Page 4
Draft prETS 300 ???: Month YYYY


3GPP TSG-SA4
S4-121464
5-9 November, 2012

Bratislava, Slovakia
Agenda item: 
7, 13.2
Source: 
Broadcom
Title: 
Supercharged Code 
Document for
Proposal for a Candidate for EMM-EFEC Work Item
1 Summary
The Supercharged FEC code is proposed as the FEC code for MBMS. The proposal relies on existing and well-defined technology. 
The Supercharged Code provides application layer FEC protection in a software implementable design that outperforms the existing application layer FEC, while requiring minimal changes to 26.346.  

The Supercharged code is designed for the erasure channel with performance very close to the ideal Maximum Distance Separable (MDS) code and with very low complexity.  Coding for the erasure channel commonly arises for data transmission over the internet, where lower layers either successfully deliver packets or fail to deliver them.  Coding is required to insure that data is not lost, even if packets are lost at the lower layers.  Error free reception is important for multimedia applications, such as streaming, where it may not be possible to correct an error in time by any other means.  Coding insures that lost packets can be recovered.  

The Supercharged Code consists of a coding network, including a Reed Solomon (RS) code and a parallel filter code.  Performance is significantly improved vs RFC5053.  The Supercharged code can be implemented with linear time encoding and decoding complexity.

Performance comparison against RFC5053 and ideal codes is shown.

2 FEC encoder
1.1. Introduction

The Supercharged code is designed for the erasure channel with performance very close to the ideal Maximum Distance Separable (MDS) code and with very low complexity.

1.2. Supercharged Code

1.2.1. Overview

Figure 1 shows a general block diagram of the supercharged code.  It consists of a network of codes including block codes, repetition codes, and parallel filter codes.  Block code 1 consists of a Vandermonde matrix in GF(256), a non-systematic Reed Solomon code.  Block code 2 and 3 consist of binary block codes.


[image: image1.emf]Block Code 3

Parallel Filter Code

xy

Block Code 1Repetition Code

Block Code 2Repetition Code


Figure 1: Block Diagram of the SC Code
The parallel filter code of Figure 1 is detailed in Figure 2.  It consists of interleavers, tailbiting FIR filters, and a multiplexer to select the output of the filters.  

[image: image2.emf]Tailbiting FIR FilterΠ_1

Tailbiting FIR FilterΠ_M

Mux

...


Figure 2: An example parallel filter code showing individual data interleavers and tailbiting FIR filters as coding components.

An example of one of the tailbiting FIR filters is illustrated in Figure 3, where the state of the filter is initialized with the final state to make it tailbiting.

[image: image3.emf]DDD


Figure 3: An example 3 tap FIR filter that can be used for the tailbiting FIR filter coding component
Optionally, if the number of transmit symbols N is signalled to be limited such that N<=256, then the code can achieve ideal performance by utilizing a Reed Solomon code.
1.2.2. Matrix Representation

Since supercharged codes are linear, an output codeword can be expressed as a matrix multiplied by an input vector.  Given Kx1 encoding state vector x, consisting of binary transmit symbols, the output Nx1 codeword, y, can be written as

                                              
[image: image4.wmf]x

B

R

B

R

B

I

T

y

K

÷

÷

ø

ö

ç

ç

è

æ

Å

Å

ú

û

ù

ê

ë

é

=

2

2

1

1

3

                                                        (1)

where T is the N x (K+Num_B_3) generator matrix for the FIR structure, B_1 is the Num_V_RS x K generator matrix for the first block code, B_2 is the Num_B_2 x K generator for the second block code, B_3 is the Num_B_3 x K generator matrix of the third block code, and R_1 is a N x Num_V_RS stack and R_2 is a N x Num_B_2 stack of identity matrices which facilitates repetition.  For example, matrix R_1 would consist of 
[image: image5.wmf]ë

û

RS

V

Num

N

_

_

/

copies of the identity matrix stacked vertically, with a fractional identity matrix below consisting of N mod Num_V_RS rows.  The “
[image: image6.wmf]Å

” operator indicates the bitwise XOR operation.  For convenience, denote the generator matrix 
[image: image7.wmf]÷

÷

ø

ö

ç

ç

è

æ

Å

Å

ú

û

ù

ê

ë

é

=

2

2

1

1

3

B

R

B

R

B

I

T

P

K

, such that y=Px.

1.2.3. Systematic Encoding

Supercharged codes are not inherently systematic codes.  Non-systematic codes are commonly transformed into an effective systematic code by pre-processing the input data before using it as the input to the encoder, y=Px.  The encoder input is calculated by decoding the desired input data and running the decoder to determine the encoder input vector x.  Let matrix P_enc be the KxK generating matrix corresponding to the first K elements of y, the encoder input x can be computed using the following


[image: image8.wmf]d

P

x

enc

1

-

=

.

Now, x can be used to encode using equation (1) to generate y.  The first K elements of vector y will be equal to d.

1.2.4. Erasure Channel

After encoding, the N transmit symbols of codeword vector y are transmitted on the channel.  Some of these transmit symbols are erased by the channel.  Suppose that the N x r matrix E represents the erasure pattern of the channel in that it selects out the r received transmit symbols y_r from the transmitted symbols y.  If the ith received symbol is the jth transmit symbol, then E(i,j)=1.  This results in:


[image: image9.wmf]Ey

y

r

=

.
At the decoder, the effective generator matrix at the receiver is P_r=EP.

1.2.5. Matrix P Construction

The following sections define the generation of matrices R, B_1, B_2, B_3, and T in equation (1).

1.2.5.1. Definitions

ceil(a): rounds a to the nearest integer towards infinity 
floor(a): rounds a to the nearest integer towards minus infinity 

min(a,b): returns the minimum of a and b

max(a,b): returns the maximum of a and b

a % b: is a modulo b

a + b: is a plus b

a * b: is a multiplied by b.

a ^ b: the bitwise XOR of a and b
a ^^ b: raises a to the b power

I_a: the a x a identity matrix

zeros(a,b): the a x b zero matrix

[A; B]: indicates the stacked matrix [AT BT]T
1.2.5.2. Function Prototypes
The following functions are utilized to construct the Supercharged code.

