Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4#72
S4-130050
28 January - 1 February 2013
update to S4-121312
Valencia, Spain

Agenda item:
8
Source:
Qualcomm Incorporated
Title:
EMM-EFEC: Input to TR 26.947: Deployment Guidelines for EMM-EFEC
Document for
Proposal and Approval
1 Introduction
FEC codes considered in the EMM-EFEC context do have some common properties. One of them is the usage of source blocking in order to provide multiple chunks of a larger file where each chunk constitutes an independent source block and each source block is encoded individually. Then for each source block a certain set of symbols is sent where the sending order of the symbols across the different source blocks is arbitrary. The receiver receives symbols and reconstructs source block by source block to finally reconstruct the entire object as the concatenation of the reconstructed source blocks.
This documents provides requirements and good practices for sending and reception strategies for a download delivery session. It is proposed to adopt these practices into the Technical Report, possibly with some additional refinements, diagrams and extensions.

2 General

In addition to the FEC code itself, the performance of the end-to-end system for download delivery is influenced by the following FEC code independent processing:

· Source blocking
· Sub-blocking

· Symbol-to-Packet Mapping

· Sending Strategy

· Reception Strategy

The performance metrics that can be influenced by different parameter settings are the following:

· decoding complexity

· necessary transmission overhead

· necessary reception overhead

· memory consumption in UE

· battery consumption in UE

· flexibility of handling data in UE

· robustness to different error conditions
The existing MBMS FEC as specified in IETF RFC5053 covers these aspect by the proper source and sub-blocking procedures in section 5.3.1 of IETF RFC5053. The summary is provided below for a general encoder with the maximum block size of Kmax.
In order to apply the encoder to a source object, the object may be broken into Z >= 1 blocks, known as source blocks. The FEC encoder is applied independently to each source block. Each source block is divided into a number, K, of source symbols of size T bytes each. Each source block with K source symbols is divided into N >= 1 sub-blocks. Each sub-block is divided into K sub-symbols of size T'.
The construction of source blocks and sub-blocks is determined based on five input parameters, F, Al, T, Z, and N, and a function Partition[]. The five input parameters are defined as follows:

· F the transfer length of the object, in bytes

· Al a symbol alignment parameter, in bytes

· T the symbol size, in bytes, which MUST be a multiple of Al

· Z the number of source blocks

· N the number of sub-blocks in each source block

These parameters MUST be set so that ceil(ceil(F/T)/Z) <= Kmax.

The function Partition[] takes a pair of integers (I, J) as input and derives four integers (IL, IS, JL, JS) as output. Partition[] derives parameters for partitioning a block of size I into J approximately equal-sized blocks, specifically, JL blocks of length IL and JS blocks of length IS.
The source object is be partitioned into source blocks and sub-blocks with Kt = ceil(F/T) as (KL, KS, ZL, ZS) = Partition[Kt, Z] and (TL, TS, NL, NS) = Partition[T/Al, N]. Then, the object is partitioned into Z = ZL + ZS contiguous source blocks, the first ZL source blocks each having length KL*T bytes, and the remaining ZS source blocks each having KS*T bytes.

Each source block is divided into N = NL + NS contiguous sub-blocks, the first NL sub-blocks each consisting of K contiguous sub-symbols of size of TL*Al and the remaining NS sub-blocks each consisting of K contiguous sub-symbols of size of TS*Al. The symbol alignment parameter Al ensures that sub-symbols are always a multiple of Al bytes. The m-th symbol of a source block consists of the concatenation of the m-th sub-symbol from each of the N sub-blocks. This implies that when N > 1, then a symbol is not a contiguous portion of the object.

A packet may then contain 1 or multiple symbols. The number of symbols per packet is referred to as G.

3 Source Blocking Considerations
An example parameter derivation for the RFC5053 code is provided in section 4.2 of IETF RFC5053 which covers some specific deployment requirements. However, generally there is flexibility in choosing the parameters Al, T, Z, N and G.
From an overhead point of view and for a given Kmax, it is always suitable to choose Z as small as possible. However, large KL and KS degrade decoding performance and memory consumption (especially if sub-blocking is not applied) and therefore Z may be chosen such that KL and KS are not maximum.

From a high-level, three general cases may be differentiated:

1. Optimize Transmission overhead and restrict necessary decoding memory, but sacrifice decoding speed to some extent: This is achieved by choosing Z to be smaller and by applying sub-blocking, i.e. setting N>1 such that the maximum sub-block size ceil(Kt/Z)*ceil(T/N) is bounded.

