loss

	
	Number of trials/users
	At least 10,000 for files (512 KB, 3,000 for 3 072 KB

	
	File sizes
	50 KB, 512 KB, 3 072 KB

	
	FLUTE payload size
	456 bytes

	
	ROHC
	No

	
	IPv4/UDP header
	28 bytes

	
	FLUTE header
	16 bytes

	
	FEC overhead
	Varied in steps of X packets, where X=ceil(0.005N) and N is the number of packets containing source data

	UTRAN Streaming
	

	
	Bearer rates
	64 kbit/s, 128 kbit/s and 256 kbit/s

	
	RLC PDU size
	640 bytes (for 64 kbit/s bearer)

1280 bytes (for 128 kbit/s bearer)

1280 bytes (for 256 kbit/s bearer)

	
	RLC BLER
	1 %, 5 %, 10 %, 15 %, 20 %, 30 %

	
	RLC block loss pattern
	Independent random loss

	
	Content length
	24 hours of media content

	
	Media rates
	Varied by steps of 1 % of bearer rate, assuming only a single media stream with constant bitrate (see note 1)

	
	FEC overhead
	Varied to sum FEC and Media to equal bearer rate

	
	Source packet RTP payload size
	64 kbit/s: 456 bytes

128 kbit/s: 456 bytes

256 kbit/s: 768 bytes

	
	Repair packet RTP payload size
	Minimum value supported by the FEC code which is not less than 470 (for 64 kbit/s and 128 kbit/s) and 782 (for 256 kbit/s) - (see note 2)

	
	Protection period
	5 s, 20 s

	
	ROHC
	No

	
	IPv4/UDP/RTP header
	40

	NOTE 1:
In practice, multiple media streams may be carried within a single MBMS bearer. However, only a single media stream is considered for FEC simulation purposes for simplicity.

NOTE 2:
The last repair packet of a block may be shorter if supported by the FEC code in order to fit within the protection period.

6.2.2
Simulation conditions and assumptions (LTE eMBMS)

The simulation conditions for LTE-based MBMS are provided in Table 10.

Additional details on the simulation methodology are provided in Annex A and should be used as guidelines for simulations.

Table 10 Simulation Conditions for LTE-based MBMS

	LTE eMBMS Download
	

	
	RLC-SDU
	266.4 kbit/s, 398.4 kbit/s, 1.0656Mbit/s

	
	RLC-SDU size
	498, 1332 byte

	
	Loss Model
	Markov

	
	MCS
	9, 21

	
	RLC-SDU period
	40ms, 10ms

	
	Speed
	3 km/h, 120 km/h

	
	MAC-PDU loss probability
	1%, 5%, 10%, 20%

	
	Number of trials/users
	At least 10,000 for files (1 MB, at least 3,000 otherwise

	
	File sizes
	50kB, 1MB, 3MB, 128MB, 1.8GB

	
	FLUTE payload size
	(RLC-PDU size - 44) bytes

	
	ROHC
	No

	
	IPv4/UDP header
	28 bytes

	
	FLUTE header
	16 bytes

	
	FEC overhead
	Varied in steps of X packets, where X=ceil(0.005N) and N is the number of packets containing source data

	LTE eMBMS Streaming (based on DASH)
	

	
	Bearer rates
	266.4 kbit/s, 398.4 kbit/s, 1.0656Mbit/s

	
	RLC-SDU size
	498, 1332 byte

	
	Loss Model
	Markov

	
	MCS
	9, 21

	
	RLC-SDU period
	40ms, 10ms

	
	Speed
	3 km/h, 120 km/h

	
	MAC-PDU loss probability
	1%, 5%, 10%, 20%

	
	Content length
	24 hours of media content

	
	Media rates
	Varied by steps of FLUTE payload sizes, but constant

	
	FEC overhead
	Varied to sum FEC and Media to equal bearer rate

	
	FLUTE payload size
	(RLC-PDU size - 44) bytes

	
	Media Segment duration
	1s, 4s

	
	Segment to FLUTE object mapping
	Each Segment is mapped to one FLUTE object

	
	Maximum delivery delay of FLUTE object
	media segment duration

	
	ROHC
	No

	
	IPv4/UDP/FLUTE header
	44

6.2
Code Performance

6.2.1
Introduction

For the evaluation of the code performance, two different methods are defined.

6.2.2
Method 1

6.2.2.1
Evaluation Procedure

Data to be transmitted is partitioned into K symbols. These K symbols are used to generate N total symbols to be transmitted, where N>=K. The N symbols are transmitted through an erasure channel with erasure probability Pe (on the FEC symbol level). The erasure channel is IID and it operates on the data symbol by symbol. The IID erasure channel is illustrated in Figure 5 and Figure 6. Successful decoding requires at least K symbols to be received, but in some cases additional received symbols may be necessary. Denote the number of symbols received in excess of K to be O. The decoding failure probability distribution is a function of O and is given as P(O)=Pr{decoding with O overhead symbols or less fails}.

[image: image17.emf]Data Data

Erasure

Pe

1-Pe

Input

Output

Erasure

Channel

Figure 6: Illustration of the IID erasure channel. Data is passed through the channel with probability 1-Pe, and erased with probability Pe.

[image: image18.emf]Erasure

Channel

IID

Pe

Data Decoder Parity Data Parity

Erasures

K

N

Figure 7: Data is passed through the IID erasure channel, with erasure probability of Pe. Data is delivered to the decoder in the order in which it was transmitted.

To obtain the distribution P(O) a statistical evaluation procedure is proposed as follows:

1. Fix K, the number of encoded symbols

2. Fix N, the maximum number of symbols (systematic or repair) to be transmitted

3. Use an Erasure Channel with probability of error Pe for each symbol.

4. Loop over 5 to 10 for N_iterations=10,000

5. Set O= -1 and TX= -1

6. Set RX=0

7. While (RX < K)

a. If (TX+1>N)

i. Note the case as “undecodable”

ii. Goto 5

b. TX=TX+1

c. Transmit a symbol through the Erasure Channel. If the symbol is delivered by the Erasure Channel

i. RX = RX + 1

8. Attempt to Decode with the received symbols

9. If decoding is not successful

a. If(TX+1>N)

i. Note O and that the case was “undecodable”

ii. Goto 5

b. TX = TX+1

c. Transmit a symbol through the Erasure Channel. If the symbol is delivered by the Erasure Channel

i. O=O+1

d. Goto 8

10. If decoding is successful

a. Note O

b. Goto 5

6.2.2.2
Test Cases

The following test cases are determined for the purpose of evaluating the code performance.

Table 11 Test Cases for Code Performance

	Number
	K
	N
	Channel

	CP1
	32
	39
	IID Pe=5%

	CP2
	128
	154
	IID Pe=5%

	CP3
	256
	282
	IID Pe=5%

	CP4
	1024
	1127
	IID Pe=5%

	CP5
	8192
	9012
	IID Pe=5%

	CP6
	32
	45
	IID Pe=10%

	CP7
	128
	180
	IID Pe=10%

	CP8
	256
	308
	IID Pe=10%

	CP9
	1024
	1229
	IID Pe=10%

	CP10
	8192
	9831
	IID Pe=10%

6.2.2.3
Performance Metrics

For each of the above test cases the following performance metrics are reported for N_iterations=10,000:

· The probability that decoding is not successful with O = i symbols, P(O=i), where i=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

· The probability that decoding is not successful P(undecodable).

· The probability that decoding is not successful with less than O=0 symbols Pf(O=0),

· The necessary overhead O* to achieve Pf(O=O*) <= 0.5, O (Pf=0.5)

· The necessary overhead O* to achieve Pf(O=O*) <= 0.1, O (Pf=1e-1)

· The necessary overhead O* to achieve Pf(O=O*) <= 0.01, O (Pf=1e-2)

· The necessary overhead O* to achieve Pf(O=O*) <= 0.001, O (Pf=1e-3)

· The necessary overhead O* to achieve Pf(O=O*) <= 1e-4, O (Pf=1e-4)

· The necessary overhead O* to achieve Pf(O=O*) <= 1e-5, O (Pf=1e-5)

· The average symbol overhead E{O} for the test case.

Table 12 Reporting format for Code Performance Method 1

	Case
	Pf(O=0)
	O (Pf=0.5)
	O
 (Pf=1e-1)
	O
 (Pf=1e-2)
	O
 (Pf=1e-3)
	O
 (Pf=1e-4)
	O
 (Pf=1e-5)
	E{O}

	CP1
	
	
	
	
	
	
	
	

	CP2
	
	
	
	
	
	
	
	

	CP3
	
	
	
	
	
	
	
	

	CP4
	
	
	
	
	
	
	
	

	CP5
	
	
	
	
	
	
	
	

	CP6
	
	
	
	
	
	
	
	

	CP7
	
	
	
	
	
	
	
	

	CP8
	
	
	
	
	
	
	
	

	CP9
	
	
	
	
	
	
	
	

	CP10
	
	
	
	
	
	
	
	

	Case
	P(O=0)
	P(O=1)
	P(O=2)
	P(O=3)
	P(O=4)
	P(O=5)
	P(O=6)
	P(O=7)
	P(O=8)
	P(O=9)

	CP1
	
	
	
	
	
	
	
	
	
	

	CP2
	
	
	
	
	
	
	
	
	
	

	CP3
	
	
	
	
	
	
	
	
	
	

	CP4
	
	
	
	
	
	
	
	
	
	

	CP5
	
	
	
	
	
	
	
	
	
	

	CP6
	
	
	
	
	
	
	
	
	
	

	CP7
	
	
	
	
	
	
	
	
	
	

	CP8
	
	
	
	
	
	
	
	
	
	

	CP9
	
	
	
	
	
	
	
	
	
	

	CP10
	
	
	
	
	
	
	
	
	
	

6.2.3
Method 2

6.2.3.1
Evaluation Procedure

The distribution of the code overhead O for different permutations of received symbols is a relevant measure for the code performance. Specifically, the failure probability distribution defined as Pf(O)= Pr{decoding with exactly O overhead symbols fails} is relevant and may be used to determine the code performance.

To obtain the distribution Pf(O) a statistical evaluation procedure is proposed based on the following four parameters:

· the source block size K providing the total number of source symbols

· the maximum encoding symbol ID (ESI) N for any repair symbol

Given these numbers the following procedure is proposed to obtain the O for one experiment:

1. Generate a source block with K symbols

2. Generate N-K repair symbols with ESI=K+1, ..., N
3. Randomly pick K among the N symbols

4. Set O to 0

5. Attempt decoding using the available K+O encoding symbols. The symbols are ordered in sequence for decoding.

6. If decoding is not successful then

a. pick one additional not yet included encoding symbol randomly chosen from the N symbols.

b. Set O to O+1,

c. If K+O == N+1 then goto 7, else goto 5

7. Report O as the overhead result for this experiment

To obtain the distribution for the necessary overhead O at least 10,000 of the above experiments are carried out.

6.2.3.2
Test Cases

The following test cases are determined for the purpose of evaluating the code performance.

Table 13 Test Cases for Code Performance

	Number
	K
	N

	CP11
	32
	34

	CP12
	32
	38

	CP13
	32
	128

	CP14
	256
	269

	CP15
	256
	307

	CP16
	256
	1024

	CP17
	1024
	1075

	CP18
	1024
	1229

	CP19
	1024
	3072

	CP20
	8192
	8601

	CP21
	8192
	9830

	CP22
	8192
	30000

Notes that a code does not necessarily have to provide N different encoding symbols, but the code may have less symbols N'. To use such codes in an environment were N symbols are required, the code with N'<N independent encoding symbols may repeat encoding symbols to generate N symbols in total.

6.2.3.3
Performance Metrics

For the above test cases CP11-CP22 the following performance metrics are reported for at least N_iterations=10,000:

· The probability that decoding is not successful with O = i symbols, P(O=i), where i=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
· The probability that decoding is not successful with less than O=0 symbols Pf(O=0),

· The necessary overhead O* to achieve Pf(O=O*) <= 0.5, O (Pf=0.5)

· The necessary overhead O* to achieve Pf(O=O*) <= 0.1, O (Pf=1e-1)

· The necessary overhead O* to achieve Pf(O=O*) <= 0.01, O (Pf=1e-2)

· The necessary overhead O* to achieve Pf(O=O*) <= 0.001, O (Pf=1e-3)

· The necessary overhead O* to achieve Pf(O=O*) <= 1e-4, O (Pf=1e-4)

· The necessary overhead O* to achieve Pf(O=O*) <= 1e-5, O (Pf=1e-5)

· The average symbol overhead E{O} for the test case.