[K_eff, Num_V_RS, Num_B_2, Num_B_3] = SC_Parameters(K, N)

K_eff=SC_K_table(K)

b=RNG(a)

a=RNG_2(a,b)

[permutation,the_seed]= Generate_Permutation(a,b)

G_V_RS = RS_gen(K,N)

[filter_data, filter_N]=SC_filter_data(z)

b=GF_exp(a)

C=GF_Multiply(A,B)

1.2.5.3.  Parallel Filter Code T Construction

The parallel filter code matrix T can be generated using the following pseudo code.  The code generates multiple random interleavers and selects which output of which interleaver depending on the SID.  Note that at the receiver, only filter outputs corresponding to the received SID’s are required.  The following code generates filter outputs for SIDs 0 to N-1.  Determination of the filter output is a function of the SID only, not any other filter output, making it simple to generate only the filter outputs needed at encoding or decoding. 

    seed1 = 758492

    seed2 = ( (K_eff*874) ^ (seed1) )

    seed3 = 23091

    base_permutation = Generate_Permutation(K_eff+Num_B_3,seed2)

    filter_data = SC_filter_data(K_eff+Num_B_3)

    T = zeros(N,K_eff+NUM_B_3)

    for SID=0:N-1

        %Determine which filter to select

        rn1 = min( RNG(15*(SID+1)+2*seed3) , 2^^32 )

        index = 0

        while(rn1>(filter_data[index]))

             index = index+1

        end



  tdeg=index+1

        %Determine which interleaver to select

        rn2 = min( RNG(2*K_eff+3*(SID+1)) , 2^^32 )

        interleaver_number = ( (rn2) % (K_eff+Num_B_3) )

        %Determine which part of the interleaver to select  

        rn3 = min( RNG(98573+2*(SID+1)+rn1) , 2^^32 )

        interleaver_part = ((rn3) % (K_eff+Num_B_3))

        for tap_loop=0:tdeg

            filter_tap = (tap_loop+interleaver_part) % (K_eff+Num_B_3)    

            tap_location = (base_permutation[filter_tap] + base_permutation[interleaver_number]) % (K_eff+Num_B_3)

            T[Num_V_RS+Num_B_2+Num_B_3+SID,tap_location] = 1

        end    

    end

1.2.5.4. Repetition Code R Construction

The repetition code matrix R_1 and R_2 can be constructed via the following pseudo code.  Note that at the receiver, only filter outputs corresponding to the received SID’s are required.  The following code generates filter outputs for SIDs 0 to N-1 for R_1.
    R_1 = zeros(N,Num_V_RS)

    for SID = 0:N-1      

        for k = 0:Num_V_RS-1

            if( ((SID-k) % (Num_V_RS)) == 0 )

                R_1[SID,k] = 1  

            end   

        end   

    end

The following code generates filter outputs for SIDs 0 to N-1 for R_2.
    R_2 = zeros(N, Num_B_2)

    for SID = 0:N-1

        for k = 0: Num_B_2-1

            if( ((SID-k) % (Num_B_2)) == 0 )

                R_2[SID,k] = 1

            end

        end

    end

1.2.5.5. Block Code B_1 Construction

The Vandermonde matrix of block code B_1 can be constructed via the following pseudo code.
    B_1 = zeros(Num_V_RS,K_eff)

    for i = 0:Num_V_RS-1

        for k = 0:K_eff-1

            B_1[i+1,k+1] = GF_exp( ((i+1)*k) % (2^^8-1) )

        end

    end

1.2.5.6.  Block Code B_2 and B_3 Construction

The block code B_2 and B_3 can be constructed jointly via the following pseudo code, where B_23=[B_3; B_2].   
    B_23 = zeros(Num_B_2 + Num_B_3,K_eff)

    for i = 0:K_eff-1

        for k = 0: Num_B_2 + Num_B_3 - 1

            if( ( (k-i) % (Num_B_2 + Num_B_3) ) == 0)

                B_23[k,i] = 1

            end

        end

    end

    m=1

    for i = 0:K_eff-1

        for k = 0: Num_B_2 + Num_B_3 - 1

            if( ( (k-i-2*floor(m/( Num_B_2 + Num_B_3))) % (Num_B_2 + Num_B_3) ) == 0)

                B_23[k,i] = 1

            end

            m = m+1

        end

    end

    m=2

    for i = 0:K_eff-1

        for k = 0: Num_B_2 + Num_B_3 - 1

            if( ( (k-i-3*floor(m/( Num_B_2 + Num_B_3))) % (Num_B_2 + Num_B_3) ) == 0)

                B_23[k,i] = 1

            end

            m = m+1

        end

    end

1.2.5.7.  SC_Parameters

The following pseudo code determines a set of parameters needed for matrix construction.

function [K_eff, Num_V_RS, Num_B_2, Num_B_3] = SC_Parameters(K, N)
    K_eff = SC_K_table(K)

    Num_V_RS = 11 + floor(K_eff/10000)

    Num_B = floor(K_eff^^(0.62)) + 3

    if( K_eff >= 17376 )  

        Num_B = ceil( K_eff*0.0152 + 163 )

    end

    Num_B_3 = ceil(0.75*( Num_B ))

    Num_B_2 = Num_B – Num_B_3

1.2.5.8. K Table
The function K_eff=SC_K_table(K) is implemented based on the following table, by returning the smallest K_eff such that K_eff>=K.

