Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #72
S4-130197
28 January - 1 February 2013
update to S4-130042
Valencia, Spain
Agenda item:
8
Source:
Qualcomm Incorporated

Title:
IS-DASH: Guidelines and Gap Analysis for Use Case for Advanced Live Services
Document for
Discussion and Agreement
1 Introduction
This document provides a detailed analysis when operating a live service with DASH. It addresses certain use cases in the draft TR26.938.
2 Use Cases 3: Advanced Support for Live Services

2.1 Description

2.1.1 Setup

A service provider wants to provide a live soccer event using DASH that can potentially be accessed by millions of users. The service provider provides redundant infrastructure in terms of encoders and servers to enable a seamless switch-over in case any of the components fail during the live event or get overloaded.
2.1.2 Use Case A
Anna accesses the service in the bus with her mobile DASH-enabled device, and the service is available immediately.
2.1.3 Use Case B
Continuing Use Case A, across from her sits Paul, who watches the event on his DASH-enabled laptop. A goal is scored and both, despite watching on different screens, celebrate this event at the same time.
2.1.4 Use Case C
Continuing Use Case B, Other people that follow the game on a 3GPP Rel-6 PSS terminal observe the goal within a similar time.
2.1.5 Use Case D
Continuing Use Case C, Another goal is scored. Paul tells Anna that the first goal in the game was even more exciting and Anna uses the offering that she can view the event 30 minutes back in time on her DASH-enabled device. After having seen the goal she goes back to the live event.
2.1.6 Use Case E
Continuing Use Case D, the football match gets into overtime, the star player of CF Anolacrab, Lenoil Issem, is brought into the game by the coach of the year, Aloidraug, hits twice the post, but can not score. Due to the extraordinary tension in the match, more and more users join such that the service provider requires migrating the service to the redundant infrastructure without interrupting the service to the users.
2.1.7 Use Case F
Continuing Use Case E, finally penalty shooting is necessary. The live event is interrupted by a short break during which advertisement is added. The exact timing of the ad breaks is unknown due to the extra time of the extension and the start of the penalty shooting is delayed.

2.2 Operation with MPD dynamic Mode

2.2.1 Introduction
2.2.2 This section provides an overview on using the MPD dynamic mode and how a client can make use of MPD offerings. The focus is on the client operation here. Details on a possible service offering to fulfill the use cases in section 2.1 is provided below.
1.1 Problem Statement

Generally, an HTTP streaming client accesses and downloads a manifest, based on which it would like to initiate the live session. Based on this manifest, and for each selected Representation, the client needs to take several decisions:

1. Determine what is the latest segment that is available on server

2. Determine the segment availability start time of the next segment and possibly future segments

3. Determine when to start playout the segment and from which presentation timeline in the segment in order to be as close as possible to the live edge.

4. Determine when to check for an updated manifest
1.2 Existing Technologies

In existing non-DASH streaming technologies these issues are solved as follows:

· for each segment that is made available, the server publishes a new manifest

· the client, once joining the service, gets the latest manifest, looks at the playlist and then can access the newest segment

· the client starts playing out the segment and expects, when playing the segment from the beginning, that it can continue accessing the next segment in time

· before fetching a new segment (or requiring to fetch one), the client fetches a new manifest providing the location where to get the latest segment.

1.3 Consequences with Existing Technologies

The following consequences result from this simplified live operation as documented in section 2.2.3.
· The manifest is updated on the server with each newly available segment.

· This requires the client to fetch the manifest and use the information in the manifest whenever they join, i.e. joining means manifest fetching and the manifest needs to be the latest.

· This requires that the server needs to update the manifest to accommodate the change whenever a new Segment if produced. The manifest renewal is especially critical in cases where the manifest is distributed through FLUTE or needs to be pushed into caches. In this case along with each new segment, a new manifest needs to be pushed.

· The client does not have any insight at what time the next segment is available/published on the server

· It will expect that the next segment is published at the latest after segment duration time. This can be verified by updating the manifest prior to fetching a new segment.

· The client does not have any insight if any presentation time later than the earliest presentation time of the latest available segment can be played out in order to get closer to the live edge without a risk of rebuffering later.

· As a fact of the loose timing model, and the client not knowing when the next segment becomes available, it can only assume that the earliest presentation time can played.

· The client does not have any insight if playout of other clients that download the same segment is synchronized.