Table 14 Reporting format for Code Performance Method 2

	Case
	Pf(O=0)
	O (Pf=0.5)
	O
 (Pf=1e-1)
	O
 (Pf=1e-2)
	O
 (Pf=1e-3)
	O
 (Pf=1e-4)
	O
 (Pf=1e-5)
	E{O}

	CP11
	
	
	
	
	
	
	
	

	CP12
	
	
	
	
	
	
	
	

	CP13
	
	
	
	
	
	
	
	

	CP14
	
	
	
	
	
	
	
	

	CP15
	
	
	
	
	
	
	
	

	CP16
	
	
	
	
	
	
	
	

	CP17
	
	
	
	
	
	
	
	

	CP18
	
	
	
	
	
	
	
	

	CP19
	
	
	
	
	
	
	
	

	CP20
	
	
	
	
	
	
	
	

	CP21
	
	
	
	
	
	
	
	

	CP22
	
	
	
	
	
	
	
	

	Case
	P(O=0)
	P(O=1)
	P(O=2)
	P(O=3)
	P(O=4)
	P(O=5)
	P(O=6)
	P(O=7)
	P(O=8)
	P(O=9)

	CP11
	
	
	
	
	
	
	
	
	
	

	CP12
	
	
	
	
	
	
	
	
	
	

	CP13
	
	
	
	
	
	
	
	
	
	

	CP14
	
	
	
	
	
	
	
	
	
	

	CP15
	
	
	
	
	
	
	
	
	
	

	CP16
	
	
	
	
	
	
	
	
	
	

	CP17
	
	
	
	
	
	
	
	
	
	

	CP18
	
	
	
	
	
	
	
	
	
	

	CP19
	
	
	
	
	
	
	
	
	
	

	CP20
	
	
	
	
	
	
	
	
	
	

	CP21
	
	
	
	
	
	
	
	
	
	

	CP22
	
	
	
	
	
	
	
	
	
	

6.3
Download Performance
6.3.1
Performance Metrics

For download delivery, the FEC Overhead required to achieve 99% probability of recovery of the file provides a very good indication for the system level performance.

The FEC Overhead required for 99 % probability of recovery is computed the Transmission overhead as described in Annex A.1 of this document.

In addition, the following parameters are be reported:

· The symbol size, T, in bytes

· The total number of symbols required to represent the source data of the object, Kt

· The number of source blocks, Z

· The number of sub-blocks in each source block, Ns

· The maximum number of symbols to be transported in a single packet, G
For details refer to RFC3926 [4] and RFC5053 [5].

6.3.2
Download Performance over UTRAN

Table 15 provides a reporting format for UTRAN test cases.

Table 15 FEC Overhead required for 99 % probability for UTRAN download test cases

	Test Case
	Error conditions
	File size
	Bitrate
kbit/s
	Fec Overhead
	 [T; Kt; Z; Ns; G]

	UD1
	Low (1% BLER)
	Small (50KB)
	64
	
	

	UD2
	
	Medium (512KB)
	64
	
	

	UD3
	
	Large (3072KB)
	64
	
	

	UD4
	Medium (5% BLER)
	Small (50KB)
	64
	
	

	UD5
	
	Medium (512KB)
	64
	
	

	UD6
	
	Large (3072KB)
	64
	
	

	UD7
	High (10% BLER)
	Small (50KB)
	64
	
	

	UD8
	
	Medium (512KB)
	64
	
	

	UD9
	
	Large (3072KB)
	64
	
	

	UD10
	15% BLER
	Small (50KB)
	64
	
	

	UD11
	
	Medium (512KB)
	64
	
	

	UD12
	
	Large (3072KB)
	64
	
	

	UD13
	20% BLER
	Small (50KB)
	64
	
	

	UD14
	
	Medium (512KB)
	64
	
	

	UD15
	
	Large (3072KB)
	64
	
	

	UD16
	30% BLER
	Small (50KB)
	64
	
	

	UD17
	
	Medium (512KB)
	64
	
	

	UD18
	
	Large (3072KB)
	64
	
	

	UD19
	Low (1% BLER)
	Small (50KB)
	128/256
	
	

	UD20
	
	Medium (512KB)
	128/256
	
	

	UD21
	
	Large (3072KB)
	128/256
	
	

	UD22
	Medium (5% BLER)
	Small (50KB)
	128/256
	
	

	UD23
	
	Medium (512KB)
	128/256
	
	

	UD24
	
	Large (3072KB)
	128/256
	
	

	UD25
	High (10% BLER)
	Small (50KB)
	128/256
	
	

	UD26
	
	Medium (512KB)
	128/256
	
	

	UD27
	
	Large (3072KB)
	128/256
	
	

	UD28
	15% BLER
	Small (50KB)
	128/256
	
	

	UD29
	
	Medium (512KB)
	128/256
	
	

	UD30
	
	Large (3072KB)
	128/256
	
	

	UD31
	20% BLER
	Small (50KB)
	128/256
	
	

	UD32
	
	Medium (512KB)
	128/256
	
	

	UD33
	
	Large (3072KB)
	128/256
	
	

	UD34
	30% BLER
	Small (50KB)
	128/256
	
	

	UD35
	
	Medium (512KB)
	128/256
	
	

	UD36
	
	Large (3072KB)
	128/256
	
	

6.3.3
Download Performance over LTE

Table 16 provides a reporting format for LTE test cases.

Table 16 FEC Overhead required for 99 % probability for LTE download delivery test cases

	Test Case
	Error conditions
	Bitrate

kbit/s
	File size
	FEC Overhead
	[T; Kt; Z; Ns; G]

	LD1
	Markov, 3km/h, 1%
	266.4
	50 kB
	
	

	LD2
	
	266.4
	Audio (1 MB)
	
	

	LD3
	
	266.4
	Clip(3 MB)
	
	

	LD4
	
	266.4
	SD (128 MB)
	
	

	LD5
	
	266.4
	HD(1.8 GB)
	
	

	LD6
	Markov, 3km/h, 5%
	266.4
	50 kB
	
	

	LD7
	
	266.4
	Audio (1 MB)
	
	

	LD8
	
	266.4
	Clip(3 MB)
	
	

	LD9
	
	266.4
	SD (128 MB)
	
	

	LD10
	
	266.4
	HD(1.8 GB)
	
	

	LD11
	Markov, 3km/h, 10%
	266.4
	50 kB
	
	

	LD12
	
	266.4
	Audio (1 MB)
	
	

	LD13
	
	266.4
	Clip(3 MB)
	
	

	LD14
	
	266.4
	SD (128 MB)
	
	

	LD15
	
	266.4
	HD(1.8 GB)
	
	

	LD16
	Markov, 3km/h, 20%
	266.4
	50 kB
	
	

	LD17
	
	266.4
	Audio (1 MB)
	
	

	LD18
	
	266.4
	Clip(3 MB)
	
	

	LD19
	
	266.4
	SD (128 MB)
	
	

	LD20
	
	266.4
	HD(1.8 GB)
	
	

	LD21
	Markov, 3km/h, 1%
	398.4
	50 kB
	
	

	LD22
	
	398.4
	Audio (1 MB)
	
	

	LD23
	
	398.4
	Clip(3 MB)
	
	

	LD24
	
	398.4
	SD (128 MB)
	
	

	LD25
	
	398.4
	HD(1.8 GB)
	
	

	LD26
	Markov, 3km/h, 5%
	398.4
	50 kB
	
	

	LD27
	
	398.4
	Audio (1 MB)
	
	

	LD28
	
	398.4
	Clip(3 MB)
	
	

	LD29
	
	398.4
	SD (128 MB)
	
	

	LD30
	
	398.4
	HD(1.8 GB)
	
	

	LD31
	Markov, 3km/h, 10%
	398.4
	50 kB
	
	

	LD32
	
	398.4
	Audio (1 MB)
	
	

	LD33
	
	398.4
	Clip(3 MB)
	
	

	LD34
	
	398.4
	SD (128 MB)
	
	

	LD35
	
	398.4
	HD(1.8 GB)
	
	

	LD36
	Markov, 3km/h, 20%
	398.4
	50 kB
	
	

	LD37
	
	398.4
	Audio (1 MB)
	
	

	LD38
	
	398.4
	Clip(3 MB)
	
	

	LD39
	
	398.4
	SD (128 MB)
	
	

	LD40
	
	398.4
	HD(1.8 GB)
	
	

	LD41
	Markov, 3km/h, 1%
	1065.6
	50 kB
	
	

	LD42
	
	1065.6
	Audio (1 MB)
	
	

	LD43
	
	1065.6
	Clip(3 MB)
	
	

	LD44
	
	1065.6
	SD (128 MB)
	
	

	LD45
	
	1065.6
	HD(1.8 GB)
	
	

	LD46
	Markov, 3km/h, 5%
	1065.6
	50 kB
	
	

	LD47
	
	1065.6
	Audio (1 MB)
	
	

	LD48
	
	1065.6
	Clip(3 MB)
	
	

	LD49
	
	1065.6
	SD (128 MB)
	
	

	LD50
	
	1065.6
	HD(1.8 GB)
	
	

	LD51
	Markov, 3km/h, 10%
	1065.6
	50 kB
	
	

	LD52
	
	1065.6
	Audio (1 MB)
	
	

	LD53
	
	1065.6
	Clip(3 MB)
	
	

	LD54
	
	1065.6
	SD (128 MB)
	
	

	LD55
	
	1065.6
	HD(1.8 GB)
	
	

	LD56
	Markov, 3km/h, 20%
	1065.6
	50 kB
	
	

	LD57
	
	1065.6
	Audio (1 MB)
	
	

	LD58
	
	1065.6
	Clip(3 MB)
	
	

	LD59
	
	1065.6
	SD (128 MB)
	
	

	LD60
	
	1065.6
	HD(1.8 GB)
	
	

	LD61
	Markov, 120km/h, 1%
	266.4
	50 kB
	
	

	LD62
	
	266.4
	Audio (1 MB)
	
	

	LD63
	
	266.4
	Clip(3 MB)
	
	

	LD64
	
	266.4
	SD (128 MB)
	
	

	LD65
	
	266.4
	HD(1.8 GB)
	
	

	LD66
	Markov, 120km/h, 5%
	266.4
	50 kB
	
	

	LD67
	
	266.4
	Audio (1 MB)
	
	

	LD68
	
	266.4
	Clip(3 MB)
	
	

	LD69
	
	266.4
	SD (128 MB)
	
	

	LD10
	
	266.4
	HD(1.8 GB)
	
	

	LD71
	Markov, 120km/h, 10%
	266.4
	50 kB
	
	

	LD72
	
	266.4
	Audio (1 MB)
	
	

	LD73
	
	266.4
	Clip(3 MB)
	
	

	LD74
	
	266.4
	SD (128 MB)
	
	

	LD75
	
	266.4
	HD(1.8 GB)
	
	

	LD76
	Markov, 120km/h, 20%
	266.4
	50 kB
	
	

	LD77
	
	266.4
	Audio (1 MB)
	
	

	LD78
	
	266.4
	Clip(3 MB)
	
	

	LD79
	
	266.4
	SD (128 MB)
	
	

	LD80
	
	266.4
	HD(1.8 GB)
	
	

	LD81
	Markov, 120km/h, 1%
	398.4
	50 kB
	
	

	LD82
	
	398.4
	Audio (1 MB)
	
	

	LD83
	
	398.4
	Clip(3 MB)
	
	

	LD84
	
	398.4
	SD (128 MB)
	
	

	LD85
	
	398.4
	HD(1.8 GB)
	
	

	LD86
	Markov, 120km/h, 5%
	398.4
	50 kB
	
	

	LD87
	
	398.4
	Audio (1 MB)
	
	

	LD88
	
	398.4
	Clip(3 MB)
	
	

	LD89
	
	398.4
	SD (128 MB)
	
	

	LD90
	
	398.4
	HD(1.8 GB)
	
	

	LD91
	Markov, 120km/h, 10%
	398.4
	50 kB
	
	

	LD92
	
	398.4
	Audio (1 MB)
	
	

	LD93
	
	398.4
	Clip(3 MB)
	
	

	LD94
	
	398.4
	SD (128 MB)
	
	

	LD95
	
	398.4
	HD(1.8 GB)
	
	

	LD96
	Markov, 120km/h, 20%
	398.4
	50 kB
	
	

	LD97
	
	398.4
	Audio (1 MB)
	
	

	LD98
	
	398.4
	Clip(3 MB)
	
	

	LD99
	
	398.4
	SD (128 MB)
	
	

	LD100
	
	398.4
	HD(1.8 GB)
	
	

	LD101
	Markov, 120km/h, 1%
	1065.6
	50 kB
	
	

	LD102
	
	1065.6
	Audio (1 MB)
	
	

	LD103
	
	1065.6
	Clip(3 MB)
	
	

	LD104
	
	1065.6
	SD (128 MB)
	
	

	LD105
	
	1065.6
	HD(1.8 GB)
	
	

	LD106
	Markov, 120km/h, 5%
	1065.6
	50 kB
	
	

	LD107
	
	1065.6
	Audio (1 MB)
	
	

	LD108
	
	1065.6
	Clip(3 MB)
	
	

	LD109
	
	1065.6
	SD (128 MB)
	
	

	LD110
	
	1065.6
	HD(1.8 GB)
	
	

	LD111
	Markov, 120km/h, 10%
	1065.6
	50 kB
	
	

	LD112
	
	1065.6
	Audio (1 MB)
	
	

	LD113
	
	1065.6
	Clip(3 MB)
	
	

	LD114
	
	1065.6
	SD (128 MB)
	
	

	LD115
	
	1065.6
	HD(1.8 GB)
	
	

	LD116
	Markov, 120km/h, 20%
	1065.6
	50 kB
	
	

	LD117
	
	1065.6
	Audio (1 MB)
	
	

	LD118
	
	1065.6
	Clip(3 MB)
	
	

	LD119
	
	1065.6
	SD (128 MB)
	
	

	LD120
	
	1065.6
	HD(1.8 GB)
	
	

6.4
UTRAN Streaming Performance

For RTP-based streaming delivery, as a suitable measure it was considered to evaluate the maximum supported Media Rate (kbit/s) for Mean Time Between FEC Block Loss of 1 hour.