10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,302,303,304,305,306,307,308,309,310,311,312,314,315,316,320,321,324,328,329,335,337,338,340,341,344,347,349,352,355,357,358,360,362,364,366,368,372,377,380,381,382,384,385,388,389,393,394,395,397,399,405,408,409,410,411,416,418,424,426,428,431,432,434,438,443,447,448,451,452,453,457,460,465,466,467,469,473,476,477,478,482,483,484,485,486,490,491,492,493,494,496,497,498,500,501,502,503,504,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,524,526,527,528,529,530,532,533,534,535,536,537,539,541,542,543,545,546,549,551,552,553,554,555,557,558,559,561,562,563,564,566,569,571,572,573,574,576,577,578,579,580,582,583,585,586,587,588,589,590,592,593,594,597,598,599,600,602,603,606,607,608,609,610,612,614,615,616,617,619,620,622,625,626,627,628,629,630,631,633,635,636,637,638,640,643,645,648,650,652,653,654,655,656,659,660,661,662,664,666,667,668,669,672,673,674,675,677,687,688,691,692,693,694,695,696,698,699,700,701,703,710,711,712,715,716,717,718,726,727,730,731,734,736,737,741,744,747,748,751,752,753,757,759,760,762,764,766,769,771,772,773,774,775,777,778,779,786,788,790,792,793,794,795,797,798,799,800,801,802,804,805,810,811,812,813,815,820,821,822,823,825,827,829,830,831,834,835,837,838,839,840,843,844,845,846,848,849,851,852,853,854,857,858,860,863,864,866,868,869,870,875,877,879,883,886,887,890,891,894,897,898,899,900,902,903,904,905,906,907,909,912,913,914,917,922,926,927,928,931,934,938,940,942,944,945,948,950,953,954,960,961,963,967,968,970,971,972,974,977,979,980,981,985,987,989,990,995,996,1000,1002,1003,1005,1006,1007,1009,1010,1015,1020,1021,1022,1024,1025,1027,1032,1033,1034,1035,1037,1041,1042,1043,1046,1048,1050,1051,1054,1056,1057,1059,1060,1062,1065,1069,1070,1071,1074,1076,1078,1079,1082,1083,1085,1086,1087,1088,1089,1095,1098,1099,1106,1110,1111,1118,1120,1123,1124,1125,1131,1132,1134,1136,1139,1140,1142,1144,1150,1152,1157,1161,1162,1165,1169,1173,1175,1176,1179,1181,1182,1183,1194,1200,1201,1204,1205,1206,1208,1209,1212,1213,1214,1218,1219,1220,1222,1225,1227,1228,1229,1232,1236,1238,1240,1242,1243,1245,1248,1250,1252,1253,1255,1258,1261,1269,1273,1278,1279,1280,1283,1284,1292,1293,1302,1303,1306,1310,1311,1315,1318,1319,1321,1325,1330,1331,1342,1343,1347,1348,1352,1357,1359,1361,1365,1374,1380,1382,1384,1388,1389,1390,1391,1392,1395,1397,1403,1404,1407,1413,1417,1418,1420,1425,1429,1431,1435,1436,1437,1447,1450,1461,1462,1464,1473,1474,1475,1477,1485,1490,1494,1496,1497,1502,1503,1507,1513,1514,1516,1521,1522,1526,1530,1534,1539,1541,1549,1552,1554,1555,1561,1564,1569,1572,1579,1585,1586,1590,1591,1593,1595,1596,1597,1598,1600,1604,1608,1610,1611,1612,1616,1617,1624,1631,1633,1636,1641,1646,1649,1650,1658,1660,1665,1667,1671,1673,1679,1683,1689,1692,1696,1698,1703,1705,1707,1708,1713,1716,1722,1728,1733,1734,1739,1740,1742,1744,1745,1756,1759,1760,1764,1768,1771,1776,1777,1780,1782,1787,1800,1807,1814,1824,1826,1827,1842,1844,1854,1857,1863,1867,1873,1874,1878,1881,1883,1887,1889,1890,1891,1892,1894,1896,1903,1905,1906,1910,1919,1924,1926,1931,1933,1943,1944,1948,1952,1954,1967,1971,1973,1976,1979,1985,1986,1987,1989,1992,1994,1995,1998,2000,2005,2006,2018,2019,2030,2040,2043,2048,2054,2055,2057,2061,2070,2071,2074,2077,2082,2084,2087,2089,2093,2096,2098,2103,2104,2107,2111,2120,2122,2125,2128,2138,2150,2152,2155,2160,2175,2177,2182,2189,2195,2200,2201,2203,2217,2219,2225,2226,2231,2234,2235,2236,2237,2245,2247,2274,2276,2278,2280,2282,2283,2286,2292,2303,2304,2306,2310,2315,2316,2319,2320,2321,2330,2333,2336,2339,2343,2344,2345,2351,2367,2368,2371,2374,2382,2389,2392,2395,2396,2400,2402,2407,2410,2412,2416,2421,2422,2434,2442,2446,2447,2462,2473,2477,2478,2481,2486,2490,2492,2495,2502,2505,2507,2509,2512,2513,2522,2525,2527,2528,2536,2543,2549,2556,2559,2561,2563,2565,2583,2587,2590,2592,2596,2598,2601,2603,2604,2606,2617,2622,2625,2626,2636,2638,2640,2643,2654,2660,2668,2673,2677,2679,2688,2695,2699,2701,2713,2714,2723,2737,2741,2747,2753,2762,2764,2769,2772,2775,2776,2785,2796,2802,2805,2808,2826,2828,2830,2831,2834,2836,2853,2875,2877,2878,2884,2906,2938,2945,2948,2950,2961,2964,2966,2968,2979,2980,2985,2989,2998,3008,3011,3015,3018,3022,3027,3048,3049,3051,3053,3056,3062,3071,3075,3080,3093,3094,3095,3097,3101,3107,3109,3119,3122,3128,3149,3150,3151,3158,3166,3167,3173,3178,3180,3181,3182,3186,3190,3195,3200,3201,3203,3204,3205,3208,3216,3217,3223,3224,3232,3236,3240,3248,3251,3253,3269,3276,3278,3279,3286,3292,3299,3306,3309,3336,3340,3342,3344,3351,3352,3356,3357,3371,3375,3380,3387,3396,3404,3407,3410,3423,3430,3445,3451,3463,3466,3471,3478,3479,3502,3513,3520,3528,3531,3534,3539,3540,3546,3551,3565,3577,3579,3603,3606,3608,3612,3614,3616,3620,3647,3650,3653,3658,3664,3677,3682,3686,3694,3697,3705,3707,3724,3728,3744,3749,3751,3754,3761,3765,3776,3778,3781,3792,3797,3799,3801,3834,3840,3841,3848,3861,3863,3883,3901,3903,3919,3924,3941,3943,3960,3965,3970,3971,3989,3992,4007,4013,4015,4037,4039,4045,4050,4055,4069,4072,4073,4091,4096,4106,4112,4124,4129,4133,4140,4146,4156,4165,4188,4207,4209,4210,4215,4221,4236,4237,4247,4252,4253,4257,4261,4266,4270,4318,4330,4341,4346,4359,4363,4365,4366,4388,4415,4418,4436,4438,4453,4468,4474,4477,4503,4512,4513,4519,4522,4538,4548,4567,4575,4576,4577,4583,4590,4621,4639,4651,4659,4681,4693,4698,4700,4702,4729,4731,4739,4741,4742,4748,4749,4758,4764,4765,4771,4772,4780,4785,4803,4804,4838,4840,4843,4868,4871,4878,4885,4898,4901,4918,4924,4933,4939,4954,4959,4979,4982,4988,4991,4999,5000,5008,5021,5023,5030,5039,5060,5062,5063,5096,5116,5137,5143,5145,5162,5163,5167,5172,5186,5218,5225,5238,5240,5252,5260,5279,5285,5295,5301,5310,5314,5317,5331,5332,5334,5348,5353,5354,5390,5391,5392,5405,5407,5432,5449,5451,5453,5460,5464,5466,5471,5473,5477,5492,5506,5508,5537,5540,5543,5554,5561,5566,5570,5576,5579,5587,5616,5637,5672,5674,5676,5684,5694,5716,5732,5774,5792,5798,5800,5808,5823,5838,5844,5863,5896,5897,5899,5900,5916,5921,5930,5960,5975,6039,6055,6057,6059,6067,6068,6078,6092,6099,6102,6107,6136,6151,6169,6189,6191,6218,6233,6249,6271,6274,6296,6318,6352,6363,6376,6407,6430,6435,6441,6463,6486,6491,6502,6512,6518,6520,6534,6542,6549