· The client needs to fetch a new manifest when joining the service to obtain the latest information. This "fetching" requires at least one manifest fetch round-trip time and may increase start-up.

In summary, the main reason for all these issues is that existing solutions do not provide a good idea on the exact time schedule of the manifest and media segment creation. As an example, if one operates on 10-second segments, the client has little insight whether the manifest had just been published, or whether it will be published shortly after. So you may still be off by 10-epsilon seconds. In addition, it requires updating the manifest frequently with every segment. No reference clock is available to the client that enables a playout that is closer to the live edge or enables playout synchronized with other clients. At the same time, hiding the publish time from the clients typically provides ensures that the requests for segments from different clients are spread.
1.4 How does DASH solve this?

1.4.1 Overview
DASH attempts to address the above-mentioned weaknesses, namely:

· to operate closer to the live edge,

· to synchronize playout of clients that are consuming the same media presentation,

· to avoid regular updates of the MPD on the server and fetches by the client, and

· to avoid fetching the MPD in real-time when joining the service

DASH uses a wall-clock time documented in the MPD, which sets up the live Media Presentation. DASH assumes that the MPD is generated such that the MPD generation process does have access to an accurate clock. This enables that clients that are synchronized to the wall-clock time by any means can operate closer to the live edge.
1.4.2 Benefits of this approach
In case the template construction with @duration is used, the above approach provides several advantages compared to existing solutions:

1. The MPD does not have to be updated on the server as long as the segment construction can be continued. As long as the client records the fetch time of the MPD, it can download the MPD ahead of time (or keep it in the buffer) for several different services that are anticipated to be accessed, for example different channels.

2. Also, in a multicast environment, the MPD can be distributed only once or at least with a much smaller frequency than for every new segment.

3. The client knows exactly the time when the next segment is available/published on the server. This permits operation closer to the live edge as the client can request the segment as soon as it gets available.

4. In order to accurately tune to the live edge, the client may start presentation of the first segment not from the start, but even somewhere in the middle. The exact timing is obtained by mapping the presentation time to the live edge time.

5. The client can synchronize its playout with other clients.

6. Server operation is simple, i.e., no special server beyond HTTP is required.
DASH uses a wall-clock time documented in the MPD, which sets up the live Media Presentation. DASH assumes that the MPD is generated such that the MPD generation process does have access to an accurate clock. This enables that clients that are synchronized to the wall-clock time by any means can operate closer to the live edge.
Specifically, the following information is available in the MPD when using a number-template-based Representations and using the using the @duration attribute:

· MPD@availabilityStartTime: the start time is the anchor for the MPD in wall-clock time. The value is denoted as AST.
· MPD@minimumUpdatePeriod: the minimum update period of the MPD. The value is denoted as MUP.

· MPD@suggestedPresentationDelay: suggested presentation delay as delta to segment availability start time. The value is denoted as SPD.

· MPD@minBufferTime: minimum buffer time, used in conjunction with the @bandwidth attribute of each Representation. The value is denoted as MBT.

· MPD@timeShiftBufferDepth: time shift buffer depth of the media presentation. The value is denoted as TSB.

· Period@start: the start time of the Period relative to the MPD availability start time. The value is denoted as PS.

· SegmentTemplate@startNumber: number of the first segment in the Period. The value is denoted as SSN.

· SegmentTemplate@duration: the duration of a segment in units of a time. The value divided by the value of @timescale is denoted as d.
Also assume that the client did fetch the MPD at fetch time FT. Note that a reasonable estimate on the lower value of FT is the time when the request for then new MPD is issued and for the higher value FT when the MPD is received.
2.2.3 MPD Times

For using the same concept with different addressing schemes, the following two values are introduced according to ISO/IEC 23009-1:

· the position of the segment in the Period denoted as k with k=1,2,...

· The MPD start time of the segment at position k, referred to as MST(k).

· The MPD duration of a segment at position k, referred to as MD(k).
Assuming now that the wall-clock time at the client is denoted at WT, and then the client can derive the following information:

1. the latest available Period on the server, denoted by its period start time PS*

2. The segment availability start time of any segment at position k within the Period, denoted as SAST(k).

3. The position of the latest segment that is available on server in the Period, referred to as k*

4. The address of the latest segment that is available on server

5. The time when to fetch a new MPD based on the current presentation time, or more specifically, the greatest segment position k' within this Period that can be constructed by this MPD.