For streaming services simulation we assume the following:

· All source RTP packets and UDP repair packets have the same total SDU size (500 bytes for 64/128 kbit/s, 800 bytes for 256 kbit/s) and number of symbols G: this is not exactly true, but it is considered sufficient FEC code evaluation.

· Receiver working memory is large enough to decode the highest bitrate with the longest protection period.

· Total bitrate of source data plus repair is always matched to the bearer rate. Consequently the SDU loss transcript is always the same for a given stream duration and fixed SDU size, only amount of repair and the associated maximum possible streaming rate are changing.

Results following the mode as provided in Annex A of TR26.946 are expected.

The simulation conditions as provided in Annex A.2 of this document are be applied.

In addition, the following parameters are reported:

· The symbol size, T, in bytes

· The total number of symbols within a protection period, N'

· The number of symbols per packet, G

· The source block size K

The stream total duration is 24 hours and target Mean Time Between Failure (MTBF) is set to 1 block error per hours. In addition, the MBTF over the source block rate may be reported as well. This translates into a maximum of 24 errors over a 24 hour period.

Table 17 provides a reporting format for UTRAN streaming test cases.

Table 17 Maximum supported Media Rate (kbit/s)
for Mean Time Between FEC Block Loss of 1 hour for UTRAN streaming test cases

	Test Case
	Error rates
	Bearer rate
	Protection Period
	Performance
	[T; N'; G; K]

	US1
	Low (1% BLER)
	Low (64kbit/s)
	5 sec
	
	

	US2
	
	
	20 sec
	
	

	US3
	
	Medium (128kbit/s)
	5 sec
	
	

	US4
	
	
	20 sec
	
	

	US5
	
	High (256kbit/s)
	5 sec
	
	

	US6
	
	
	20 sec
	
	

	US7
	Medium (5% BLER)
	Low (64kbit/s)
	5 sec
	
	

	US8
	
	
	20 sec
	
	

	US9
	
	Medium (128kbit/s)
	5 sec
	
	

	US10
	
	
	20 sec
	
	

	US11
	
	High (256kbit/s)
	5 sec
	
	

	US12
	
	
	20 sec
	
	

	US13
	High (10% BLER)
	Low (64kbit/s)
	5 sec
	
	

	US14
	
	
	20 sec
	
	

	US15
	
	Medium (128kbit/s)
	5 sec
	
	

	US16
	
	
	20 sec
	
	

	US17
	
	High (256kbit/s)
	5 sec
	
	

	US18
	
	
	20 sec
	
	

6.5
Streaming Performance over LTE

For DASH-based streaming delivery, as a similarly suitable measure it is considered to evaluate the media rate to support a Mean Time Between FEC Block Loss of 1 hour.

Test cases are considered for 1, 2 and 4 seconds segment duration as well as bearer bitrates of 260 kbit/s and 1 MBit/s.

The simulation conditions as provided in Annex A.2 of this document are applied.

In addition, the following parameters are reported:

· The symbol size, T, in bytes

· The total number of symbols within a protection period, N'

· The number of symbols per packet, G

· The source block size K

The stream total duration is 24 hours and target Mean Time Between Failure (MTBF) is set to 1 block error per hours. In addition, the MBTF over the source block rate may be reported as well. This translates into a maximum of 24 errors over a 24 hour period.

Table 18 provides a reporting format for LTE streaming test cases.

Table 18 Media Bitrate in kbit/s
for Mean Time Between FEC Block Loss of 1 hour for LTE use cases

	Test Case
	Error conditions
	Segment
Duration
in seconds
	Bearer
Bitrate

kbit/s
	Supported
Media Bitrate
	[T; K; N'; G]

	LS1
	Markov, 3km/h, 1%
	1
	266.4
	
	

	LS2
	
	1
	398.4
	
	

	LS3
	
	1
	1065.6
	
	

	LS4
	
	4
	266.4
	
	

	LS5
	
	4
	398.4
	
	

	LS6
	
	4
	1065.6
	
	

	LS7
	Markov, 3km/h, 5%
	1
	266.4
	
	

	LS8
	
	1
	398.4
	
	

	LS9
	
	1
	1065.6
	
	

	LS10
	
	4
	266.4
	
	

	LS11
	
	4
	398.4
	
	

	LS12
	
	4
	1065.6
	
	

	LS13
	Markov, 3km/h, 10%
	1
	266.4
	
	

	LS14
	
	1
	398.4
	
	

	LS15
	
	1
	1065.6
	
	

	LS16
	
	4
	266.4
	
	

	LS17
	
	4
	398.4
	
	

	LS18
	
	4
	1065.6
	
	

	LS19
	Markov, 3km/h, 20%
	1
	266.4
	
	

	LS20
	
	1
	398.4
	
	

	LS21
	
	1
	1065.6
	
	

	LS22
	
	4
	266.4
	
	

	LS23
	
	4
	398.4
	
	

	LS24
	
	4
	1065.6
	
	

	LS25
	Markov, 120km/h, 1%
	1
	266.4
	
	

	LS26
	
	1
	398.4
	
	

	LS27
	
	1
	1065.6
	
	

	LS28
	
	4
	266.4
	
	

	LS29
	
	4
	398.4
	
	

	LS30
	
	4
	1065.6
	
	

	LS31
	Markov, 120km/h, 5%
	1
	266.4
	
	

	LS32
	
	1
	398.4
	
	

	LS33
	
	1
	1065.6
	
	

	LS34
	
	4
	266.4
	
	

	LS35
	
	4
	398.4
	
	

	LS36
	
	4
	1065.6
	
	

	LS37
	Markov, 120km/h, 10%
	1
	266.4
	
	

	LS38
	
	1
	398.4
	
	

	LS39
	
	1
	1065.6
	
	

	LS40
	
	4
	266.4
	
	

	LS41
	
	4
	398.4
	
	

	LS42
	
	4
	1065.6
	
	

	LS43
	Markov, 120km/h, 20%
	1
	266.4
	
	

	LS44
	
	1
	398.4
	
	

	LS45
	
	1
	1065.6
	
	

	LS46
	
	4
	266.4
	
	

	LS47
	
	4
	398.4
	
	

	LS48
	
	4
	1065.6
	
	

	LS52
	Markov, 3km/h, 1%
	2
	266.4
	
	

	LS53
	
	2
	398.4
	
	

	LS54
	
	2
	1065.6
	
	

	LS55
	Markov, 3km/h, 5%
	2
	266.4
	
	

	LS56
	
	2
	398.4
	
	

	LS57
	
	2
	1065.6
	
	

	LS58
	Markov, 3km/h, 10%
	2
	266.4
	
	

	LS59
	
	2
	398.4
	
	

	LS60
	
	2
	1065.6
	
	

	LS61
	Markov, 3km/h, 20%
	2
	266.4
	
	

	LS62
	
	2
	398.4
	
	

	LS49
	
	2
	1065.6
	
	

	LS63
	Markov, 120km/h, 1%
	2
	266.4
	
	

	LS64
	
	2
	398.4
	
	

	LS65
	
	2
	1065.6
	
	

	LS66
	Markov, 120km/h, 5%
	2
	266.4
	
	

	LS67
	
	2
	398.4
	
	

	LS50
	
	2
	1065.6
	
	

	LS68
	Markov, 120km/h, 10%
	2
	266.4
	
	

	LS69
	
	2
	398.4
	
	

	LS70
	
	2
	1065.6
	
	

	LS71
	Markov, 120km/h, 20%
	2
	266.4
	
	

	LS72
	
	2
	398.4
	
	

	LS51
	
	2
	1065.6
	
	

6.6
Implementation-specific Performance Metrics

Codes not only differ in terms of the code efficiency but also in other performance criteria. Two important aspects are the required memory for decoding in the MBMS client as well as the complexity of the considered decoding algorithm.

Therefore, to judge the complexity of a decoding algorithm, the decoding speed in terms of bit/s on top of a recognized mobile processor platform running a recognized mobile operating system can provide good insight into the feasibility of executing the code for mobile applications.

Another important aspect is the global latency of the global system (i.e. From the video making to the video rendering on the device). Thus, encoding complexity is also considered. Therefore, to judge the complexity of an encoding algorithm, the encoding speed in terms of bit/s on top of a recognized PC platform running a recognized PC operating system can provide good insight into the impact of the encoding on the global latency.

In terms of memory requirements, a reasonable measure is the required random access memory in the MBMS client to decode large files, such as considered in the video delivery use cases from above.

Another performance metric for successful integration into mobile platforms is the library footprint of the code and the footprint of hardware functions if any.

The complexity and memory requirements is in particular provided for the following use cases:
· 1.8 GByte at 20% Markov model error rate;

· 4sec @ 1MBit/s streaming at the 20% Markov model error rate;

· 20sec protection period for RTP based streaming at 384 kbit/s and the 20% error rate.
6.7
Device-based Complexity Evaluation

6.7.1
Introduction

This section provides a test plan for testing device-based evaluation. For all definitions and acronyms here that are not explicitly made in this document, please see TS 26.346 [3] (e.g. for OTI, FDT, FLUTE).

6.7.2
Test Cases

The following use cases are considered for performing (for details refer to section 6.2).

LTE Download Delivery

Note that the file size are as follows

· Clip: 3 * 1024 * 1024 Byte = 3145728 Bytes,

· SD: 128 * 1024 * 1024 Byte = 134217728 Bytes,

· HD: 1800 * 1024 * 1024 Byte = 1887436800 Bytes.

	Test Case
	Error conditions
	Bitrate

kbit/s
	File
	 File size

(in bytes)
	Repetition

	LD60
	Markov, 3 km/h, 20%
	1065.6
	HD
	1887436800
	1

	LD108
	Markov, 120 km/h, 5%
	1065.6
	Clip
	3145728
	20

	LD109
	
	1065.6
	SD
	134217728
	5

	LD110
	
	1065.6
	HD
	1887436800
	1

	LD118
	Markov, 120 km/h, 20%
	1065.6
	Clip
	3145728
	20

	LD119
	
	1065.6
	SD
	134217728
	5

DASH-based Streaming Delivery over LTE

	Test Case
	Error conditions
	Segment
Duration
in seconds
	Bearer
Bitrate

kbit/s
	Duration

in seconds

	LS21
	Markov, 3 km/h, 20%
	1
	1065.6
	1800

	LS49
	
	2
	1065.6
	1800

	LS24
	
	4
	1065.6
	1800

	LS33
	Markov, 120 km/h, 5%
	1
	1065.6
	1800

	LS50
	
	2
	1065.6
	1800

	LS36
	
	4
	1065.6
	1800

	LS45
	Markov, 120 km/h, 20%
	1
	1065.6
	1800

	LS51
	
	2
	1065.6
	1800

	LS48
	
	4
	1065.6
	1800

6.7.3
Test Conditions & Test Procedure

6.7.3.1
Overview Test Platform and Operation Conditions

Figure 6-1 shows the considered test platform that is to be used.

[image: image19.png]peap k
Error

Generator
Test Streams
FLUTE + FEC
Decoder
- PCAP file - Configurations - Decoding Success

- Encoding Parameters - Metrics Logs

Figure 6-1 – Test Platform
Figure 6-1 may suggest that data would be transmitted from laptop to device and experience errors over the connection. Despite this may be considered conceptually, in practice a local procedure on the PC is applied to go from the original PCAP file to an errored PCAP file. Prior knowledge of the error traces was not used by the FEC encoder or decoder.

6.7.3.2
Download Delivery

6.7.3.2.1
Summary Test Cases

The following parameters for each test case parameters are specified:

· FS is the file size in bytes

· T’ is the FEC payload size.