,6553,6589,6590,6593,6599,6614,6625,6634,6643,6655,6670,6680,6684,6691,6692,6701,6708,6711,6724,6730,6732,6752,6799,6803,6809,6812,6834,6849,6855,6877,6878,6879,6899,6907,6919,6936,6945,6946,6954,6955,6956,6958,6981,7000,7011,7030,7032,7033,7108,7111,7127,7164,7171,7175,7179,7181,7185,7225,7226,7281,7288,7295,7307,7325,7359,7360,7390,7392,7411,7476,7520,7535,7548,7552,7558,7567,7589,7596,7616,7645,7675,7679,7714,7726,7747,7770,7780,7785,7805,7818,7855,7870,7883,7923,7935,7936,7953,7974,7999,8028,8030,8069,8074,8093,8104,8111,8122,8150,8154,8172,8173,8189,8192,8193,8194,8223,8236,8290,8304,8377,8425,8438,8439,8464,8481,8492,8521,8556,8559,8575,8582,8595,8602,8606,8624,8628,8648,8654,8666,8672,8689,8738,8739,8744,8775,8787,8837,8841,8842,8860,8928,8929,8970,8977,8993,9009,9019,9020,9029,9041,9051,9087,9111,9151,9195,9208,9298,9303,9327,9344,9352,9360,9364,9388,9400,9402,9446,9448,9449,9461,9462,9470,9485,9497,9512,9539,9546,9560,9572,9601,9612,9642,9649,9653,9677,9689,9692,9704,9708,9758,9765,9794,9813,9860,9916,9922,9927,9949,9971,9978,9981,9986,9987,10017,10040,10065,10073,10084,10097,10105,10120,10124,10134,10166,10187,10197,10202,10204,10241,10242,10279,10308,10324,10336,10351,10361,10458,10460,10567,10643,10676,10705,10712,10717,10759,10786,10787,10857,10883,10899,10911,10933,10944,10958,10963,11011,11015,11024,11036,11039,11049,11060,11119,11130,11146,11172,11203,11210,11216,11219,11230,11245,11316,11358,11371,11376,11423,11475,11534,11590,11649,11653,11677,11686,11707,11711,11740,11748,11751,11780,11823,11829,11843,11890,11896,11919,11947,11956,11976,12026,12037,12045,12072,12087,12108,12119,12154,12160,12208,12215,12216,12228,12229,12235,12247,12294,12333,12400,12437,12455,12458,12460,12469,12471,12510,12528,12567,12569,12593,12685,12694,12704,12721,12726,12754,12790,12817,12857,12914,12928,12936,12956,13002,13012,13026,13030,13035,13038,13057,13067,13082,13114,13143,13159,13193,13204,13214,13270,13278,13284,13326,13335,13417,13421,13423,13460,13479,13558,13607,13695,13696,13742,13764,13816,13827,13833,13837,13874,13879,13974,13987,14022,14100,14115,14140,14202,14272,14342,14350,14370,14376,14385,14393,14408,14409,14415,14417,14442,14486,14509,14560,14565,14713,14729,14743,14755,14798,14862,14874,14913,14934,14990,15007,15011,15120,15170,15194,15217,15227,15235,15285,15314,15321,15325,15332,15438,15499,15573,15611,15651,15668,15732,15735,15741,15757,15780,15808,15813,15847,15870,15941,15953,15977,16002,16017,16060,16108,16161,16286,16287,16304,16336,16374,16377,16384,16414,16505,16563,16623,16665,16670,16674,16689,16691,16710,16727,16743,16794,16828,16851,16900,16974,17005,17024,17029,17038,17039,17051,17086,17098,17148,17151,17195,17206,17266,17316,17323,17326,17331,17357,17376,17466,17489,17531,17559,17642,17681,17791,17868,17926,17929,17988,17991,18009,18026,18027,18056,18116,18168,18232,18307,18309,18438,18503,18504,18511,18590,18628,18629,18630,18636,18647,18672,18691,18694,18719,18909,18988,19023,19036,19096,19126,19132,19139,19193,19204,19210,19277,19304,19314,19325,19539,19544,19547,19631,19632,19635,19675,19700,19705,19740,19748,19921,19939,19951,19972,19985,20042,20052,20133,20141,20152,20173,20230,20245,20269,20287,20335,20355,20396,20407,20455,20501,20564,20580,20583,20664,20683,20710,20768,20776,20778,20789,20794,20988,21058,21087,21141,21143,21151,21186,21199,21216,21224,21385,21412,21468,21475,21478,21479,21486,21487,21515,21569,21616,21629,21673,21702,21729,21737,21747,21852,21927,21969,22060,22062,22068,22073,22114,22131,22244,22301,22320,22366,22433,22450,22482,22490,22498,22536,22727,22787,22947,22994,23010,23026,23063,23084,23135,23158,23180,23252,23392,23457,23491,23500,23568,23607,23721,23730,23787,23935,23971,23991,24023,24185,24215,24232,24398,24406,24476,24548,24550,24555,24562,24566,24591,24592,24616,24633,24673,24721,24735,24743,24761,24832,24891,24967,24976,25062,25080,25230,25391,25407,25433,25463,25493,25543,25613,25668,25756,25919,26022,26048,26050,26092,26291,26297,26329,26342,26371,26535,26566,26582,26676,26741,26838,26908,26910,26973,26984,27111,27119,27163,27256,27296,27353,27392,27428,27492,27594,27644,27666,27682,27771,27885,27895,27959,27987,28088,28116,28134,28137,28248,28263,28365,28466,28548,28549,28787,28816,28845,28966,29002,29042,29054,29072,29127,29138,29265,29326,29345,29434,29481,29487,29500,29588,29731,29816,29827,29868,29905,29964,30037,30097,30153,30169,30280,30346,30405,30433,30461,30493,30513,30550,30583,30646,30654,30909,30915,30921,30930,30974,30997,31052,31056,31142,31199,31283,31285,31303,31505,31578,31605,31948,31957,31997,32124,32139,32142,32272,32403,32555,32601,32630,32631,32648,32699,32768,32807,32849,32912,32932,32961,32965,33129,33171,33200,33282,33334,33623,34258,34302,34654,34708,35024,35031,35388,35395,35462,35488,35586,35600,35747,35750,35774,35802,36071,36112,36189,36252,36254,36294,36328,36357,36448,36476,36477,36479,36485,36637,36749,36849,36874,36894,37170,37185,37187,37227,37612,37695,37701,37767,37793,37805,37815,37826,37906,37992,38008,38010,38046,38080,38130,38236,38385,38763,38787,39166,39176,39201,39237,39288,39398,39482,39643,39786,39831,39960,39980,40089,40105,40140,40152,40192,40220,40274,40293,40303,40398,40549,40604,40625,40666,40690,40816,40843,40847,40894,40896,40962,40969,41003,41087,41107,41132,41216,41226,41265,41314,41321,41357,41367,41539,41576,41641,41717,41820,42033,42067,42172,42490,42662,42795,42813,42916,43339,43351,43388,43482,43498,43691,43840,43905,43924,43932,44033,44129,44279,44821,44883,44945,44951,45097,45162,45359,45389,45557,45582,45638,45813,45830,45919,45960,46038,46086,46104,46187,46281,46428,46463,46481,46574,47047,47324,47418,47523,47717,48007,48264,48334,48489,48501,48702,48788,48976,48994,49504,49550,49703,49711,49978,49995,50006,50338,50511,50799,50946,50947,50951,50980,51017,51150,51244,51530,51616,51977,52007,52062,52364,52441,52586,52598,52768,52883,52978,53047,53064,53114,53127,54024,54546,54578,54735,54803,55123,55289,55510,55661,55744,55843,55885,55921,56297,56403,56696,57113,57424,57614,57779,58294,58326,58721,58908,59346,59541,59651,59882,60076,60164,60250,60618,60799,61144,61208,61217,61617
1.2.5.9. Random Number Generator