2. Optimize Transmission overhead and decoding speed, but sacrifice memory usage to some extent. This is achieved by choosing Z to be smaller and by not applying sub-blocking. However, this memory usage proportional to ceil(Kt/Z)*T.
3. Optimize decoding speed and restrict decoding memory, but sacrifice transmission overhead. This is achieved by choosing Z to be larger to fulfill memory requirements and by not applying sub-blocking.

Three different parameter settings are used which are summarized in Table 1.

Table 1 Tradeoffs for different cases

	
	Decoding Speed
	Memory Usage
	Transmission Overhead

	Case 1
	-
	+
	+

	Case 2
	+
	-
	+

	Case 3
	+
	+
	-

As an example the LD60 case and the relevant results for the 6330 code are provided

Table 2 Example results for 6330 code for LD60
	Case
	Z
	T
	N
	Al
	O
	Nt
	AvSpeed
	MaxMem
	AvSpeed
	MaxMem

	1
	53
	1288
	10
	8
	26.44
	1852820
	101.55
	9.50
	295.03
	18.9

	2
	53
	1288
	1
	8
	26.44
	1852820
	151.13
	71.60
	316.55
	4

	3
	173
	1288
	1
	8
	27.59
	1869745
	173.48
	22.70
	309.60
	11.4

It is essential that these tradeoffs are understood and that the service provider does have the ability to restrict the necessary decoding memory in the same way as is currently possible in the existing MBMS FEC. The exact restrictions may be decided case by case, for example if it is expected that the FEC process is done in the background standalone (for example overnight) or if it runs in parallel with other processes, such as media rendering.
4 Sending Strategy

Based on the discussions in section 3 multiple source blocks may have been generated for a single object. There are different strategies for sending the symbols of one object in a download delivery session. Two typical sending strategies are discussed in the following
1. Sequential Transmission as shows in Figure 1: In this case the source blocks are sent sequentially, i.e. all packets of SB #1, then all from SB #2, etc.
2. Interleaved (Round Robin) Transmission as shown in Figure 2: In this case the packets of the source blocks are sent in an interleaved (round robin) fashion, i.e., the first packet of SB#1, the first packet of SB#2, ..., the first packet for SB#Z, and the second packet of SB#1, ... are sent.

[image: image1.png]
Figure 1 Sequential Transmission

[image: image2]

[image: image3]

 [image: image4.png]
Figure 2 Interleaved (Round Robin) Transmission
Sequential transmission does have some advantages in terms of simplicity especially on the receiving end as each source block is treated independently. However, interleaved transmission does have significant robustness advantages. This is shown in Figure 1 and Figure 2. An outage of several seconds can lose an entire source block in the sequential transmission. To provision for this, significant transmission overhead needs to be added for sequential transmission. In the interleaved case, the losses hit each source block almost equally, so the reliable recovery is possible with much less transmission overhead.
More data is currently collected based on the LTE Markov traces and other realistic scenarios.
5 UE file recovery strategies
5.1 Introduction

The decoding speed estimates as produced in the device-based evaluation are based UE strategy 1 described below, i.e., based on the system time to decode after reception of the entire transmission of all packets. This reception strategy is just one of multiple possible ones. We focus on two strategies in the following

· UE strategy 1: The UE receives all packets for the file from the download delivery session.

· UE strategy 2: The UE terminates reception of packets from the download delivery session when enough packets have been received to recover the file.

We analyze which of these two different UE strategies is more efficient from an overall UE system perspective. The analysis has an impact on recommended UE reception strategies, as well as on recommended file sending strategies.

5.2 Discussion
Many of the FEC decoder implementations have the property that the FEC decoding speed is faster when the FEC overhead of packets received for a file in the download delivery service is higher. UE strategy 1 is designed to exploit this property of FEC decoders, and implement the download delivery service with a UE strategy to receive as many packets as possible for a file from the download delivery session. The rationale behind UE strategy 1 is that it is often the case the UEs are in better than worst case packet loss conditions, and thus they will often receive many more than the minimal number of packets necessary to recover a file, and by doing so the FEC decoding speed, and overall UE resource usage, might be minimized. Consider the following example:
File delivery example: the number of packets provisioned to be sent for a file is enough to compensate for a 20% packet loss rate to achieve successful delivery of the file to 99% of the UEs. However, the majority of the UEs experience a 5% packet loss rate.
In this example, with UE strategy 1 the majority of the UEs receive approximately an additional 15% more packets than necessary to recover the file, and the FEC decoding speed is potentially much faster than if a smaller number of packets are used to recover the file.