· T is the symbol size. Typically T = T’ unless there are multiple symbols per packet

· Kt is the total number of source symbols, i.e., Kt = ceil(FS/T)

· Z is the total number of source blocks

· O is the transmission overhead in percent according to the table provided by the proponents

· Nt is the resulting number of total symbols defined as Kt*(1+O/100)

· The code specific FEC-OTI (see TS26.346, section 7.2.9), e.g. the partitioning and sub-blocking parameters

· SeSt is the sending strategy with IL = Interleaved, n/a not applicable and SQ sequential

· Sequential = send all packets for the first source block, followed by all packets for the second source block, followed by all symbols for the third source block, etc. In addition, send all packets in order of the ESI.
· Interleaved = send a first packet for each of the Z source blocks, followed by a second packet for each of the Z source blocks, followed by a third packet for each of the Z source blocks, etc.

· Unless otherwise noted the symbols within each source block are assumed sent in order of increasing ESI-value starting with the first source symbol. If any other sending order for symbols within each source block is utilized it should be explicitly noted under Notes.

It is further expected that of the Z source blocks

· the first Z1 have source block size K1 = ceil(Kt/Z)

· the remaining Z2 have source block size K2 = floor(Kt/Z)

· and Z1 = Kt – K2*Z and Z2=Z-Z1.

The test cases are summarized in Table 19. The test cases LD60_110, LD118_108 and LD119_109 are done to apply the error streams of lower loss rates to higher overhead streams. The test cases LD60_110, LD_118_108 and LD119_109 are optional.
Table 19 Parameters for Download Test Case

	Common
	Code-Specific

	Test Case
	Error conditions
	File size FS
	T’
	Kt
	Z
	T
	OTI
	O
	Nt
	SeSt
	Notes

	LD60
	Markov, 3km/h, 20%
	HD
	1288
	1465402
	
	
	
	
	
	
	

	LD108
	Markov, 120km/h, 5%
	Clip
	1288
	2443
	
	
	
	
	
	
	

	LD109
	
	SD
	1288
	104207
	
	
	
	
	
	
	

	LD110
	
	HD
	1288
	1465402
	
	
	
	
	
	
	

	LD118
	Markov 120km/h, 20%
	Clip
	1288
	2443
	
	
	
	
	
	
	

	LD119
	
	SD
	1288
	104207
	
	
	
	
	
	
	

	LD60_110
	Markov 120km/h, 5%
	HD
	1288
	1465402
	
	
	
	
	
	
	

	LD118_108
	
	Clip
	1288
	2443
	
	
	
	
	
	
	

	LD119_109
	
	SD
	1288
	104207
	
	
	
	
	
	
	

6.7.3.2.2
Generate FLUTE Packet Test Streams

6.7.3.2.2.1
Process

To generate the FLUTE packet test streams, the following actions are applied on the host. Some UNIX operation system is assumed with basic UNIX commands available.
· Download the following file http://media.xiph.org/ED/ed-pixlet.mov
· for each test case LDX according to Table 19
· generate segments and MD5

· generate temporary file of size FS:
head -c <file size> ed-pixlet.mov > data.tmp

· create the MD5 for the file:
cat data.tmp | openssl md5 | awk '{ print $2 }' > ldX.md5
· FEC encode to PCAP file as follows
· Put FDT for the file in first packet specifying at least the following parameters

· TOI

· FEC-OTI

Note: Content-Location and Content-Length may not be added as they are not necessary. Transfer-Length in the FEC-OTI is sufficient.

· encode file into ALC/LCT packets using the test case parameters according to Table 19 for the candidate. The end of session and end of object transmission signalling may be used by setting the A and B flag in the LCT header.

· provide packets with UDP payload size according to Table 19. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.

6.7.3.2.2.2
Output

The output from this process is, for each test case:

· TOI and MD5 for the file. Note that the TOI and MD5 are not code specific. Note that the TOI in this case is typically 1.

· PCAP file that contains encoded file preceded with an FDT (for details refer to TS26.346 [3], section 7.2.9). The PCAP file name for an example code with code name X is provided in Table 20 along with the total number of packets.

Table 20 PCAP files and Segment List for a virtual code X

	Test Case
	Error conditions
	PCAP file
	Number of Packets

(Code-specific)
	MD5 file

	LD60
	Markov, 3km/h, 20%
	ld060_codeX.cap
	
	ld060.md5

	LD108
	Markov, 120km/h, 5%
	ld108_codeX.cap
	
	ld108.md5

	LD109
	
	ld109_codeX.cap
	
	ld109.md5

	LD110
	
	ld110_codeX.cap
	
	ld110.md5

	LD118
	Markov, 120km/h, 20%
	ld118_codeX.cap
	
	ld118.md5

	LD119
	
	ld119_codeX.cap
	
	ld119.md5

6.7.3.2.3
Generate Erroneous Packet Streams

6.7.3.2.3.1
LTE Traces

Several LTE Error Trace are provided for each test case in the attached package. The files are named error_trace_ld<testcase>_<trno>.txt. The details are summarized in Table 21.

The format of the error traces is as follows

<Number L of loss/received events in ASCII>[newline]
L x {01}

where L is the maximum number of packets in ASCII that the input PCAP file may have followed on the next line with a string of length L made of ASCII characters ‘0’ (packet received) and ‘1’ (packet is lost). One example would be:

12

001011100100

i.e. the length of the of string of 0s and 1s is given by the integer on the first line.
Table 21 Error traces for download test cases with losses and loss statistics. These are accumulated.

	Test Case
	Error conditions
	File size
	S
	PCAP file
	Length N
	Loss Percentage

	LD60
	Markov, 3km/h, 20%
	HD
	1
	error_trace_ld60_<trno>.cap
	2000000
	20.14

	LD108
	Markov, 120km/h, 5%
	Clip
	20
	error_trace_ld108_<trno>.cap
	3400
	5.47

	LD109
	
	SD
	5
	error_trace_ld109_<trno>.cap
	150000
	5.46

	LD110
	
	HD
	1
	error_trace_ld110_<trno>.cap
	2000000
	5.48

	LD118
	Markov, 120km/h, 20%
	Clip
	20
	error_trace_ld118_<trno>.cap
	3400
	20.85

	LD119
	
	SD
	5
	error_trace_ld119_<trno>.cap
	150000
	20.81

	LD60_110
	Markov, 120km/h, 5%
	HD
	1
	error_trace_ld110_<trno>.cap
	2000000
	5.47

	LD118_108
	
	Clip
	20
	error_trace_ld1108_<trno>.cap
	3400
	5.46

	LD119_109
	
	SD
	5
	error_trace_ld109_<trno>.cap
	150000
	5.48

A process for generating the error traces independently is provided in Annex B.2.

6.7.3.2.3.2
Apply to LTE traces to PCAP streams

In order to introduce loss into a controlled manner to the PCAP files using the Markov error traces, a tool called pcaploss, available in source code form, is available and attached in the package (including Makefile). This tool takes a pcap file as input and transforms it into another altered pcap. The usage message for pcaploss is:

pcaploss: Usage: ./pcaploss <pcap_in> <pcap_out> <loss_file> [<#pkts>]
where the format of the loss trace file is according to the format introduced in section 0. If the optional integer argument #pkts is present, only the number of packets indicated by #pkts will be read in from pcap_in before pcaploss closes the output file and stops.

The pcap for transmission may be prepped with the right MAC/IP addresses for both sender and receiver. On the sender side MAC and IP can be obtained with command ‘ipconfig/ all’ on Windows, e.g.:

Ethernet adapter Local Area Connection 4:

 Connection-specific DNS Suffix . :

 Description : SAMSUNG Mobile USB Remote NDIS Network Device

 Physical Address. : 02-65-64-60-6E-0B

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 Link-local IPv6 Address : fe80::117:1bc9:34df:dd76%26(Preferred)

 IPv4 Address. : 192.168.42.149(Preferred)

 Subnet Mask : 255.255.255.0

 Lease Obtained. : Monday, July 16, 2012 3:37:43 PM

 Lease Expires : Monday, July 16, 2012 4:37:50 PM

 Default Gateway : 192.168.42.129

 DHCP Server : 192.168.42.129

 DHCPv6 IAID : 855795044

 DHCPv6 Client DUID. : 00-01-00-01-14-97-F4-E0-F4-CE-46-AC-6F-32

 DNS Servers : 192.168.42.129

 NetBIOS over Tcpip. : Enabled

where hardware and IP addresses are 02:65:64:60:6E:0B and 192.168.42.149 respectively. On the receiver side a multicast IP address and associated MAC could be 230.20.20.10 and 01:00:5e:66:14:14:0a.

With the information above and for each test case LDY in Table 26 and each trace number trno, the following process is applied:

./tcprewrite --distipmap=0.0.0.0/0:230.20.20.10 --enet-dmac= 01:00:5e:66:14:14:0a --srcipmap=0.0.0.0/0: 192.168.42.149 --enet-smac=02:65:64:60:6E:0B --fixcsum -i ldY_codeX.cap -o temp.cap

./pcaploss temp.cap ldY_codeX_ldZ_<trno>.cap errortrace_ldZ_<trno>.txt

Note that the integration of the Ethernet and IP addresses with tcprewrite is optional and may only be done absence of any other knowledge. tcprewrite is included in the TCPreplay suite, for details refer to section B.6.2.
6.7.3.2.3.3
Output

The outputs of this process are S PCAP file for each test case. The PCAP files are summarized in Table 22. The length of the PCAP file depends on the loss statistics.

Table 22 PCAP files for a virtual code X after applying channel that maps to specific channel model

	Test Case
	Error conditions
	File size
	S
	PCAP file

	LD60
	Markov, 3km/h, 20%
	HD
	1
	ld060_codeX_ld060_<trno>.cap

	LD108
	Markov, 120km/h, 5%
	Clip
	20
	ld108_codeX_ld108_<trno>.cap

	LD109
	
	SD
	5
	ld109_codeX_ld109_<trno>.cap

	LD110
	
	HD
	1
	ld110_codeX_ld110_<trno>.cap

	LD118
	Markov, 120km/h, 20%
	Clip
	20
	ld118_codeX_ld118_<trno>.cap

	LD119
	
	SD
	5
	ld119_codeX_ld119_<trno>.cap

	LD60_110
	Markov, 120km/h, 5%
	HD
	1
	ld060_codeX_ld110_<trno>.cap

	LD118_108
	
	Clip
	20
	ld118_codeX_ld108_<trno>.cap

	LD119_109
	
	SD
	5
	ld119_codeX_ld109_<trno>.cap

6.7.3.2.4
Generate Device Performance Measures

6.7.3.2.4.1
Setup

The following device/operating conditions are used:

· Device

· Samsung Galaxy S2 (GT-I9100) Smartphone, running Android 4.0.3. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9.

· Samsung MB-MSBGA Flash memory card - 32 GB microSDHC - 1 x microSDHC SD Card (Class 10)

· Root access is applied to the device, for details see Annex B.3.

· network2sd executable for reading packets from network interface and writing it in a suitable manner to the SD card in order optimize reading while decoding. For details on functionalities, see section 6.7.3.2.4.1.1.

· ld_decoder executable for FEC decoding based on data on the SD card of the device and for writing subblock data to SD card. For details on functionalities, see section 6.7.3.2.4.1.2.

· push the Unix 'time' command on the device, for details see Annex B.4.

· an ssh server is installed and running on the device to get shell access while USB tethering is active. See Annex B.7 for details.

· The host PC

· can be any OS, but typically Windows or Linux

· The host PC is connected to the Device using USB tethering through an interface. It is assumed that the interface has assigned name Samsung.

· the host does have a functionality installed that permits to push the stored PCAP files to the device. For details, see Annex B.6. In the following it is assumed that the ColaSoft Packet Player is available.

· The details of connecting device and host PC are provided in Annex B.5.

6.7.3.2.4.1
Code-specific Tools

6.7.3.2.4.1.1
Read from network and write to SD

The network2sd executable for reading packets from network interface and writing it in a suitable manner to the SD card in order optimize reading while decoding. The network2sd writes some information to stdout, which is used by ld_decoder as input to locate the relevant information. The executable synchronises all buffers with the SD card before exiting (e.g. via sync() system call).
For the purpose of implementing receiving payload data reading and writing to flash/disk, standard Android procedures and functions are used.

6.7.3.2.4.1.2
Decoding from and to SD card

The ld_decoder executable reads input data from SD card and writes it back to SD card sub-block by sub-block. The ld_decoder receives information from the network2sd process in order to locate the relevant data. The executable are synchronised all buffers with the SD card before exiting (e.g. via the sync() system call).