The SC code utilizes two random number generators.  The first uses the second.  The first is described by the following pseudo code:
function b=RNG(a)

for i = 0:7

    a = RNG_2( a, ( (a) % (89) ) )

    b = (b) % (a)

end

The second random number generator uses a selectable set of feedback taps.  The second is described by the following pseudo code:

function a=RNG_2(a,b)

tap_list=[32, 31, 30, 10

32, 31, 29, 1

32, 31, 26, 18

32, 31, 26, 9

32, 31, 26, 7

32, 31, 23, 10

32, 31, 22, 17

32, 31, 21, 16

32, 31, 21, 5

32, 31, 18, 10

32, 31, 16, 2

32, 31, 15, 10

32, 31, 14, 4

32, 31, 13, 8

32, 31, 9, 7

32, 31, 5, 4

32, 30, 29, 23

32, 30, 29, 20

32, 30, 29, 16

32, 30, 29, 15

32, 30, 27, 24

32, 30, 27, 21

32, 30, 27, 12

32, 30, 27, 8

32, 30, 26, 25

32, 30, 26, 13

32, 30, 25, 16

32, 30, 23, 16

32, 30, 23, 14

32, 30, 23, 4

32, 30, 21, 14

32, 30, 19, 8

32, 30, 19, 4

32, 30, 17, 3

32, 30, 15, 6

32, 30, 11, 8

32, 30, 11, 5

32, 30, 8, 3

32, 30, 7, 4

32, 29, 28, 19

32, 29, 27, 23

32, 29, 27, 21

32, 29, 27, 6

32, 29, 26, 6

32, 29, 25, 6

32, 29, 22, 18

32, 29, 19, 16

32, 29, 17, 15

32, 29, 15, 8

32, 29, 6, 5

32, 29, 6, 4

32, 28, 25, 15

32, 28, 25, 11

32, 28, 25, 6

32, 28, 23, 6

32, 28, 15, 13

32, 28, 9, 7

32, 27, 26, 14

32, 27, 25, 20

32, 27, 25, 19

32, 27, 25, 17

32, 27, 25, 7

32, 27, 25, 5

32, 27, 23, 6

32, 27, 21, 6

32, 27, 20, 18

32, 27, 18, 14

32, 27, 15, 14

32, 27, 14, 12

32, 27, 14, 9

32, 27, 8, 6

32, 26, 25, 10

32, 26, 23, 12

32, 26, 22, 7

32, 26, 20, 11

32, 26, 19, 9

32, 26, 19, 7

32, 26, 18, 13

32, 26, 15, 7

32, 25, 24, 7

32, 25, 22, 15

32, 25, 17, 7

32, 25, 14, 13

32, 24, 22, 13

32, 23, 21, 16

32, 23, 18, 14

32, 21, 20, 19

32, 20, 17, 15

32, 19, 18, 13]

taps[0]=tap_list[b,0]

taps[1]=tap_list[b,1]

taps[2]=tap_list[b,2]

taps[3]=tap_list[b,3]

feedback=2.^^(32-taps[0]) + 2.^^(32-taps[1]) + 2.^^(32-taps[2]) + 2.^^(32-taps[3])

if( (a) & (1) )

    a = (a) ^ (feedback)

    a = (a) >> (1)

    a = (2^31) || (a)

else

    a = (a) >> (1)

end

1.2.5.10. Random Permutation


The SC code utilizes a random permutation of length K to facilitate the construction of the random interleavers needed for the parallel filter codes.  The random permutation is given by the following pseduocode.
function [permutation,the_seed]= Generate_Permutation(a,b)

for i=0:a-1


permutation[i] = i + 1

end

for i=0:a-1

    c = RNG_2(b,1)

    b = ( (c) % (a-(i-1)) ) + i 

    d = permutation[i]

    permutation[i] = permutation[b]

    permutation[b] = d

end

1.2.5.11. RS Generator
A Reed Solomon code is utilized in the construction of the SC code.  Its construction is described by the following pseudo code.

function G_V_RS = RS_gen(K,N)

   Gt=zeros[N,K]

for i=0:N-1  

    for k=0:K-1 

        a = ((i+1)*k) % (2^^8-1)

        Gt[i,k]=GF_exp(a)

    end

end

G1=Gt[1:K,1:K]

G2=Gt[K+1:N,1:K]

G_V_RS = GF_Multiply(G2,G1^^-1)

GF_Multiply implements G2*G1_inv where the multiplication and addition are performed in the GF field.  The matrix inverse G1^^-1 can be easily implemented using Gaussian Elimination for the small matrix G1.
1.2.5.12. RS Code
If the number of transmit symbols N is optionally limited to N<=256 and signalled using Max_N=0, then the following pseudo code is used to generate matrix P.         
Num_V_RS = N - K

B_1 = RS_gen(K,K+Num_V_RS)

P = [I[K]

     B_1 ]

Num_B = 0

K_eff = K

1.2.5.13. SC_Filter_Data
    [Filter_data, filter_N]=SC_filter_data(z)
Filter_data=[0,2147483648,2863311531,3221225472,3435973837,3579139413,3681400539,3758096384,3817748708,3865470566,3904515724,3937053355,3964585196,3988183918,4008636143,4026531840,4042322161,4056358002,4068916386,4080218931,4090445044,4099741510,4108229587,4116010325,4123168604,4129776246,4135894433,4141575607,4146864975,4151801719,4156419964,4160749568,4164816772,4168644728,4172253945,4175662649,4178887099,4181941841,4184839929,4187593114,4190211996,4192706170,4195084336,4197354403,4199523578,4201598442,4203585013,4205488811,4207314902,4209067950,4210752251,4212371771,4213930177,4215430865,4216876982,4218271451,4219616993,4220916136,4222171240,4223384508,4224557996,4225693630,4226793212,4227858432,4228890876,4229892034,4230863307,4231806012,4232721393,4233610620,4234474799,4235314972,4236132128,4236927197,4237701065,4238454568,4239188500,4239903613,4240600621,4241280205,4241943008,4242589646,4243220702,4243836733,4244438269,4245025816,4245599856,4246160849,4246709236,4247245437,4247769853,4248282869,4248784852,4249276155,4249757114,4250228053,4250689283,4251141099,4251583788,4294967295]

filter_N=min(100,z)

Filter_data[Filter_N-1]=4294967295

1.2.5.14. GF(256) Operations
The SC code utilizes Galois field arithmetic in GF(256).  The primitive polynomial is D^^8 + D^^4 + D^^3 + D^^2 + 1.  The b=GF_exp(a) function raises the primitive element to the supplied power, a.  The function C=GF_Multiply(A,B) multiplies two matrices in the Galois field.
1.3. FEC Packets
Encoded packets are constructed using a 4 byte FEC Payload ID followed by transmit symbols.  The Source ID field (SID) of the FEC Payload ID identifies the Source ID of the first transmit symbol in the packet.  Subsequent transmit symbols have sequential increasing SIDs.  If the last transmit symbol of a packet contains source padding, these padding bytes may be excluded from the packet.   Otherwise, packets must contain only whole transmit symbols.
It is RECOMMENDED that each packet include exactly one transmit symbol.  Multiple transmit symbols per packet SHALL also be supported.  

1.3.1. Segmentation

In order to encode large files within the working memory constraint, the source file may need to be segmented into transmit blocks and working blocks.