On the other hand, with UE strategy 2 the UE terminates reception of packets for that file as soon as enough packets have been received to recover the file. Implementing UE strategy 2 is based on the UE determining if enough packets have been received to recover a file, which generally can be accurately deduced as follows. The UE can determine from the FEC OTI for the file the number of source blocks into which the file is partitioned and the number of source symbols in each such source block. The UE can determine from the FEC Payload ID of each packet the source block from which the encoded symbols carried in the packet are generated. The UE can deduce that a source block can be decoded when the number of encoded symbols received for that source block exceeds the number of source symbols in that source block by a configured amount. Thus, when enough encoded symbols for each of the source blocks of a file have been received, the UE can deduce that it can recover the file from what has been received and terminate reception of additional packets for the file. This is straightforward to implement within the UE, and in fact at least some full implementations of a download delivery service support UE strategy 2.
The advantage of UE strategy 2 is that the UE uses less radio resources to receive packets for a file, and by doing so the overall UE resource usage might be minimized. In the file delivery example above, a majority of the UEs receive approximately 15% less packets using UE strategy 2 than using UE strategy 1, although the FEC decoding speed might be slower using UE strategy 2 than using UE strategy 1.

Thus, the overall question is which of the two UE strategies is more efficient overall from the UE perspective?
5.3 Analysis of the two UE strategies
5.3.1 The Question

The trade-off between UE strategy 1 and UE strategy 2 can be summarized as follows:
· With UE strategy 1, the FEC decoding speed might be much faster than if a smaller number of packets are used to recover the file, but potentially many unnecessary packets are received.
· With UE strategy 2, unnecessary packet reception is minimized, but FEC decoding speed might be slower than if many more additional packets are received.
The question arises:

what is the trade-off between FEC decoding speed and packet reception, in terms of consumption of UE system resources?
5.3.2 Preliminaries

One of the more important aspects of packet reception is the power consumed for receiving packets from an eMBMS download session. From detailed internal studies, it was observed that receiving packets at approximately
1 Mbps consumes around the same amount of power as running one CPU at 100%
on a UE device that could potentially be used to support an eMBMS download delivery service.
The following is a very conservative FEC decoding speed that can be consistently achieved by at least one of the proponent FEC codes for files of all sizes on the UE device when there is essentially zero reception overhead:

Conservative FEC decoding speed using UE strategy 2 is 100 Mbps.
Thus, 1% packet reception consumes approximately the same amount of power as it takes to decode the entire file.

5.3.3 Conclusion
In the typical example above the following holds:

· in strategy 1, a UE receiving 15% extra packets at 1 MBit/s. Let X denote the additional power cost for reception of the 15% extra packets.. Assume further that the FEC decoding is free, i.e. the power cost is 0 due to decoding with additional packets.

· in strategy 2, a UE receives 0% extra packets and the additional power cost for receiving is therefore 0. From the above discussion, the power cost for FEC decoding at 100 Mbps at 0% reception overhead consumes around the same amount of power at receiving 1% extra packets, and since 15% extra packets are received for strategy 1, the amount of power for FEC decoding is around X/15. .
Overall, 15 times less additional power is used for strategy 2 than is used for strategy 1 in this example. The power savings are significant.

5.3.4 Recommendation
From this analysis, implementing UE strategy 2 is beneficial to recommend for the download delivery service. Furthermore, the analysis shows that the FEC decoding speed at low reception overheads is much more relevant than the FEC decoding speed at higher reception overheads.
The above analysis considers radio resource power to receive packets compared to CPU power to FEC decode. When other resources are also considered, i.e., receiving and processing unnecessary packets at the application layer, writing unnecessary packets to the SD card, reading back unnecessary packets into RAM for FEC decoding, the conclusions are further strengthened.
5.4 Sending strategies
The analysis shows that UE strategy 2 is more efficient than UE strategy 1 for download delivery services. This analysis also has an impact on whether interleaved source block sending strategy or a sequential source block sending strategy is preferable when a file is partitioned into multiple source blocks. Generally, an interleaved sending strategy spreads out any packet loss more evenly across the packets of the different source blocks and thus in general leads to a lower transmission overhead for the same reliability in delivery of a file compared to a sequential sending strategy.
There are strong additional reasons to prefer interleaved sending to sequential sending of the source blocks when UE strategy 2 is considered. If sequential sending is used with UE strategy 2 then substantial numbers of unnecessary additional packets will be received for all but the last source block when actual packet loss is substantially less than the configured amount of packet loss. Consider the file delivery example when the file is partitioned into 10 source blocks. With sequential sending, the UE using strategy 2 can only terminate reception of packets for the file after receiving all receivable packets for the first 9 source blocks and can only terminate packet reception when enough packets for the 10th source block have been received. Thus, the UE receives approximately 15% more packets than needed for each of the first 9 source blocks, and overall receives approximately 0.9*15% = 13.5% unnecessary packets.
On the other hand, with interleaved sending, the UE will receive enough packets for each source block to recover the source block at approximately the same point in the reception for all of the 10 source blocks. Thus, using UE strategy 2, the reception of unnecessary packets is minimized, i.e., the number of received unnecessary packets is relatively close to zero.
For this reason, the interleaved sending strategy should be recommended for the download delivery service when the file is partitioned into multiple source blocks.
For use cases where it is desirable to deliver some portions of content prior to or separately from other portions of the same content, it should be recommended that the content be partitioned and delivered as separate objects within the download delivery service, and leave it to a higher level application that understands the semantics of the content and its organization to splice together such delivered objects to form the delivered content.
6 Just-In-Time Decoding