6. The media presentation time within the Representation that synchronizes closest to the live edge, MPTL.

7. The media presentation time within the Representation that synchronizes to other clients, MPTS.

2.2.4 General Derivation
Using these times, the values from above can be derived as:

1. The latest Period is obtained as the Period for which AST+PS+MD(1) <= NTP.

2. The segment availability start time is obtained as
SAST(k) = AST + PS + MST(k) + MD(k)
Specifically, For the number-based template with d the value for the @duration attribute and SSN the value of the @startNumber attribute this results in:

SAST(k) = AST + PS + (k - SSN + 1) * d
3. Within this Period the latest segment available on the client is the segment at the position k* which results in the greatest value for SAST(k*) and at the same time is smaller than NTP. For the number based template with d the value for the @duration attribute and SSN the value of the @startNumber attribute this results in:
k* = floor ((NTP - (AST + PS) - d)/ d) + SSN
4. The address of the latest segment is obtained by using the position information k* and then the segment address can be derived. The segment address depends on the addressing method.

5. Within this Period the greatest segment position k' that can be constructed by this MPD is the one that results in the greatest value for SAST(k') and at the same time is smaller than FT + MUP.
k' = ceil (FT + MUP - (AST + PS) - d)/ d) + SSN
2.2.5 Derivation of MPD Times

If the @duration attribute is present and the value divided by the value of @timescale is denoted as d then the MPD times are derived as:

· MD(k) = d
· MST(k) = (k-1)*d
2.2.6 Addressing Methods

2.2.6.1 Introduction

The addressing method is independent of the usage of the timeline generation. The interpretation of the @startNumber depends on the addressing method.
2.2.6.2 Playlist-Method

If the Representation contains or inherits one or more SegmentList elements, providing a set of explicit URL(s) for Media Segments, then the position of the first segment in the segment list is determined by @startNumber. The segment list then provides the explicit URLs. (NOTE: This is not properly documented in ISO/IEC 23009-1 and requires a correction).
2.2.6.3 Number-Based Template

If the Representation contains or inherits a SegmentTemplate element with $Number$ then the URL of the media segment at position k is obtained by replacing the $Number$ identifier by (k-1) + @startNumber in the SegmentTemplate@media string.
2.2.7 Scheduling Playout

The client schedules the playout based on the available information in the MPD.
The media presentation time in a Period is determined for each Representation as presentation time value in the media segments minus the value of the @presentationTimeOffset, if present, for each Representation.

Each segment at position k has assigned an earliest media presentation time EPT(k).
By offering an MPD it is guaranteed that

1. each segment in this Period is available prior to its earliest presentation time and its duration, i.e., for all k,
SAST(k) <= EPT(k) + (AST + PS) + MD(k)
2. If each segment with segment number k is delivered starting at SAST(k) over a constant bitrate channel with bitrate equal to value of the @bandwidth attribute then each presentation time PT is available at the client latest at time PT + (AST + PS) + MBT + MD(k)
3. A recommended playout-time MPTS (PT) for a presentation time when operating in sync with other clients is MPTS(PT) = (AST + PS) + PT + SPD.
4. Each segment in this Period is available at least until SAST(k) + TSB + MD(k).

Using this information, the client can now start scheduling playout taking into account the information in the MPD as well the download speed.
A suitable playout time is POT(PT) = MPTS(PT), if the attribute @suggestedPresentationDelay is present. If not, then a suitable playout time takes into account the first, second and fourth constraints, i.e., the segment availability times at the server as well as the bitrate variation of the media stream.

2.2.8 Validity of MPD

The MPD can be used to construct and request segments until media time FT + MUP. The greatest segment position k' that can be constructed by this MPD is the one that results in the greatest value for SAST(k') and at the same time is smaller than FT + MUP. Note that the latest segment may be shorter in duration than the other ones.
2.3 Mapping Use Cases to Live Operation

2.3.1 Use Case A
Description

Anna accesses the service in the bus with her mobile DASH-enabled device, and the service is available immediately.

MPD example
Below is a snippet of an MPD example.
<MPD availabilityStartTime="2011-12-25T12:30:00" minimumUpdatePeriod="30s"
timeShiftBufferDepth="60s"
minBufferTime="5s"/>
<BaseURL>http://www.example.com/</BaseURL>
<Period start="PT0S"/>
...