1.3.1.1. Transmit Blocks

Given a source file of size F bytes and a transmit symbol size of T bytes, the file can be divided into K_total=ceil(F/T) transmit symbols.  A source transmit block is a collection of KL or KS of these transmit symbols.  KL and KS may be different if the total number of source transmit blocks does not evenly divide the number of transmit symbols required to represent the file.  The number of source transmit blocks with KL transmit symbols and the number of source transmit blocks with KS transmit symbols are communicated to the decoder using parameter Z.  After encoding, a transmit block consists of a source transmit block and a repair transmit block.

The transmit blocks are ordered such that the first ZL transmit block are encoded from source transmit blocks of size KL transmit symbols. The remaining ZS transmit blocks are encoded from source transmit blocks are of size KS transmit symbols.  Given Z, the first ZL=ceil(K_total/Z)*Z-K_total transmit blocks are of size KL=floor(K_total/Z) and the remaining ZS=K_total-floor(K_total/Z)*Z transmit blocks are of size KS=ceil(K_total/Z). 

1.3.1.2. Working Blocks
In order to satisfy the working memory requirement, the transmit symbols can be further subdivided into working symbols.  The working symbols are ordered in a packet such that the first ceil(T/AL/Ns)*Ns-T/AL working-blocks are of size TWL=floor(T/AL/Ns) and the remaining T/AL-floor(T/AL/Ns)*Ns working-blocks are of size TWS=ceil(T/AL/Ns) in a given packet.  A working block is then a collection of working symbols.  The size of the working symbols are selected such that an entire source working block can fit into the working memory, where the source working block is the portion of the working block consisting of only source data and not repair data.  The ith working block consists of the ith working symbol of transmit symbols of a transmit block.  The KL (or KS) transmit symbols of a source transmit block can be viewed as a collection of working symbols or equivalently as a collection of source working blocks. 

After encoding, a working block consists of a source working block and a repair working block.  The receiver attempts to decode on a subset of the source and repair working symbols in a working block.  

1.3.1.3. Padding

In cases where effective number of transmit symbols used by the encoder and decoder, K_eff, is K_eff>K, then K_eff-K transmit symbols must be padded (with 0) to the data before encoding.  These padded symbols do not need to be transmitted, as the decoder is aware that they are padding.  (Padding SIDs 0 to K_eff-K-1 MAY be transmitted, but it is RECOMMENDED that they are not.)
1.4. Parameter Selection
The code requires F, T, Z, Ns, and AL.    F is the total file size in Bytes.  T is the transmit symbol size in bytes, and it is RECOMMENDED that it be equal to the packet payload size.  The number of transmit blocks Z MUST be chosen such that KL<=K_max.  K_max is the maximum value in section 2.2.5.8.
The number of working symbols, Ns, MUST be chosen small enough such that KL*TWL is less than or equal to the working memory requirement. The byte alignment, AL, is to be chosen based on the protocol and the typical machine architectures, a value of 4 (bytes) is RECOMMENDED.  

1.5. Control Messages
This section describes IEs that are used by the FEC.  All fields are big-endian.
1.5.1. FEC Payload ID
The FEC payload ID is a 4-byte field defined as follows:

[0:7] TBN, (8 bits, unsigned integer): A non-negative integer identifier indicating the transmit block number.
[8:31] SID , (24 bits, unsigned integer): A non-negative integer identifier indicating the transmit symbols in the packet.  SID 0 to K-1 indicate systematic symbols.
1.5.2. Common
The Common FEC Object Transmission Information elements used by this FEC Scheme are:

[0:39] Transfer Length (F), (40 bits, unsigned integer): A non-negative integer.  This is the transfer length of the object in bytes.

[40:47] are reserved.

[48:63] Transmit Symbol Size (T), (16 bits, unsigned integer): A positive integer that is less than 2^^16.  This is the size of a transmit symbol in units of bytes.

1.5.3. Scheme Specific

The following parameters are carried in the Scheme-Specific FEC Object Transmission Information element for this FEC Scheme:

[0:7] Z: The number of transmit blocks (8 bits, unsigned integer)
[8:23] Ns: The number of working blocks (16 bits, unsigned integer)

[24:30] AL: A symbol alignment parameter (7 bits, unsigned integer)
[31] R: 0: Default 1: OPTIONALLY indicates that the maximum value of N satisfies N<=256 (1 bit, boolean)  
3 FEC decoder
Decoding is the process of determining x given y_r and P_r.  Decoding can be implemented in several different ways, but each are equivalent to solving the least squares problem 
[image: image10.wmf](

)

r

T

r

r

T

r

y

P

P

P

x

1

-

=

.      Modern sparse matrix factorization techniques can take advantage of the sparse structure imposed by the parallel filter structure if (1) is rewritten in the following equivalent form


[image: image11.wmf]Gw

z

=

,

with augmented generator matrix G defined as


[image: image12.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

1

2

1

2

3

R

R

T

I

B

B

B

G

L

,

and where the augmented output vector z=[zeros(L,1); y], the augmented input vector w=[x; B_3*x; B_2*x; B_1*x], and where L= Num_V_RS+Num_B_2+Num_B_3.  The bottom L elements of vector w contain the outputs, before repetition, of the block codes.  These L values are appended to vector x to form the augmented input vector w.  The first L rows of G implement the block code and XOR the block code output with itself to generate the L zeros at the top of the z vector.  The subsequent N rows of G implement the FIR structure and XOR the output with the output of the block codes.

It is RECOMMENDED that the Dulmage-Mendelsohn based solver in chapter 8 of [3] be used with addition, multiplication, and division updated to support a finite field.  This algorithm utilizes pivoting based on node degrees in the equivalent graph to minimize fill-in.  The solution is completed by performing forward and backward substitutions.  Iterative solvers are also possible.

Once the encoder state vector x, or equivalently the augmented encoder state vector w, has been determined, the task remains to determine the data vector d.  For any elements of d that are missing, they can be recovered by using appropriate rows of P or G.
4 Standardization Status
The supercharged code is being standardized by IETF.  Completion of the standardization process is expected in the coming months.  http://tools.ietf.org/html/draft-stauffer-rmt-bb-fec-supercharged-01
5 Impact on TS26.346
A few minor edits are required to update the FEC name and references.  These include the follow changes:

1.   Remove reference to RFC 5053

2.   Remove references to Raptor REC

3.   Update FEC Encoding ID

4.   Update FEC Payload ID

5.   Generalize SBN and ESI

6.   Update Annex B with the new FEC specification.

Please refer to the attached draft CR for more details.  