6.7.3.2.4.2
Process

For each test case LDX from Table 19 and each <trno>, the following processes are carried out in the following sequence:

· On the device start the following process in directory /data/data/berserker.android.apps.sshdroid/home with device Wifi IP of 192.168.2.102 an ssh server running on port 2222

1. ssh -p 2222 root@192.168.2.102

2. When asked for passwd, type: "admin"

3. Use rm to clear all disk space on SD card

4. time -v ./network2sd info.txt 2> time1.txt

· On the host start the Colasoft Packet Player with the following

· Adapter: Samsung

· Packet File: Add -> File of type: libpcap (*.cap)

· Select file ldY_codeX_ldZ_<trno>.cap
· Click button "Play"

· After termination at the device, the following is carried on the device

5. echo 1 > /proc/sys/vm/drop_caches (# this is for clearing caches)

6. time -v ./ld_decoder info.txt 2> time2.txt

7. (generate md5 and TOI > out.txt)

· After termination at the device, the following is carried out on the host

scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/out.txt ldY_codeX_ldZ_<trno>.out

scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/time1.txt ldY_codeX_ldZ_<trno>.time1

scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/time2.txt ldY_codeX_ldZ_<trno>.time2
6.7.3.2.4.2
Error Free Process

In order to understand the influence of supplementary processes to the FEC decoding, the same process as described in section 6.7.3.2.4.1 may be carried out for the error-free pcap files. To do so, all files ldY_codeX_ldZ_<trno>.* can be replaced by ldY_codeX.*.

6.7.3.2.4.3
Output

The output of this process is one performance file and one result file for each test case. The files are summarized in Table 23.

Table 23 Performance and result file for a virtual code X after decoding

	Test Case
	Error-Free Performance (optional)
	S
	Result
	Performance files

	LD60
	ld060_codeX.time
	1
	ld060_codeX_ld060_<trno>.out
	ld060_codeX_ld060_<trno>.time

	LD108
	ld108_codeX.time
	20
	ld108_codeX_ld108_<trno>.out
	ld108_codeX_ld108_<trno>.time

	LD109
	ld109_codeX.time
	5
	ld109_codeX_ld109_<trno>.out
	ld109_codeX_ld109_<trno>.time

	LD110
	ld110_codeX.time
	1
	ld110_codeX_ld110_<trno>.out
	ld110_codeX_ld110_<trno>.time

	LD118
	ld118_codeX.time
	20
	ld118_codeX_ld118_<trno>.out
	ld118_codeX_ld118_<trno>.time

	LD119
	ld119_codeX.time
	5
	ld119_codeX_ld119_<trno>.out
	ld119_codeX_ld119_<trno>.time

	LD60_110
	ld060_codeX.time
	1
	ld060_codeX_ld110_<trno>.out
	ld060_codeX_ld110_<trno>.time

	LD118_108
	ld108_codeX.time
	20
	ld118_codeX_ld108_<trno>.out
	ld118_codeX_ld108_<trno>.time

	LD119_109
	ld109_codeX.time
	5
	ld119_codeX_ld109_<trno>.out
	ld119_codeX_ld109_<trno>.time

6.7.3.2.5
Evaluation

6.7.3.2.5.1
General

After all test cases are completed the output files as presented in Table 23 are available. These files may be moved back to the host for evaluation.

6.7.3.2.5.2
Correct Decoding

To verify that decoding was successful for each test case or to identify the number of unsuccessful attempts, the result files ldY_codeX_ldZ_<trno>.out are collected and for each one it is compared if the TOI and MD5 are identical with ldY.md5. If not identical, one error event is recorded.

6.7.3.2.5.3
Performance Evaluation

The output will then be extracted from the two files which include the output from the time command similar as seen below:

 Command being timed: "ld_decoder"

 User time (seconds): 1.49

 System time (seconds): 0.36

 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456

 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0

The relevant entries here are "system time", "user time" (the sum of which is to be reported as the processing cost), and "Maximum resident set size". The memory usage to be reported is 1/4 of that given as the "Maximum resident set size" in an unpatched busybox 1.19.0. The reason for this division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)

· S: System time (seconds)

· P: Percent of CPU this job got

· W: Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)

· Generate the following numbers for performance evaluation based on the above results and the object size F (in bytes) for each test case and trace number:

· Speed: Average decoding speed (in MBit/s): F*8/(1000000*(U+S))

· Time1: Decoding time (in s): U+S
· Time2: weighted elapsed time (in s): P*W/100

· Memory: Peak memory usage (in MBytes): M/4096

6.7.3.2.5.4
Performance Documentation

The following values are to be reported for each test case be using the results from each trno = 0, ..., S-1 and the error free decoding:

· Np the total number of packets used for decoding

· E the total number of file delivery attempts that failed (should be 0)

· AvSpeed the average speed over all S decoding attempts

· AvTime1 the average decode time over all S decoding attempts

· AvTime2 the weighted elapsed time over all S decoding attempts

· MinSpeed the minimum speed over all S decoding attempts

· MaxTime1 the maximum decoding over all S decoding attempts

· MaxTime2 the weighted elapsed time over all S decoding attempts

· MaxMem the maximum memory over all S decoding attempts

· AvCPU the average value of P over all S decoding attempts

· EfSpeed the speed for error-free decoding attempt

· EfTime1 the Time for error-free decoding attempt

· EfTime2 the Time for error-free decoding attempt

· EfMem the Memory for error-free decoding attempt

Note that

· the error-free results are not required, but recommended to be provided.

· the data are obviously expected to be provided for the network2sd (in Table 25) and ld_decoder process (in Table 24).

· The test cases LD60_110, LD118_108 and LD119_109 are optional

Table 24 Performance Data for Download Delivery Test Cases for ld_decoder
	Test Case
	S
	Np
	E
	AvSpeed
(MBit/s)
	AvTime1

(sec)
	AvTime2

(sec)
	MinSpeed
(MBit/s)
	MaxTime2
(sec)
	MaxTime2
(sec)
	MaxMem
(MByte)
	AvCPU
	EfSpeed
(MBit/s)
	EfTime1
(sec)
	EfTime2
(sec)
	EfMem
(MByte)

	LD60
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD108
	20
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD109
	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD110
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD118
	20
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD119
	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD60_110
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD118_108
	20
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD119_109
	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Table 25 Performance Data for Download Delivery Test Cases for network2sd
	Test Case
	AvSpeed
(MBit/s)
	AvTime1

(sec)
	AvTime2

(sec)
	MinSpeed
(MBit/s)
	MaxTime2
(sec)
	MaxTime2
(sec)
	MaxMem
(MByte)
	AvCPU
	EfSpeed
(MBit/s)
	EfTime1
(sec)
	EfTime2
(sec)
	EfMem
(MByte)

	LD60
	
	
	
	
	
	
	
	
	
	
	
	

	LD108
	
	
	
	
	
	
	
	
	
	
	
	

	LD109
	
	
	
	
	
	
	
	
	
	
	
	

	LD110
	
	
	
	
	
	
	
	
	
	
	
	

	LD118
	
	
	
	
	
	
	
	
	
	
	
	

	LD119
	
	
	
	
	
	
	
	
	
	
	
	

	LD60_110
	
	
	
	
	
	
	
	
	
	
	
	

	LD118_108
	
	
	
	
	
	
	
	
	
	
	
	

	LD119_109
	
	
	
	
	
	
	
	
	
	
	
	

6.7.3.3
Streaming Delivery

6.7.3.3.1
Summary Test Cases

Table 26 summarizes the streaming test cases for device-based evaluation. The test cases LS45_33, LS51_50 and LS48_36 are done to apply the error streams of lower loss rates to higher overhead streams. These test cases LS45_33, LS51_50 and LS48_36 are optional.
Table 26 Parameters for Streaming Test Case

	Common Parameters
	Code-specific Parameters

(SHOWN ARE PARAMETERS FOR OFFICIAL TRACES WITH IDEAL CODE)

	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	Packet Interval
	Number Segments Y

(time=30min)
	G
	K
	Segment
Size S
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1s
	1288
	100
	10ms
	1800
	1
	35
	45080
	360.6

	LS49
	
	2s
	1288
	200
	10ms
	900
	1
	103
	132664
	530.7

	LS24
	
	4s
	1288
	400
	10ms
	450
	1
	248
	319424
	638.8

	LS33
	Markov, 120km/h, 5%
	1s
	1288
	100
	10ms
	1800
	1
	85
	109480
	875.8

	LS50
	
	2s
	1288
	200
	10ms
	900
	1
	177
	227976
	911.9

	LS36
	
	4s
	1288
	400
	10ms
	450
	1
	363
	467544
	935.1

	LS45
	Markov, 120km/h, 20%
	1s
	1288
	100
	10ms
	1800
	1
	65
	83720
	669.8

	LS51
	
	2s
	1288
	200
	10ms
	900
	1
	139
	179032
	716.1

	LS48
	
	4s
	1288
	400
	10ms
	450
	1
	291
	374808
	749.6

	LS45_33
	Markov, 120km/h, 5%
	1s
	1288
	100
	10ms
	1800
	1
	65
	83720
	669.8

	LS51_50
	
	2s
	1288
	200
	10ms
	900
	1
	139
	179032
	716.1

	LS48_36
	
	4s
	1288
	400
	10ms
	450
	1
	291
	374808
	749.6

6.7.3.3.1
Generate FLUTE Packet Test Streams

6.7.3.3.1.1
Process

In order to generate the FLUTE Packet Test streams, the following actions are to be applied on the host

· Download the following file http://media.xiph.org/ED/ed-pixlet.mov
· for each test case LSX according to Table 26
· generate segments and MD5

· split the file in to Y segments, each of size S

· create the MD5 for each of the segments and create a file that lists the TOI and the MD5

· the shell script in section 0 can be used for this purpose. It creates as output the segment number as well as the MD5 for the segment

· FEC encode to PCAP file as follows:
· Provide FDT for each segment just before first packet of a segment specifying at least the following parameters

· TOI

· FEC-OTI

Note:

· Content-Location and Content-Length are not added as they are not necessary. Transfer Encoding is sufficient.

· encode each segment sequentially with increasing TOI numbers 1 ... Y into ALC/LCT packets using the test case parameters according to Table 26 for the candidate

· number of source symbols K,

· number of transmitted symbols N,

· symbol size T,

· sub-blocking parameters if needed
Note: End of session and end of object transmission signalling may be used by setting the A and B flag in the LCT header.

· for all ALC/LCT packets with TOI not equal to 0,

· provide packets with UDP payload size according to Table 26. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.

· If in doubt or unclear what to use, include the timing for the real-time bitrate, i.e. 1 packet every according to the packet interval in Table 26. Note that the tool pcaploss rewrites correctly the packet timestamps with the right transmission time interval.
· for all ALC/LCT packets with TOI equal to 0, i.e. FDT packets

· provide packets with UDP payload size according to Table 26. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.

· If in doubt or unclear what to use, include a timing that is 50% of the packet interval in Table 26 earlier than the one in the first packet of the object with the TOI included in this FDT. Note that the tool pcaploss rewrites correctly the packet timestamps with the right transmission time interval.
6.7.3.3.1.2
Output

The output from this process is for each test case:

· File that contains TOI and MD5 for each of the segments

· PCAP file that contains a sequence of segments prefixed with a single multi-packet FDT that summarizes the entire sequence. The PCAP file name for a code with code name X is provided in Table 27 along with the total number of packets

Table 27 PCAP files and Segment List for a virtual code X

	Test Case
	Error conditions
	PCAP file
	Number of Data Packets
	Segment list

	LS21
	Markov, 3km/h, 20%
	ls21_codeX.cap
	180000
	ls21.md5

	LS49
	
	ls49_codeX.cap
	180000
	ls49.md5

	LS24
	
	ls24_codeX.cap
	180000
	ls24.md5

	LS33
	Markov, 120km/h, 5%
	ls33_codeX.cap
	180000
	ls33.md5

	LS50
	
	ls50_codeX.cap
	180000
	ls50.md5

	LS36
	
	ls36_codeX.cap
	180000
	ls36.md5

	LS45
	Markov, 120km/h, 20%
	ls45_codeX.cap
	180000
	ls45.md5

	LS51
	
	ls51_codeX.cap
	180000
	ls51.md5

	LS48
	
	ls48_codeX.cap
	180000
	ls48.md5

	LS45
	Markov, 120km/h, 5%
	ls45_codeX.cap
	180000
	ls45.md5

	LS51
	
	ls51_codeX.cap
	180000
	ls51.md5

	LS48
	
	ls48_codeX.cap
	180000
	ls48.md5

6.7.3.3.2
Generate Erroneous Packet Streams

6.7.3.3.2.1
LTE Traces

One LTE Error Trace is provided for each test case in the attached package. The files are named error_trace_ls<testcase>.txt. The details are summarizes in Table 28.