One interesting MBMS download delivery use case is when media files are delivered via MBMS for later playback by end users. Because of the nature of the MBMS download broadcast service, it makes sense to proactively deliver to media content to UEs, even in the case that each end user of each UE may not completely play back each media content so delivered.

The first stage of the two stage device download delivery is the same for just-in-time (JIT) decoding as usual: a process is used to receive and write to the SD card the encoded and interleaved data for the media content.

The second stage of the usual download delivery is to run the decoder process as a post-processing step to read in the received data for the media content, FEC decode, and write the entire recovered entire media content back to the SD card. It is this second stage that is different for JIT decoding: the decoder is not run as a post-processing step, but instead only when the end user decides to view the media content is the decoder executed to read the relevant portions of the stored data from the SD card, FEC decode, and provide the relevant portions of the media content directly to the media player for playback. Furthermore, the decoder only reads and decodes the relevant portions of the data that correspond to portions of the media content that are being viewed at any time by the end user.
Figure 3 shows the JIT recovery process. During the reception process the encoded and interleaved data is written to the SD card, possibly and quite likely with packet losses. Only the index (movie header, segment index, etc.) are decoded. Once playback is started the decoding process is initiated for both, first the FEC and then the media are decode. canex (movie header, segment index, etc.) are decoded. On
 shows the ry and decoding process decodingfied. rate of the RFC5053 compared to the atem and to consider the results in S4-130
[image: image5.png]
Figure 3 JIT recovery and decoding process

Some advantages of the JIT decoding of media content approach are:

(1) Progressive MBMS Download: Once enough data has been received to recover the media content from the eMBMS broadcast session, the media content can be immediately be played back by the end user, i.e., there is no additional delay that is introduced by the usual post-processing step to recover the entire media content before the media content is available to the end user for playback. This emulates the well-known progressive download feature from HTTP-based delivery also for MBMS download delivery services.

(2) Reactive recovery: Only media content that is actually played back is ever read in from the SD card and recovered. If media content for which data is delivered over eMBMS is never accessed by the end user, no additional UE resources are wasted to recover and write the recovered media content back to the SD card. Additionally, even in the case of content that is played back, there is not an additional write of the recovered content to the SD card.

(3) Storage Efficiency: The amount of data ever stored on the SD card for the media content is essentially the size of the media content. With the usual post-processing approach to recover the media content, both the received data for the media content and the recovered media content are stored on the SD card, doubling the amount of storage used for downloading the media content.

Thus, for JIT decoding there is no separate recovery process, but recovery is seamlessly integrated into the media playback process. JIT is essentially ideal if it has the same resource usage of the UE and provides the same user experience as if though the original media content were delivered directly without any loss of data during the delivery.

To provide a reactive user experience, it is essential that the amount of data that JIT decoding needs to read in and FEC decode before playback can commence be relatively small. On the other hand, from the network perspective, it is essential that the FEC be applied over large source blocks of data. Thus, it turns out that sub-blocking is an essential ingredient for providing an excellent JIT decoding user experience, where the sub-block size is the amount of data that needs to be read in and FEC decoded before playback can commence, and the source block size is the amount of data over which FEC protection can be provided from a network perspective.
7 Proposal

Based on the analysis above, it is proposed to add information and guidelines into the Technical Report and take the analysis into account when analyzing FEC technologies.
Specifically,

· The tradeoffs of source blocking and sub-blocking should be documented

· UE strategy 2 should be recommended for the download delivery service along with rationales in this document.
· The interleaved sending strategy should be recommended for the download delivery service when the file is partitioned into multiple source blocks along with the rationales in this document.
If agreed in principle, we propose:

· to add appropriate sections into the Technical Report on:

· Source-blocking and sub-blocking

· Sending strategies

· Receiving strategies
· just-in-time-decoding
· to add the text in this document into these sections

- 8/10 -