6 Test Vectors
Broadcom is committed to providing test vectors for the TR on Application Layer FEC.  Test vectors are available upon request

6.1 Introduction
Broadcom is committed to provide suitable test vectors for selected test cases according to the format proposed in this document as part of the Technical Report that is generated in the course of the EMM-EFEC work item.
6.2 Proposed Test Vector Formats

It is proposed to use selected test vectors from the device-based test plan according to TR26.947v1.1.0. Specifically, the test vectors for LS21, LS50, LS48, LD118 and LD119 will be provided (It is not added to this distribution for size reasons). Other test vectors for HD cases may be provided as well, but likely exceed the capacity of the 3GPP documents.
7 FEC Code Performance for Test Cases
7.1 FEC Code Performance
All performance results are included in the attached excel sheet.  
Please note that the following assumptions from TR26.947 in S4-121179 were followed for simulations on the “LTE-Download” worksheet:

All source blocks have the same size, i.e. the size the largest source blocks (this would slightly overestimate FEC overhead but simplifies simulation code)

and
 Find maximum of necessary symbols maxSymbol across Z blocks for user, U report Transmission overhead.
Additionally, Transmission Overhead was reported as (Nt-Kt)/Kt as a percent on the “LTE-Download” worksheet, as opposed to “(maxSymbol*T *Z/ F)” provided in TR26.947 in S4-121179.
Device evaluation performance is expected to improve significantly, as the time available for optimization on the target platform was limited when producing these evaluation results.

7.2 Implementation-specific Performance Metrics
· 1.8 GByte at 20% Markov model error rate 
· Complexity: O(F), where F is the file size.  

· Memory: Approximately 28MByte for program and working memory for decoding.
· 4sec @ 1MBit/s streaming at the 20% Markov model error rate 
· Complexity: O(F), where F is the file size

· Memory: Approximately 2MB for program and working memory for decoding.
· 20sec protection period for RTP based streaming at 384 kbit/s and the 20% error rate

· Complexity: O(F), where F is the file size

· Memory: Approximately 750KB for program and working memory for decoding.
7.2.1 Decoding Complexity
Decoding speeds of approximately 55Mbps are possible on ARM Cortex A9 using the 20% error rate Markov model.  The encoder and decoders can be implemented in linear time, O(F), where F is the file size.

7.2.2 Memory Requirements
To decode a 1.8GB file, approximately 28MB of RAM needs to be allocated for the decoder using the 20% error rate Markov model test case.  The working memory used is configurable by the working memory requirement, such that decoding can occur using slightly more than the target working memory.  

7.2.3 Library Footprint

The code encoder and decoder library can be implemented in an executable approximately 100KB, requiring no hardware functions.  
8 Verification
Please email eriks@broadcom.com for access instructions.

After a request for access is received, the steps for access will include establishment or update of NDA and an establishment of a SLA.  The object code will then be provided as a windows x86 executable.

8.1 Simulation Procedures

A pseudo code description is available on request. Please contact Thomas Stockhammer <c_tstock@qualcomm.com>. 

9 Additional Information
· Differences to existing AL-FEC

· The Supercharged FEC improves performance by requiring much less receive and transmit overhead due to improved code design.
· Similarities to existing AL-FEC

· The Supercharged FEC can be implemented in software in linear, O(F), time, where F is the file size.

· Direct Replacement

· The Supercharged FEC replaces the existing AL-FEC

· Requires a minimum of changes to 26.346 outside of annex B.
· information on available implementations and deployments
· The Supercharged code has been ported to Windows, Linux, and Android operating systems.  It has been ported to ARM and x86 processors.

· Ideal code results

· Ideal code results for the test cases specified in section 3 of S4-120552 are supplied in attached EFEC_eval_data_Ideal.xls. This is for comparison of the simulation framework.
10 Summary on Addressing Work Item Objectives
The goal of the EMM-EFEC work item is to select a new application layer FEC that provides improvement over the existing FEC.

The Supercharged code fulfils the objectives of the work item by improving the bandwidth efficiency of streaming and download services over MBMS by requiring much less receive and transmit overhead, by improving the reliability of streaming and download services delivered over MBMS with better performance at given overhead levels, and reducing the required computational and memory resources for decoding in UEs.  Additionally, the Supercharged FEC can exist as part of a backward compatible implementation with RFC5053.

The Supercharged code shows significant improvement over the existing RFC5053, as based on the SA4 defined test cases.  The results are summarized in the following table.

	Test Group
	Sub Case
	Total Test Cases
	Super Charged (SC) better than Raptor

	CP Cases


	Method 1
	10
	10

	
	Method 2
	12
	12

	LTE Download


	
	
	

	
	HD Cases
	24
	24

	
	SD Cases
	24
	24

	
	Non SD/HD Cases
	72
	72

	UTRAN Download
	
	36
	36

	LTE Streaming
	
	48
	48

	UTRAN Streaming
	
	18
	18


Table 1: Summary of Test Case Results

The Supercharged code clearly outperforms the code of RFC5053, which leads directly to improved efficiency and reliability.  Increased efficiency and reliability also results in reduced computational and memory resources required, as more data is successfully delivered with less overhead.

The details of the SA4 test cases are considered in the following sections.

1. Probability of decoding failure, for a given receive overhead.

The receive overhead is a good measure of the performance of the code.  It illustrates the decoder performance without the effects of the channel.  The following figure plots the probability of error vs the number of received symbols in excess of K for the CP test cases defined in section 3.1 of S4-120552.

[image: image13.emf]0123456789

10

-3

10

-2

10

-1

10

0

Probability of Error

O, the Receive Overhead

RFC5053

Supercharged


Figure 4 Probability of decoding failure for a given receive overhead for CP test cases.  The Supercharged code shows significant improvement over RFC5053.  For seven of the plotted test cases, the Supercharged FEC has P(O=0)=0.
The Supercharged code vastly outperforms the code of RFC5053 in all CP test cases.  For cases with N<=256, the code achieves optimal performance.  The probability of error with K received symbols (O=0 receive overhead) is P(O=0)=0.  The existing RFC5053 achieves an error rate of approximately 1e-2 for O=9 symbols in these cases. 

For N>256, the probability of decoding failure for a given receive overhead is significantly reduced compared with RFC5053.  Typical performance: P(O=0) < 1e-2 and falls exponentially with additional received symbols.  This is significantly better than the RFC5053 code, which has performance at P(O=0) ~ 0.5 and P(O=7)~1e-2.

2. Transmit overhead
The transmit overhead required by the Supercharged code is significantly reduced compared to the RFC5053 code.  The supercharged code also performs much closer to the ideal code.  The following figures illustrate the performance improvement of the Supercharged code over the RFC5053 code for the SA4 test cases, and shows that the performance is much closer to ideal.  As a part of the transmit overhead measurement, the characteristics of the channel play a significant role, unlike the receive overhead.  The following figure shows the performance improvement of the Supercharged code for the UTRAN download test cases.  These results show that the Supercharged code outperforms RFC5053.

[image: image14.jpg]
Figure 5: Tx overhead for UTRAN Download cases.  Supercharged, Ideal, and RFC5053.  The Supercharged code outperforms RFC5053 by requiring a lower transmit overhead.
The following figure illustrates the transmit overhead for the LTE download non SD/HD test cases ( File Size of 50 kB , 1MB , 3MB).  Again, the Supercharged code performs better than RFC5053.