The format of the error traces is as follows

<Number L of loss/received events in ASCII>[newline]

L x {01}

where L is the maximum number of packets that the input pcap file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length L. One example would be:

12

001011100100

i.e. the length of the of string of 0s and 1s is given by the integer on the first line.
Table 28 Error traces for streaming test cases with losses and loss percentage

	Test Case
	Error conditions
	Error Trace
	Length N
	Loss Percentage

	LS21
	Markov, 3km/h, 20%
	errortrace_ls21.txt
	180000
	19.94

	LS49
	
	errortrace_ls49.txt
	180000
	19.94

	LS24
	
	errortrace_ls24.txt
	180000
	19.94

	LS33
	Markov, 120km/h, 5%
	errortrace_ls33.txt
	180000
	5.41

	LS50
	
	errortrace_ls50.txt
	180000
	5.41

	LS36
	
	errortrace_ls36.txt
	180000
	5.41

	LS45
	Markov, 120km/h, 20%
	errortrace_ls45.txt
	180000
	20.80

	LS51
	
	errortrace_ls51.txt
	180000
	20.80

	LS48
	
	errortrace_ls48.txt
	180000
	20.80

	LS45_33
	Markov, 120km/h, 5%
	errortrace_ls33.txt
	180000
	5.41

	LS51_50
	
	errortrace_ls50.txt
	180000
	5.41

	LS48_36
	
	errortrace_ls36.txt
	180000
	5.41

A process for generating the error traces independently is provided in Annex B.

6.7.3.3.2.2
Apply to LTE traces to PCAP streams

In order to introduce loss into a controlled manner to the PCAP files using the Markov error traces, a tool called pcaploss, available in source code form, is available and attached in the package (including Makefile). This tool takes a pcap file as input and transforms it into another altered pcap. The usage message for pcaploss is:

pcaploss: Usage: ./pcaploss <pcap_in> <pcap_out> <loss_file> [<#pkts>]
where the format of the loss trace file is according to the format introduced in section 0. If the optional integer argument #pkts is present, only the number of packets indicated by #pkts will be read in from pcap_in before pcaploss closes the output file and stops.

The pcap for transmission may be prepped with the right MAC/IP addresses for both sender and receiver. On the sender side MAC and IP can be obtained with command ‘ipconfig/ all’ on Windows, e.g.:

Ethernet adapter Local Area Connection 4:

 Connection-specific DNS Suffix . :

 Description : SAMSUNG Mobile USB Remote NDIS Network Device

 Physical Address. : 02-65-64-60-6E-0B

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 Link-local IPv6 Address : fe80::117:1bc9:34df:dd76%26(Preferred)

 IPv4 Address. : 192.168.42.149(Preferred)

 Subnet Mask : 255.255.255.0

 Lease Obtained. : Monday, July 16, 2012 3:37:43 PM

 Lease Expires : Monday, July 16, 2012 4:37:50 PM

 Default Gateway : 192.168.42.129

 DHCP Server : 192.168.42.129

 DHCPv6 IAID : 855795044

 DHCPv6 Client DUID. : 00-01-00-01-14-97-F4-E0-F4-CE-46-AC-6F-32

 DNS Servers : 192.168.42.129

 NetBIOS over Tcpip. : Enabled

where hardware and IP addresses are 02-65-64-60-6E-0B and 192.168.42.149 respectively. On the receiver side a multicast IP address and associated MAC could be 230.20.20.10 and 01:00:5e:66:14:14:0a.

With the information above and for each test case LSY(_Z) in Table 26, the following process is applied:

./tcprewrite --distip=0.0.0.0/0:230.20.20.10 --enet-dmac= 01:00:5e:66:14:14:0a --srcip=0.0.0.0/0:192.168.42.149 --enet-smac=02:65:64:60:6E:0B --fixcsum -i ldY_codeX.cap -o temp.cap

./pcaploss temp.cap ldY_codeX_ldZ_<trno>.cap errortrace_ldZ_<trno>.txt

Note that the integration of the Ethernet and IP addresses with tcprewrite is optional and may only be done absence of any other knowledge. tcprewrite is included in the TCPreplay suite, for details refer to Annex B.6.2.
6.7.3.3.2.3
Output

The output of this process is one PCAP file for each test case. The PCAP files are summarized in Table 29. The length of the PCAP file depends on the loss statistics.

Table 29 PCAP files for a virtual code X after applying channel that maps to specific channel model

	Test Case
	Error conditions
	Error Trace
	Number of Packets

(CODE DEPENDENT)

	LS21
	Markov, 3km/h, 20%
	ls21_codeX_ls21.cap
	

	LS49
	
	ls49_codeX_ls49.cap
	

	LS24
	
	ls24_codeX_ls24.cap
	

	LS33
	Markov, 120km/h, 5%
	ls33_codeX_ls33.cap
	

	LS50
	
	ls50_codeX_ls50.cap
	

	LS36
	
	ls36_codeX_ls36.cap
	

	LS45
	Markov, 120km/h, 20%
	ls45_codeX_ls45.cap
	

	LS51
	
	ls51_codeX_ls51.cap
	

	LS48
	
	ls48_codeX_ls48.cap
	

	LS45_33
	Markov, 120km/h, 5%
	ls45_codeX_ls45.cap
	

	LS51_50
	
	ls51_codeX_ls51.cap
	

	LS48_36
	
	ls48_codeX_ls48.cap
	

6.7.3.3.3
Generate Device Performance Measures

6.7.3.3.3.1
Setup

The following device/operating conditions are used:

· Device

· Samsung Galaxy S2 (GT-I9100) Smartphone, running Android 4.0.3. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9.

· Root access is applied to the device, for details see Annex B.3.

· ls_decoder executable for FEC decoding available on the device, for details on functionalities, see section 6.7.3.3.3.2.

· verifysegm for generating the md5 or a received segment push the data to stdout with TOI and length. For details on functionalities, see Annex B.8.

· push the Unix 'time' command on the device, for details see Annex B.4.

· The host PC

· can be any OS, but typically Windows or Linux

· The host PC is connected to the Device using USB tethering through an interface. It is assumed that the interface has assigned name Samsung.

· the host does have a functionality installed that permits to push the stored PCAP files to the device. For details, see Annex B.6. In the following it is assumed that ColaSoft Packet Player is available.

· The details of connecting device and host PC are provided in Annex B.5.

6.7.3.3.3.2
Decoder

The ls_ecoder executable receives its input data via the network interface card (UDP/ALC/LCT packets) and writes on stdout decoded source block.

If correction of the segment is successful, this application writes on stdout:

[TOI (32-bit) | length (32-bit) | <sequence of segment bytes>]

where TOI is the segment Transport Object Identifier followed by the length of the decoded segment in bytes and the actual recovered segment data. TOI and length are in network-byte order.

Note that the proponent need not use the provided verifysegm, but provide its own verification program. In this case the interface between the decoder and the verification program may for example use the segment name instead of the TOI.

6.7.3.3.3.3
Process

For each test case LSX from Table 26, the following processes are carried out in the following sequence:

· On the device start the following process in directory /data/data/berserker.android.apps.sshdroid/home with device Wifi IP of 192.168.2.102 and an ssh server running on port 2222:

1. ssh -p 2222 root@192.168.2.102

2. When asked for password, type ‘admin'

3. time -v ls_decoder 2> time.txt | time -v verifysegm > out.txt

· On the host start the Colasoft Packet Player with the following:

· Adapter: Samsung

· Packet File: Add -> File of type: libpcap (*.cap)

· Select file lsY_codeX_lsZ_<trno>.cap
· Click button Play

· After termination at the device, the following is carried out on the host:

scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/out.txt lsY_codeX_lsZ.out

scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/time.txt lsY_codeX_lsZ.time

6.7.3.3.3.4
Error-Free Process

The same process as described in section 6.7.3.3.3.3 is carried out for the error-free pcap files. To do so, all files lsY_codeX_lsZ.* are replaces by lsY_codeX.*.

6.7.3.3.3.4
Output

The output of this process is one performance file and one result file for each test case. The files are summarized in Table 44.

Table 30 Performance and result file for a virtual code X after decoding

	Test Case
	Error conditions
	Result
	Performance
	Error-Free Performance

	LS21
	Markov,
3km/h, 20%
	ls21_codeX_ls21.out
	ls21_codeX_ls21.time
	ls21_codeX.time

	LS49
	
	ls49_codeX_ls49.out
	ls49_codeX_ls49.time
	ls49_codeX.time

	LS24
	
	ls24_codeX_ls24.out
	ls24_codeX_ls24.time
	ls24_codeX.time

	LS33
	Markov, 120km/h, 5%
	ls33_codeX_ls33.out
	ls33_codeX_ls33.time
	ls33_codeX.time

	LS50
	
	ls50_codeX_ls50.out
	ls50_codeX_ls50.time
	ls50_codeX.time

	LS36
	
	ls36_codeX_ls36.out
	ls36_codeX_ls36.time
	ls36_codeX.time

	LS45
	Markov, 120km/h, 20%
	ls45_codeX_ls45.out
	ls45_codeX_ls45.time
	ls45_codeX.time

	LS51
	
	ls51_codeX_ls51.out
	ls51_codeX_ls51.time
	ls51_codeX.time

	LS48
	
	ls48_codeX_ls48.out
	ls48_codeX_ls48.time
	ls48_codeX.time

	LS45_33
	Markov, 120km/h, 5%
	ls45_codeX_ls33.out
	ls45_codeX_ls33.time
	ls45_codeX.time

	LS51_50
	
	ls51_codeX_ls50.out
	ls51_codeX_ls50.time
	ls51_codeX.time

	LS48_36
	
	ls48_codeX_ls36.out
	ls48_codeX_ls36.time
	ls48_codeX.time

6.7.3.3.4
Evaluation

6.7.3.3.4.1
General

After all test cases are completed the output files as presented in Table 30 are available. These files are moved back to the host for evaluation.

6.7.3.3.4.2
Correct Decoding

The number of successfully decoded segments can be computed as follows (on a UNIX machine):

cat lsY_codeX.md5 lsY_codeX.out | sort | uniq –d | wc –l
6.7.3.3.4.3
Performance Evaluation

The output of lsY_codeX(_lsY).time will be something like this:

 Command being timed: "ls_decoder"

 User time (seconds): 1.49

 System time (seconds): 0.36

 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456

 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0

The relevant entries here are system time, user time (the sum of which is to be reported as the processing cost), and Maximum resident set size. The memory usage to be reported is 1/4 of that given as the Maximum resident set size in an unpatched busybox 1.19.0. The reason for this division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)
· S: System time (seconds)
· P: Percent of CPU this job got

· W: Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)
· Generate the following numbers for performance evaluation based on the above results and the segment duration D (in seconds), the media bitrate R (in kBit/s), and the duration of the media data t (in seconds):

· Speed: Average decoding speed (in MBit/s): R*t/(1000*(U+S))

· Latency: Average decoding latency (in ms): D*(1000*(U+S))/t
· Memory: Peak memory usage (in MBytes): M/4096

6.7.3.3.4.4
Performance Documentation

The performance should be documented according to Table 31. The right three columns document the performance for error-free transmission. Also the values for U, S, P, W and M should be provided.
Table 31 Performance Data for Streaming Test Cases

	Test Case
	Error conditions
	G
	K
	E
	Speed (MBit/s)
	Latency (ms)
	Memory (MByte)
	EF-Speed (MBit/s)
	EF-Latency (ms)
	EF-Memory (MByte)

	LS21
	Markov, 3km/h, 20%
	
	
	
	
	
	
	
	
	

	LS49
	
	
	
	
	
	
	
	
	
	

	LS24
	
	
	
	
	
	
	
	
	
	

	LS33
	Markov, 120km/h, 5%
	
	
	
	
	
	
	
	
	

	LS50
	
	
	
	
	
	
	
	
	
	

	LS36
	
	
	
	
	
	
	
	
	
	

	LS45
	Markov, 120km/h, 20%
	
	
	
	
	
	
	
	
	

	LS51
	
	
	
	
	
	
	
	
	
	

	LS48
	
	
	
	
	
	
	
	
	
	

	LS45_33
	Markov, 120km/h, 5%
	
	
	
	
	
	
	
	
	

	LS51_50
	
	
	
	
	
	
	
	
	
	

	LS48_36
	
	
	
	
	
	
	
	
	
	

6.7.4
Attachments

The following files are attached to this Technical Report specifically for the purpose of the test plan:

· LossGenerator.zip: A packet to generate the relevant Markov error traces.

· pcaploss.zip: Package that includes a tcprewrite functionality to generate PCAP traces with losses according to a Markov trace.

· Traces.zip: all relevant error traces for conducting the tests
· verifysegm.zip: verification tool to generate MD5 for generated segment.

6.7.5
Verification Process

A detailed verification process had been defined.
· Each candidate provides the availability to access pcap files and executables ld_decoder, network2sd and ls_decoder for verification.
· Any 3GPP member can repeat the tests according to the test plans in section 6 and indicate that the verification was not successful. Collaboration with the candidate proponent to resolve verification is encouraged.
7
FEC Candidates

7.1
Introduction

Based on review of the self-evaluation data of all submitted candidates, the following complete EFEC candidates have been agreed to pass the Qualification Criteria to be considered as a Qualifying Candidate in the EMM-EFEC selection procedure.

· RS+LDPC: The summary of the submitters is provided in section 7.3

· Supercharged Codes: The summary of the submitters is provided in section 7.4

· 6330 code: The summary of the submitters is provided in section 7.5

In the evaluation of the candidate codes, benchmark codes are used. These are documented in section 7.2.