</Period>
<Period start="PT0.10S>

...
<SegmentTemplate timescale="48000" startNumber="22" presentationTimeOffset="2016000" duration="96000" initialization="audio/fr/init.mp4a" media="audio/fr/$Number$"/>

...

</Period>
2.3.1.1 Client Procedure
Assume further that the client has fetched the MPD at fetch time FT="2011-12-25T12:30:17" and the wall-clock time is NTP="2011-12-25T12:30:27" the DASH service to be accessed. The latest segment number is

k* = floor ((NTP - (AST + PS) - d)/ d) + SSN = floor (15/2) + 22 = 29
The URL for the latest segment is http://www.example.com/audio/fr/29.mp4. The client access the segment and may start playout with the media time PT = (29-22+1)*96000/48000 = 16 at time MPTS(PT) = (AST + PS) + PT + MBT = "2011-12-25T12:30:31", i.e. in 5 seconds. The client may also download earlier segments and may start earlier with the playout process, for example with segment 27.
2.3.2 Use Case B
Description

Continuing Use Case A, across from her sits Paul, who watches the event on his DASH-enabled laptop. A goal is scored and both, despite watching on different screens, celebrate this event at the same time.
2.3.2.1 MPD example

Below is a snippet of an MPD example with the suggested presentation delay added.
<MPD availabilityStartTime="2011-12-25T12:30:00" minimumUpdatePeriod="30s"

suggestedPresentationDelay="10s"
timeShiftBufferDepth="60s"
minBufferTime="5s"/>
<BaseURL>http://www.example.com/</BaseURL>
<Period start="PT0S"/>
...

</Period>
<Period start="PT0.10S>

...
<SegmentTemplate timescale="48000" startNumber="22" presentationTimeOffset="2016000" duration="96000" initialization="audio/fr/init.mp4a" media="audio/fr/$Number$"/>

...

</Period>
2.3.2.2 Client Procedure

The same procedure as in 2.3.1.3 to extract the MPD information is carried out. For synchronized playout, the client accesses the segment and may start playout with the media time PT = (29-22+1)*96000/48000 = 16 at time MPTS(PT) = (AST + PS) + PT + SPD = "2011-12-25T12:30:36", i.e. in 10 seconds. If both clients adhere to the SPD value, synchronized playout can be achieved.
2.3.3 Use Case C
2.3.4 Description
Continuing Use Case B, Other people that follow the game on a 3GPP Rel-6 PSS terminal observe the goal within a similar time.
2.3.4.1 MPD example

The same as in 2.3.2.2.
2.3.4.2 Client Procedure

The same procedure as in 2.3.1.3 and 2.3.2.3 to extract the MPD information is carried out. However, instead of downloading and playing only segment 29, the client may already download segment 24 or 25 and start playout earlier. While starting playout, the client may gradually fill the buffer with segments up to the segment availability start time.
2.3.5 Use Case D
2.3.6 Description
Continuing Use Case C, Another goal is scored. Paul tells Anna that the first goal in the game was even more exciting and Anna uses the offering that she can view the event 30 minutes back in time on her DASH-enabled device. After having seen the goal she goes back to the live event.
2.3.6.1 MPD example

Below is a snippet of an MPD example with the minimum time shift buffer depth of 1 hour is added.
<MPD availabilityStartTime="2011-12-25T12:30:00" minimumUpdatePeriod="30s"

suggestedPresentationDelay="10s"
timeShiftBufferDepth="3600s"
minBufferTime="5s"/>
<BaseURL>http://www.example.com/</BaseURL>
<Period start="PT0S"/>
...

</Period>
<Period start="PT0.10S>

...
<SegmentTemplate timescale="48000" startNumber="22" presentationTimeOffset="2016000" duration="96000" initialization="audio/fr/init.mp4a" media="audio/fr/$Number$"/>

...

</Period>
2.3.6.2 Client Procedure
2.3.6.3 Editor's Note: More detailed equations may be added
The time has moved forward to at NTP="2011-12-25T13:32:57". The operation is based on an MPD that was fetched at time FT="2011-12-25T13:32:32". The client is downloading segment with segment number 1959. The event of the goal happened 30 minutes ago. With the above MPD, the segments are available far into the time-shift buffer of one hour. The client computes the segment with has presentation time roughly 30 minutes back and understands that this 1059 and starts fetching this to playout the presentation time 30 minutes ago. After watching this for 2 minutes, the user wants to move forward into the future again. Based on an updated MPD (necessary as the live edge is no longer presented in the MPD above, the client can then compute the latest segment at the live edge and perform the same operations as in cases 2.3.1.3, 2.3.2.3 and 2.3.3.3.
2.3.7 Use Case E
2.3.8 Description
Continuing Use Case D, the football match gets into overtime, the star player of CF Anolacrab, Lenoil Issem, is brought into the game by the coach of the year, Aloidraug, hits twice the post, but can not score. Due to the extraordinary tension in the match, more and more users join such that the service provider requires migrating the service to the redundant infrastructure without interrupting the service to the users.
2.3.8.1 MPD example