[image: image15.jpg]
Figure 6: Tx overhead for LTE Download non SD/HD cases.  Supercharged, Ideal, and RFC5053.  The Supercharged code vastly outperforms RFC5053 by requiring lower transmit overhead.
The following figure illustrates the transmit overhead for the LTE download SD test cases (File Size = 128 MB).  Again, the Supercharged code performs better than RFC5053.

[image: image16.jpg]
Figure 7: Tx overhead for LTE Download SD cases.  Supercharged, Ideal, and RFC5053.  The Supercharged code outperforms RFC5053 by requiring lower transmit overhead.

The following figure illustrates the transmit overhead for the LTE download HD test cases (File Size = 1.8 GB).  The Supercharged code performs very close to the ideal code and significantly better than RFC5053.

[image: image17.jpg]
Figure 8: Tx overhead for LTE Download HD cases.  Supercharged and Ideal.  The Supercharged code is close to the ideal.

The reduced transmit overhead also results in a performance improvement for the streaming test cases.  This is clearly evident in the following two figures where the supported streaming bit rate is higher for the Supercharged code than for the RFC5053 in most test cases.  The performance of the Supercharged, ideal, and RFC5053 code are equivalent in the remainder of test cases.  The following figure illustrates LTE streaming transmit overhead test case results.

[image: image18.jpg]
Figure 9: LTE Streaming.  Supercharged, Ideal, and RFC5053.  The Supercharged code outperforms RFC5053 by supporting a higher bit rate.

The following figure illustrates UTRAN streaming test case results.  Again, the supercharged code supports a higher bit rate than RFC5053 in most test cases, and is equivalent in the remainder of test cases.

[image: image19.jpg]
Figure 10: UTRAN Streaming.  Supercharged, Ideal, and RFC5053 Code.  The Supercharged code outperforms RFC5053 by supporting a higher bit rate.

The Supercharged code shows significant improvement over RFC5053 when transmit overhead is used as the performance metric.

3. Receive overhead
The CP test cases show that the expected number of received symbols for successful decoding drops from several symbols to less than 10^-2 symbols.  The figure below shows the improvement graphically, showing that the Supercharged code is close to the ideal code.  The Supercharged code vastly outperforms RFC5053.

[image: image20.emf]12345678910

0

1

2

3

4

5

Average Rx Overhead Comparison( Method 1)

Average Rx Overhead

Test ID CP1-CP10

 

 

Raptor

Ideal

Super Charged

111213141516171819202122

0

10

20

30

Average Rx Overhead Comparison( Method 2)

Average Rx Overhead

Test ID CP11-CP22

 

 

Raptor

Ideal

Super Charged


Figure 11: Rx overhead for CP cases.  Supercharged, Ideal, and RFC5053 Code.  The Supercharged code vastly outperforms RFC5053.

The Supercharged code is better than RFC5053 in all 10 method 1 CP cases, and all 12 method 2 CP cases.
4. Encoding latency/speed

Assuming a MBMS server with 3GHz quad core x86, encoding latency for a 4 second 1MBit/s stream is approximately 1ms.
5. Decoding latency
Assuming a 1GHz ARM Cortex A9, 512KB L2 Cache, decoding latency for a 4 second 1MBit/s stream is approximately 20ms.
6. Encoder SW complexity
Encoding can be performed in linear time complexity with the file size O(F), where F is the file size.  This is comparable with the existing RFC5053.
7. Decoder SW complexity
Decoding can be performed in linear time complexity with file size O(F), where F is the file size.  This is comparable with the existing RFC5053.
8. Decoding memory requirements:

To decode a 1.8GB file, approximately 28MB of memory are required for the decoder.  The working memory used is configurable by the working memory requirement, such that decoding can occur using slightly more than the target working memory.  256KB to 1MB are typical configured working memory targets.

9. Footprint requirements 
The code encoder and decoder library can be implemented in an executable approximately 80KB, requiring no hardware functions.  This is comparable with the existing RFC5053.
10. Amount of tolerable loss packets for a given FEC overhead:

The amount of tolerable packet loss for a given FEC overhead is characterized by the receive overhead.  The better the receive overhead requirements for a code, the more packet loss that can be tolerated.  The Supercharged code has significant improvement for lost packets over the existing RFC5053, as discussed above.

When viewed from the perspective of the number of packets that need to be transmitted, the channel loss rate plays a role.  The lower the receive overhead requirement, the lower the transmit overhead requirement.  Here too, the Supercharged code outperforms the exiting RFC5053, as illustrated above.

The figure below shows maximum tolerable BLER for a given Transmit overhead to ensure less than 1% application layer error rate for simulation conditions and assumptions mentioned in section 2.3 and 2.4 of S4-120552 for the Supercharged code in LTE Download Delivery test cases.

[image: image21.jpg]
Figure 12 Tolerable BLER for a given transmit overhead.  The larger the file, the less overhead is required for a given BLER, as shown by the 50KB, 1MB, 3MB, and 128MB files sizes.  The 1.8GB cases require more overhead than the 128MB cases due to coding over independent source transmit blocks.

The following figure compares the tolerable BLER for the Supercharged, Ideal, and Raptor codes.  The Supercharged code performs better than RFC5053, and very close to the Ideal code.
[image: image22.jpg]
Figure 13 Tolerable BLER for a given transmit overhead comparison for Supercharged, Ideal, and Raptor codes.  Supercharged outperforms Raptor and performs very close to Ideal.
The following figure provides tolerable BLER vs transmit overhead for two of the UTRAN Download delivery test case.  Increased file size results in better performance.

[image: image23.jpg]
Figure 14 Tolerable BLER vs transmit overhead for Supercharged code in UTRAN download test cases.
11. Implementation choices/options
The Supercharged code has been ported to Windows, Linux, and Android operating systems.  It has been ported to ARM and x86 processors.  Ports for other operating systems and processors are planned.
11 References

[1] Timothy Vismor, “Matrix Algorithms.”

[2] Sergio Pissanetzky, “Sparse Matrix Technology,” Academic Press, London (1984).
[3] Timothy A. Davis, “Direct Methods for Sparse Linear Systems” SIAM, Philadelphia, Pa (2006)

[4] Yousef Saad, “Iterative Methods for Sparse Linear Systems” 2nd Ed. SIAM, Philadelphia, Pa (2003)

[5] I.S. Duff, A.M. Erisman, and J. K. Reid, “Direct Methods for Sparse Matrices” (2008) (ISBN: 978-0198534082)

[6] John K. Reid, “Solution of linear systems of equations: Direct methods” (1977)
[7] Golub, G.H. “Numerical methods for solving linear least-squares problems” Numerische  Mathematik Volumne 7, Number 3 (1965) pp 206-216
- 20/29 -

_1396347330.vsd
Tailbiting FIR Filter


Π_1


Tailbiting FIR Filter


Π_M


Mux


...



_1397906847.unknown

_1397909065.unknown

_1398245024.vsd
Block Code 3


Parallel Filter Code


x


y


Repetition Code


Block Code 1


Block Code 2


Repetition Code



_1397906872.unknown

_1396445402.unknown

_1396958358.unknown

_1396348017.unknown

_1389158611.unknown

_1389172049.unknown

_1389158823.unknown

_1388995670.vsd
D


D


D