7.2
Benchmark Codes

7.2.1
Ideal Code

A code is generally capable to handle one or a few or many of the following parameters

· T: source symbol size

· K: source block size and number of source symbols

· N: word length and number of encoding symbols

An ideal code with parameters (K, N, T) can reconstruct the K source symbols from any set of K of the N encoding symbols. Ideal codes exists, but are usually very complex in encoding and decoding, especially if K is not small or if N needs to be large.
7.2.2
MBMS FEC RFC 5053
The code is fully specified in IETF RFC 5053 and is also used in MBMS TS26.346.
7.3
RS+LDPC

The RS+LDPC code and its proposed application as MBMS application layer FEC is documented in the attachment RS+LDPC.zip as provided by the proponent.
7.4
Supercharged Codes

The Supercharged Code provides application layer FEC protection.
7.5
6330 Code

The 6330 code and its proposed application as MBMS application layer FEC is documented in the attachment 6330.zip as provided by the proponent.
8
Performance of FEC Codes
8.1
Benchmark Codes: Ideal Code and RFC 5053
Attached to this document is an excel sheet named 'Benchmark-Codes.xls'. It contains all results of the benchmark codes.

Specifically it contains the following tabs:

· LTE-Download - 5053&Ideal: this tab provides the results for all 120 LTE download cases for both codes with the following details:
· Kt: the total number of source symbols for the test cases for RFC 5053
· FEC Overhead 5053: The FEC symbol overhead necessary to fulfil the criteria in percent for RFC5053
· Nt: the total number of overhead symbols for the RFC5053 code

· T: The symbol size in bytes for the RFC5053 code

· Z: the total number of source blocks for the RFC5053 code

· G: the number of symbols for each packet for the RFC5053 code

· Sending strategy:

· n/a not applicable as a single source block

· IL: source blocks are sent fully interleaved

· SQ: source blocks are sent sequential

· FEC Overhead Ideal (single SB): The FEC symbol overhead necessary to fulfil the criteria in percent when using an ideal code with a single source block.

· Nt ideal (single SB): the total number of overhead symbols for the ideal (single source block) code

· Kt with G=1: the total number of source symbols for the test cases for the ideal (single source block) code
· T: The symbol size in bytes for the ideal (single source block)

· Difference. The difference in overhead between the RFC5053 code and the ideal (single source block)

· LTE-Streaming - 5053&Ideal: this tab provides the results for all 72 LTE streaming cases for both codes with the following details:

· Supported Media rate: the media bitrate supported by RFC5053 that fulfils the criteria

· T: The symbol size in bytes for the RFC5053 code

· N: The total number of symbols for the RFC5053 code

· G: the number of symbols for each packet for the RFC5053 code

· K: the number of source symbols for a DASH segment for RFC 5053

· Supported Media rate: the media bitrate supported the ideal (single source block) code that fulfils the criteria

· T: The symbol size in bytes for the ideal (single source block) code

· N: The total number of symbols for the ideal (single source block) code

· G: the number of symbols for each packet for the ideal (single source block) code

· K: the number of source symbols for a DASH segment the ideal (single source block) code

· Difference % media rate: the degradation in media rate of the RFC5053 compared to the ideal (single source block) code

· UTRAN-Streaming -5053&Ideal: this tab provides the results for all 18 UMTS streaming cases for both codes with the following details:

· Performance: the media bitrate supported by RFC5053 that fulfils the criteria

· T: The symbol size in bytes for the RFC5053 code

· N: The total number of symbols for the RFC5053 code

· G: the number of symbols for each packet for the RFC5053 code

· K: the number of source symbols for a source block for RFC 5053

· Performance ideal: the media bitrate supported by ideal code that fulfils the criteria

· K: the number of source symbols for a source block for the ideal code

· UTRAN-Download - 5053&Ideal: this tab provides the results for all 36 UMTS download cases for both codes with the following details:

· FEC Overhead: The FEC symbol overhead necessary to fulfil the criteria in percent for RFC5053

· T: The symbol size in bytes for the RFC5053 code

· Kt: the total number of source symbols for the test cases for RFC 5053

· Z: the total number of source blocks for the RFC5053 code

· Ns: the number of subblocks for the RFC5053 code

· G: the number of symbols for each packet for the RFC5053 code

· FEC Overhead Ideal (single SB): The FEC symbol overhead necessary to fulfil the criteria in percent when using an ideal code with a single source block.

· T: The symbol size in bytes for the ideal (single source block)

· Kt with G=1: the total number of source symbols for the test cases for the ideal (single source block) code

· Z: the total number of source blocks for the ideal code (always 1)

· G: the number of symbols for each packet for the ideal code (always 1)

· Code Performance 5053: this tab provides the results for the code performance for the RFC5053 code

· Device-Download - 5053: this tab provides the results for two configurations of the device download for all six test cases

· Configuration 1: Focus on traces with low memory usage by applying subblocking. The memory is kept below 8 MByte
· Configuration 2: Focus on traces without subblocking.

· Device-Streaming - 5053: this tab provides the results for two configurations of the device streaming for all nine test cases
8.2
Candidate Results

The excel sheets for these documents are attached included in the Submission.zip package. The excel sheets for the codes from the self-evaluation numbers are attached to this document as Submission-<code>.xlsx.

8.3
Verification

8.3.1
Introduction

All verification data is included in the package Verification.zip attached to this document.

8.3.1
Verification of RS+LDPC Code

The following companies performed verification for the RS+LDPC code:

· Nomor: The consolidated excel sheet of the verification is attached to this document as Verification-RS+LDPC-nomor.xlsx. All results are verified.

· Huawei: The consolidated excel sheet of the verification is attached to this document as Verification-RS+LDPC-Huawei.xlsx. All download and streaming cases are verified.

8.3.2
Verification of 6330 Code

The following companies performed verification for the 6330 code:

· Nomor: The consolidated excel sheet of the verification is attached to this document as Verification-6330-nomor.xlsx. All download and streaming cases are verified.
· Huawei: The consolidated excel sheet of the verification is attached to this document as Verification-6330-huawei.xlsx. No non-verified test cases are reported.
· Expway: The consolidated excel sheet of the verification is attached to this document as Verification-6330-expway.xlsx.

8.3.3
Verification of Supercharged Code

The following companies performed verification for the Supercharged code:

· Nomor: The consolidated excel sheet of the verification is attached to this document as Verification-Supercharged-nomor.xlsx. The numbers in the submission could be verified.

· Huawei: The consolidated excel sheet of the verification is attached to this document as Verification-Supercharged-huawei.xlsx.
9
Other FEC Enhancements
9.1
Introduction

During the work item on EMM-EFEC other technologies beyond pure codes were submitted. The technologies are documented in this section.

9.2
Graceful Degradation (GD) - FEC

9.2.1
Introduction

Graceful Degradation (GD)-FEC sub-layer is performed at the first process in Transport layer and directly applied for the received data from the Media layer. GD-FEC mechanism provides unequal error protection (UEP) technique that protects important parts of media bit stream(s) more strongly than others. FEC layer is located in the lower and at the RTP/RCTP or SRTP sections to fully protect the packets and headers generated in the upper sub-layers. GD-FEC sub-layer may also be located in above FLUTE protocol layer when it used for DASH-based streaming service over FLUTE.
9.2.2
GD-FEC Operations and Requirements
When a system needs to supply a certain level of service quality for radio impaired mobiles that are suffered frequent burst losses in broadcasting, it may adopt GD-FEC and in this case, the system should inform all mobiles about the following information using in-band and/or out-band signalling:
· The kind of media data that is be protected by GD-FEC (e.g., audio, text, …)
· The location of GD-FEC source and repair packets in the source flows
· The GD-FEC format and encoded method

The portion of the source data protected by GD-FEC (referred to as target source) should be relatively small (e.g., audio data can be chosen for the target source, because the size of audio data is typically below 10% of that of video data) so that the required amount of repair packets can be small. With an enough amount of repair data, GD-FEC may provide a media protection with a low burden in computational complexity.
In GD-FEC, the encoding delay introduced by the GD-FEC encoder may increase, but may still be good enough for typical media coding systems. However, for receivers ignoring the GD-FEC system should not add additional decoding delay. Next section describes an example of GD-FEC implementation which fulfils these requirements.
In fact, GD-FEC can be flexibly adopted as: Good receiving status mobiles can be configured to not use GD-FEC decoding, however, bad receiving status mobiles may use GD-FEC repair packets when GD-FEC is deployed in media systems at the expense of possibly increased delay.
9.2.3
GD-FEC Encoding/Decoding Examples
This section describes an example of GD-FEC implementation which fulfils the requirements described in previous section. In this example, the audio packets are selected as the target source data for GD-FEC protection.
There are two important terminologies for GD-FEC: Encoded multimedia data group (EMDG) and GD-FEC encoding group (GDEG) as shown in figure 11-1. EMDG is a packet group that contains a group of media data providing a certain amount of information (e.g., all media data in one picture frame unit). GDEG is defined as a group of L EMDGs where L=1, 2, … (e.g., L=4 in figure 11-1).
[image: image20.png]Encoded Multimedia Data Grouy

Audio Packet
/_Other Packers (c.g., Video, DIMS, Text)

GD-FEC Encoding

Source Packet
Stream

Figure 11-1 – Encoded Multimedia Data Group (EMDG) and GD-FEC Encoding Group (GDEG)
It should be noted that, an important requirement for the GD-FEC described in previous section is the decoding delay of GD-FEC. Figure 11-2 shows none or minimum delay for the GD-FEC decoding whereas enough delay is yielded in the GD-FEC encoding (in the case of L=4).

[image: image21.emf]Source Packet

Stream

GD-FEC Encoding Group L (e.g., L=4)

Packet Stream

Delivered to Network

Buffering Delay for GD-FEC

Received

Packet Stream

With Erased Packets

Network Delay

GD-FEC Encoding &

Distributing Repair Packets

Audio Packet

Buffered Audio Packet

Recovered Audio Packet

* Packet Loss Prediction Parts shall be in

Receiver Implementation Recommendations

Packet Loss

Prediction &

GD-FEC

Decoding

Received

Packet Stream

With Recovered

Audio Packet

(None or Minimum

Decoding Delayed)

Buffering Received Repair Packets

Figure 11-2 – None or Minimum Delay GD-FEC Decoding Whereas Enough Delay Yielded by GD-FEC Encoding (e.g., L=4)
Another example of the low latency GD-FEC scheme is shown in Figure 11-3. In the figure, the duration of a GD-FEC encoding group is the same as that required to process a FLUTE segment file. With this alignment, an additional processing delay for the GD-FEC encoding is not required because it can be performed in the time slot of the FLUTE segment file process. Using the same reasoning, an additional processing delay for the GD-FEC decoding is also not required. The FLUTE segment packet units are smaller units than FLUTE file segments. Interleaving can be performed with these FLUTE segment packet units (e.g. predetermined random order sending). In the total streaming file for the FLUTE, the source data packets have headers and these headers are more important than others; furthermore, they can be GD-FEC target sources for stronger protection (e.g. UEP for the headers).

[image: image22.emf]GD-FEC

Encoding

(FLUTE

file based)

: Restore Packets

: Source Packets

(e.g., Audio)

FLUTE file segment duration

= GD-FEC Encoding Group L (e.g., L=4)

Encoded Multimedia Data Group

GD-FEC Encoding & Interleaving

GD-FEC Encoding & Interleaving

FLUTE file segment duration

FLUTE File

Packetized Stream

Delivered to Network

Figure 11-3. GD-FEC encoding delay aligned with the FLUTE segment file processing delay (e.g. the duration of the FLUTE file segment equals that of the GD-FEC encoding group).
9.2.4
Conclusion on GD-FEC
Although the study of GD-FEC during the EMM-EFEC work item produced results that showed positive benefits in some use cases and environments, it was considered that this technology could not be adopted within a normative specification at this time. Further consideration of GD-FEC may be made during later releases as a solution to various use cases including, but not limited to:
· Small segment delivery over FLUTE

· Low latency for good covered mobiles and increased latency for UEs in worse coverage

· Fast start-up

· OTA (over the air overheads)

10
Conclusions

There were significant investigations into the capabilities, performance and suitability of the qualifying EMM-EFEC candidates. The attached results and verification documents present a full view of the work performed in this area.

6330 and RS+LDPC each received significant support as MBMS Application Layer FEC (AL-FEC).

As a final conclusion of the work, no new AL-FEC code was adopted.

The existing FEC provides sufficient features and performance to ensure successful operation of MBMS User Services.
Annex A Simulation Conditions

A.1
Simulation Procedure for download delivery

For file downloads simulations the following assumptions are made:

· All source blocks have the same size, i.e. the size the largest source blocks (this would slightly overestimate FEC overhead but simplifies simulation code)

· The working size memory is 256KB for UTRAN MBMS and 1MB for LTE MBMS

The download procedure is:

· Generate IP packet loss transcripts, one per user, with mapping algorithm according to the access technology and the IP packet size according to the table. The transcript length must be long enough to cover transmission of the biggest file subject to maximum simulated loss and transmission overhead to meet target success rate.

