Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4#71
S4-121386
5 - 9 November 2012
update to S4-121306
Bratislava, Slovakia
Agenda item:
7
Source:
Qualcomm Incorporated
Title:
EMM-EFEC: Refined and Final Simulation Procedures
Document for
Agreement
1 Summary

The ideal code results for the LTE-based simulations for streaming and download delivery still showed differences at the last MBS adhoc meeting #21 across the simulations results submitted. this issue was discussed in S4-AHI364, S4-AHI365 and S4-AHI371 and further refined after the adhoc meeting. This document provides a proposal to remove any ambiguity in the simulation methodology. This is necessary in comparing proposed code overhead performance.

The update in this document addresses the issues that 99% success probability is defined that the overhead of the 0.01*N least worst user is giving the required overhead. This may reduce the required overhead slightly.
2 LTE Download Cases

For LTE Download, multiple repetitions (3000 or 10000) are carried out to obtain the 99% reliability criteria. This requires repeated usage of the error traces. The repetition pattern, i.e. the point at which a new trial is initiated, is relevant.

In order to compare codes, all traces for a given test case must be of length at least Nt so that if Nt is smaller for one candidate code than another, traces for the smaller Nt are all prefixes of the second one. Moreover the trace generation should avoid introducing state bias since traces for small file size like 50KB are very short and thus very sensitive to the trace initial state. Finally, the chosen element in case of sub-sampling (bearer rate is 266.4kbps) needs to be defined. On the latter, it is proposed to use the first element of every 4 elements starting with the 1st element. As required by the LTE download simulation procedure, up to 10,000 different traces must be generated for file sizes 50KB, Audio (1MB) and Clip (3MB), and 3,000 traces for SD (128MB) and HD (1800MB).

In order to allow the error trace generator to meet the requirements above, we propose reusing Expway error trace Java code with very little modifications but with an additional method to circumvent the limitation of the current Java code available, namely that the random number generator potential longest sequence is 232 with a fixed increment.

The updated overhead simulation is only relevant for Code Overhead generation, and is of no relevance to device-based evaluation.

3 LTE Streaming Cases

The rate at which the error traces are consumed depends on the positioning of the error trace between attempted K values. One problem is that candidates may change the position of the error trace after each attempted value of K. As a clarification, it is proposed to reset the error trace to the beginning of the error trace when each value of K is attempted. It is also proposed that the first trace generated for download HD trial with the same Markov parameters be used for the streaming simulation.
4 Proposal

It is proposed to use the new provided LossVectorGenerator.java, Random.java and IncrementSelector.java provided with this document for the trace generation. This new code meets the requirements set forth in section 2 and 3.

More specifically, Expway Java code (based on Qualcomm pseudo-code) command interface which was:

./LossVectorGenerator probaP probaQ goodBLER badBLER \

subSamplingFrequency n seed increment file_name

 is replaced with:

./LossVectorGenerator probaP probaQ goodBLER badBLER \

subSamplingFrequency n trial_number file_name

i.e. that the seed and increment are replaced by a trial (trace) number taking its value in the range [0, 9999].

The initial state bias is removed by starting state of the Markov chain according to its stationary probability.

The trace generator uses the IETF RFC 6330 Random Number Generator (see section 5.3.5.1) with the parameters:
· Increment = GetIncrement(trial_number)

· Seed = trial_number

The GetIncrement function is the main additional part to insure that random sequences from one trial to another are not similar. Here is GetIncrement() documentation:

 /** Selecting an increment.

 *

 * The list of increments is selected in a manner so as to avoid

 * random sequences which are similar to one another.

 *

 * The algorithm to generate the increments is as follows:

 *

 * (1) Generate a sequence of pseudo-random integers using the

 * MINSTD (Park-Miller) random variable generator with starting seed

 * 1.

 *

 * (2) For each PRNG value v, find w := nextprime(v), where

 * nextprime(v) is the smallest prime larger than or equal to w.

 *

 * (3) If w is in the range [2^24, 2^31), append it to the list of

 * increments, otherwise skip it.

 *

 * There are no duplicate entries among the first 10000 increments.

 */
Finally, we propose that clarifications of section 2 and 3 with the new Java code be used for LTE code overhead performance.

5 Computation of reference LTE download ideal code overhead

The java trace generator LossVectorGenerator can be modified slightly to simulate a single block ideal download code: the parameter n for the length of the trace becomes Kt (number of source symbols) and the code stops when Kt symbols have been received. The total of simulated sent packets, equals to Kt plus number of lost packets, is the result value Nt for this trial. A bash script steps through all 120 LD test cases and required number of trials per test case (trials [0,…,9999] for 50KB, Audio and Clip, trials [0,…,2999] for SD and HD]). The collected data is then sorted to extract the Nt value and FEC transmission overhead to achieve 99% success delivery. Now if X is the target success rate, keep the last (1 – X) * N last users where N is the number of simulated users
The file IdealDownloadSim.java implements the change to LossVectorGenerator.java described above, while script ld-fec-overhead.sh is a realization of the LD test case stepping and data collection.
6 Computation of reference LTE streaming ideal code overhead

With a trace generated for an LTE streaming simulation for a 24 hour period, the ideal code value K value with fixed segment of length N can be found with the following method:

1. For each segment of length N in trace, compute how many lost packet it has

2. K=0

3. Compute the total number of segments with strictly more than K loss packets. Store into variable total_errors.

4. If total_errors > 24, set K=K+1, goto Step 4

5. Report K as ideal code value for this test case.

The above procedure is implemented by the python script streamIdealK.py with the following command line interface:

python streamIdealK.py <trace> <N> <seg_sec> <test_case>

where <trace> is the trace filename, <N> is the segment length in packets, <seg_sec> is the segment length in seconds and <test_case> is a test case identifier to tag the results.

The bash script ls-fec-overhead.sh steps through all test cases.

7 Attachments

Attached to this document are:

· Code to used for generating ideal code results

· IdealDownloadSim.java: determines ideal code value Nt value
· IncrementSelector.java: creates a set of increments in a manner so as to avoid sequences which are dependent from one another
· LossVectorGenerator.java: Generates the Markov traces
· Random.java: random generator
· ld-fec-overhead.sh: steps through all LD test cases and collects data
· ls-fec-overhead.sh: steps through all LS test cases and collects data
· streamIdealK.py: determines ideal code value K value for fixed segment of length N for a given 24 hour trace
· ld-fec-overhead-results.txt: Ideal code results for all LTE download cases
· ls-fec-overhead-results.txt: Ideal code results for all LTE streaming cases
8 Proposal

It is proposed to adopt the simulator as agreed prior to SA4#71 as the overhead simulation tool in order to accurately compare codes for the receive overhead. Only numbers generated with this common simulation tool shall be used for detailed overhead comparisons.

In addition, it is proposed to add the details of the simulator and the simulation procedure to TR26.947 and add the simulation tools as attachment to the Technical Report.
- 1/2 -