Below is a snippet of an MPD example with a new server location added.
<MPD availabilityStartTime="2011-12-25T12:30:00" minimumUpdatePeriod="30s"

suggestedPresentationDelay="10s"
timeShiftBufferDepth="3600s"
minBufferTime="5s"/>
<BaseURL>http://www.example.com/</BaseURL>
<BaseURL>http://www.example-massive-scalable.com/</BaseURL>
<Period start="PT0S"/>
...

</Period>
<Period start="PT0.10S>

...
<SegmentTemplate timescale="48000" startNumber="22" presentationTimeOffset="2016000" duration="96000" initialization="audio/fr/init.mp4a" media="audio/fr/$Number$"/>

...

</Period>
2.3.8.2 Client Procedure
2.3.8.3 Clients updating the MPD may observe that a new server location is available. Based on poorer download experience with the original server location, the clients are expected to probe the new server location and when observing better download experience, they are expected to use this new server location and move away from the old one.
2.3.9 Use Case F
2.3.10 Description
Continuing Use Case E, finally penalty shooting is necessary. The live event is interrupted by a short break during which advertisement is added. The exact timing of the ad breaks is unknown due to the extra time of the extension and the start of the penalty shooting is delayed.

2.3.10.1 MPD example

Below is a snippet of an MPD example with a new Period added for ad insertion and then the live program is continued.
<MPD availabilityStartTime="2011-12-25T12:30:00" minimumUpdatePeriod="30s"

suggestedPresentationDelay="10s"
timeShiftBufferDepth="3600s"
minBufferTime="5s"/>
<BaseURL>http://www.example.com/</BaseURL>
<BaseURL>http://www.example-massive-scalable.com/</BaseURL>
<Period start="PT0S"/>
...

</Period>
<Period start="PT0.10S>

...
<SegmentTemplate timescale="48000" startNumber="22" presentationTimeOffset="2016000" duration="96000" initialization="audio/fr/init.mp4a" media="audio/fr/$Number$"/>

...

</Period>
<Period start="PT1H.45M.15S">

...
<SegmentTemplate timescale="44100" duration="44100" initialization="http://adserver.com/audio/fr/init.mp4a" media="http://adserver.com/audio/fr/audio/fr/$Number$"/>

...

</Period>
<Period start="PT1H.46M.10S">

...
<SegmentTemplate timescale="48000" startNumber="189030" presentationTimeOffset="18146784000" duration="96000" initialization="audio/fr/init.mp4a" media="audio/fr/$Number$"/>

...

</Period>
2.3.10.2 Client Procedure
2.3.10.3 Editor's Note: More detailed equations may be added
With another update the client obtains an MPD with a new Period that points to an ad server. The advertisement is scheduled for 60 seconds and after this it returns to the main program.
2.4 Gap Analysis

Despite the improved timing control and the advantages of the DASH solution, the following aspects are crucial and may need more considerations, especially when operating on a low-latency live service
1. The server and the client need to have accurate UTC timing. There is no requirement how to implement this, but it still requires implementation of a globally accurate timing standard on both ends. NTP is considered as one option, but the NTP protocol may not be accessible to clients that rely on the HTTP protocol only. Simpler methods for client-server synchronization may be desired.
2. Server overload as all clients may access the segment at the same time as the segment availability time is exposed explicitly. This problem needs further investigation.
3. A more accurate resolution of time is necessary (seconds may be to coarse to operate on at the live edge).

4. Drift of the video source compared to UTC

5. Leap seconds

2.5 Working Assumptions

As MPEG has ongoing work and core experiments on improved live services, it is proposed to complete the work in MPEG, but potentially send 3GPP specific requirements to MPEG in order to ensure that these aspects are taken into account.
3 Proposal
It is proposed to add section 2 to the Technical Report TR26.938.
- 4/12 -