· Using the following as input: file size F, payload size P, receiver memory size WS. Then compute the number of source blocks Z and their size in symbols KT, the number of symbols per packet G (always 1 for Ideal) according to the following schemes per FEC:

· In the case of Ideal code, there is always a single source block with symbol size T=P with a total of K=ceil(F/P) symbols.

· In the case of Raptor, the parameters are computed using Section 9.1 Block Partitioning Algorithm of RFC 5052.

· In case of other codes, the algorithm for computing the different parameters should be provided

· For each user U do

· Encoding symbol index I = 0

· Until all Z source block are received

· For each Z source block

1. Add a received symbol of ESI I for the block if not lost according to lost transcript A for user

2. Move loss transcript pointer to next item

3. If the block is not decoded and number of received symbols is equal or bigger than K*T do:

· Try decoding with the set of received ESIs

· If successful, mark block as decoded, record number of symbols necessary for this block

· I = I + 1

· Find maximum of necessary symbols maxSymbol across Z blocks for user U, report Transmission overhead as (maxSymbol*T *Z/ F) in percent

· Rank all users according to their Transmission overhead

· If X is the target success rate, keep the last (1 – X) * N last users where N is the number of simulated users

· Report Transmission overhead (reported as FEC overhead in TR26.346) of the first user (i.e. with lowest FEC overhead) from remaining users of step 5.
A.2
Simulation Procedure for streaming delivery

The streaming simulation procedure is:

· Select a streaming service with source data rate and stream duration (24 hours)

· Generate IP packet loss transcripts, one per user, with mapping algorithm according to the access technology and the IP packet size according to the table. The transcript length must be long enough to cover transmission of the whole stream duration.

· Compute number of symbols N per protection period for FEC under consideration (for RFC5053, this is the number of packets if G > 1)

· R = 0, the number of repair symbols

· Loop 1: Until number of segment in error E is less than target error maxE do:

· K = N – R, where K = number of symbols for block

· For all segments in stream do:

· For ESI = 0 up to N-1 do:

· If SDU is received according to loss transcript A, record ESI as received

· Try decoding with set of received ESI

· If not successful, E = E + 1

· If E > maxE, R = R + 1, restart Loop 1

· Record last value of K as maxK

· Report maximum streaming rate as (G*K*T*8 / protection period) where T is the symbol size.

Annex B Tools for device-based evaluation

B.1
Split file into segments and generate MD5

This Unix script creates <total> smaller segments, each of size <bytes> from file <file> and names the segments with <prefix>08%d.

#!/bin/sh

Split large file segments and create md5

if [$# -eq 4]

then

 rm -f $3*

 head -c 231840000 $2 > /tmp/temp.mov

 split -d -a 4 -b $1 /tmp/temp.mov $3

 rm -f /tmp/temp.mov

 j=0

 for i in `ls -1 $3*`;

 do

 j=`expr $j + 1`;

 if [$j -le $4]

 then

x=`echo $3 $j | awk '{ printf ("%s%08d", $1, $2) }'`

mv $i $x;

MD5=`cat $x | md5sum | awk '{ print $1 }'`

echo '$j $MD5'

 else

 rm $i

 fi

 done

else

 echo $# 'usage: split_with_numbers.sh <bytes> <file> <prefix> <total>'

fi

B.2
Generate Markov Traces

The attached java code "LossGenerator.java" and "Random.java" may be used to generate the loss traces independently. The java trace file can be executed as follows:

java LossVectorGenerator p q gBLER bBLER subsamp n seed offset vectorfile

with:

p (transition probability from good to bad state)

q (transition probability from bad to good state)

gBLER (BLER for the good markov state)

bBLER (BLER for the bad markov state)

subsamp (subsampling for markov trace)

n (length of the vector to be generated)

seed (for the prng)

offset (iterate n times before generating the vector)

vectorFile (file name where to output the vector)

Table 44 provides the instructions how to generate the error traces for the streaming test cases.

Table 44 Markov Trace generation for streaming test cases

	Test Case
	Error conditions
	Test Script parameters

	LS21
	Markov, 3km/h, 20%
	0.0461 0.1680 0.0016 0.8920 1 180000 0 0 errortrace_ls21.txt

	LS49
	
	0.0461 0.1680 0.0016 0.8920 1 180000 0 0 errortrace_ls49.txt

	LS24
	
	0.0461 0.1680 0.0016 0.8920 1 180000 0 0 errortrace_ls24.txt

	LS33
	Markov, 120km/h, 5%
	0.2707 0.7095 0.0000 0.1954 1 180000 0 0 errortrace_ls33.txt

	LS50
	
	0.2707 0.7095 0.0000 0.1954 1 180000 0 0 errortrace_ls50.txt

	LS36
	
	0.2707 0.7095 0.0000 0.1954 1 180000 0 0 errortrace_ls36.txt

	LS45
	Markov, 120km/h, 20%
	0.3560 0.6329 0.0972 0.4040 1 180000 0 0 errortrace_ls45.txt

	LS51
	
	0.3560 0.6329 0.0972 0.4040 1 180000 0 0 errortrace_ls51.txt

	LS48
	
	0.3560 0.6329 0.0972 0.4040 1 180000 0 0 errortrace_ls48.txt

Table 45 provides the instructions how to generate the error traces for the download test cases. The <length> corresponds to the Length in the table and the <offset> is the trace number minus one multiplied by the length. The trno runs from 1 to S.

Table 45 Markov Trace generation for download test cases

	Test Case
	S
	Length
	PCAP file

	LD60
	1
	2000000
	0.0461 0.1680 0.0016 0.8920 1 <length> 0 <offset> error_trace_ld60_<trno>.pcap

	LD108
	20
	3400
	0.2707 0.7095 0.0000 0.1954 1 <length> 0 <offset> error_trace_ld108_<trno>.pcap

	LD109
	5
	150000
	0.2707 0.7095 0.0000 0.1954 1 <length> 0 <offset> error_trace_ld109_<trno>.pcap

	LD110
	1
	2000000
	0.2707 0.7095 0.0000 0.1954 1 <length> 0 <offset> error_trace_ld110_<trno>.pcap

	LD118
	20
	3400
	0.3560 0.6329 0.0972 0.4040 1 <length> 0 <offset> error_trace_ld118_<trno>.pcap

	LD119
	5
	150000
	0.3560 0.6329 0.0972 0.4040 1 <length> 0 <offset> error_trace_ld119_<trno>.pcap

B.3
Root access for Galaxy S2

Here is procedure to root the Samsung S2:

· http://forum.xda-developers.com/showthread.php?t=1501719

Once the phone is rooted, to turn on performance mode and disable the second CPU core:

· cd /sys/devices/system/cpu/cpu0/cpufreq

· cat scaling_governor

· this will tell the current mode (on-demand or performance)

· echo performance > scaling_governor

· turn on performance mode. echo ondemand to turn off
· NOT a sticky command i.e. value resets to ondemand after reset

· note: performance mode will keep it at 1.5GHz, even at idle

· In ondemand mode - at idle, without a data transfer or anything else running on the device, cpu0 should be running at much lower speed

· cat scaling_cur_freq

· display current clock frequency in kHz

· cd /sys/devices/system/cpu/cpu1/cpufreq

· to check the settings for cpu1

· NOTE: if core 1 is not on, the cpufreq directory won't exist

· cd /sys/devices/system/cpu/cpu1; cat online

· if it outputs 1, cpu1 is still up

· echo 0 > /sys/devices/system/cpu/cpu1/online

· shuts a given cpu down

· chmod 444 /sys/devices/system/cpu/cpu1/online

· ensures that the cpu is not restarted again (needs to be finally verified)

B.4
Time Command on Android Device

To enable the time command on an android device, the Busybox needs to be installed.

· ARM pre-compiled busybox can be downloaded from http://busybox.net/downloads/binaries/1.19.0/ (the ARMv6l works well on Android).

· Then push it on the phone by

· renaming it 'time': adb push busybox-armv6l /data/local/tmp/time

· make sure it's executable (adb shell chmod 0777 /data/local/tmp/time).

B.5
USB tethering of Android Devices

B.5.1
Requirements

Android device running 2.2 Froyo or higher

B.5.2
Enable USB tethering on Android

- Switch ON "Tethering" option in "Setting->Wireless and Networks.

You can check the IP address of the newly created interface using the "adb" tool from the Android SDK. Once in the Android shell use the "netcfg" command. The IP address should be "192.168.42.129" (Hardcoded in Android source code).

B.5.3
Network structure

 Android terminal

Linux/Win PC

=========================
=========================

|
|
|
|

| <<connection status>>
|
| <<connection status>>
|

| - USB Tethering mode
|
| - Recognizes Android
|

|
|
| terminal as NIC
|

| <<interface>>
| USB Connection
|
|

| - New NIC
|<==============>
| <<interface>>
|

| 192.168.42.129
|
| - New NIC
|

|
|
| IP from Android
|

|
|
| device (DHCP)
|

| <<action>>
|
| <<action>>
|

|- Receive multicast
|
|- Send multicast
|

| packets (pcap)
|
| packets (pcap)
|

=========================
=========================

B.6
Play a PCAP

B.6.1
Windows

In order to play a PCAP file on a Windows based host, one can use the following tools:

· http://www.colasoft.com/packet_player/

B.6.2
Unix & Win32/Cygwin

In order to play a pcap file on a Unix based host, one can use the following tools:

· TCP Replay as available here: http://tcpreplay.synfin.net/
· or here as source http://sourceforge.net/projects/tcpreplay/
B.7
Android SSH server

An SSH server for Android is SSHDroid available from Google Marketplace. Search for ‘SSHDroid’. Once installed, make sure to configure port 2222 in its settings. For some reason when SSHDroid defaults to port 22 when running in root mode, it is not possible to ssh in. Port 2222 has no such restriction.

B.8
Verify Segment Decoding

This tool is attached in source code in verifysegm.zip with compilation instructions for Android.

The tool reads from stdin a repeated sequence

[TOI (32-bit) | length (32-bit) | <sequence of segment bytes>]

where TOI is the segment Transport Object Identifier followed by the length of the decoded segment in bytes and the actual recovered segment data. TOI and length are in network-byte order.

For each such triplet, the output is

<TOI as a human readable integer> <one space> <human readable hex MD5> <newline>

The output is human readable, unlike the input. Exactly one such line is printed to stdout per TOI (assuming the TOI is received a single time).

Example input in hex:

00 00 00 01 00 00 00 03 a0 a1 a2 00 00 00 02 00 00 00 01 b0

(end of file after that.)

This corresponds to two objects, first having TOI 1, and a length of 3 bytes, the file content being (in hex) a0 a1 a2, and the second one being TOI 1 the file containing a single byte b0.

The output produced by that should be:

1 b33326d4c1d789e9651d526f420b6801

2 ec655b6da8b9264a7c7c5e1a70642fa7

and no other line.

Annex <X>:
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2012-06
	56
	SP-120225
	
	
	Presented at TSG SA#56 (for information)
	
	1.0.0

BM-SC

FLUTE

FEC

FECFRAME

FEC

Core Network

Radio Network

GGSN/SGSN

MBMS-GW

GERAN

UTRAN

E-UTRAN

MBMS Receiver

FLUTE

FEC

FECFRAME

FEC

IP/UDP

GERAN/UTRAN/E-UTRAN

� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

_1391235900.vsd
Data

Data

Erasure

Pe

1-Pe

Input

Output

Erasure
Channel

_1391235901.vsd
Erasure
Channel
IID
Pe

Data

Decoder

Parity

Data

Parity

Erasures

K

N

_1294673145.vsd
Source Packet
Stream

GD-FEC Encoding Group L (e.g., L=4)

Packet Stream
Delivered to Network

Buffering Delay for GD-FEC

Received
Packet Stream
With Erased Packets

Network Delay

GD-FEC Encoding &
Distributing Repair Packets

Audio Packet

Buffered Audio Packet

Recovered Audio Packet

* Packet Loss Prediction Parts shall be in
Receiver Implementation Recommendations

Packet Loss
Prediction &
GD-FEC Decoding

Received
Packet Stream
With Recovered
Audio Packet
(None or Minimum Decoding Delayed)

Buffering Received Repair Packets

_1294673146.vsd
Encoded Multimedia Data Group

FLUTE file segment duration
= GD-FEC Encoding Group L (e.g., L=4)

GD-FEC Encoding & Interleaving

GD-FEC Encoding & Interleaving

FLUTE file segment duration

FLUTE File Packetized Stream
Delivered to Network

GD-FEC
Encoding
(FLUTE file based)

: Restore Packets

: Source Packets   (e.g., Audio)

