TSG-SA4#71 meeting

Tdoc S4 (12)1343

5-9 November, 2012, Bratislava, Slovakia

Source:
NOKIA Corporation
Title:
Discussion on non-CVO operation
Document for:
Discussion and agreement
Agenda Item:
10
1 Background
S4-AHM182 presented at SA4 MTSI SWG conf. call on CVO on 4th October described non-CVO interworking scenarios and made some recommendations based on wrong assumptions. Those wrong assumptions are addressed in this paper:

· It assumed the local UI rotation is not implemented in non-CVO devices. This is not the case, as local UI rotation is a common feature in all modern mobile platforms, in fact it is an independent feature to any video call application.

· It assumed the sender compensation (rotation of the image before sending it out) is not implemented in non-CVO devices. This is not true; in fact this is how many video call clients work today.

· It assumed the end user is always able to rotate the device in order to correct the incorrectly oriented image. This is not true, as e.g. PC clients cannot be rotated, and if a mobile device is rotated typically the UI is rotated as well, thus the misoriented image remains misoriented.

This paper uses the text in S4-AHM182 as a baseline for the non-CVO scenarios, but with correct assumptions it gets into different conclusions.
2 Scenarios
As a common notion for the following examples, the dashed arrows on images shown on the clients indicate the scan order for the image encoding from the local camera, relative to the device orientation. Note that it is not the scan order for the received image displayed on the device in the example. The images shown “on the wire” are displayed in the example such that they have left-to-right-top-down scan order, also indicated by a dashed arrow. For CVO-capable clients, the “on-the-wire” image also has an indicative circle arc arrow to show how the image must be rotated after decoding in the receiver, as indicated by the RTP header extension information. A full circle is chosen to indicate “no rotation”.
2.1
CVO client to CVO client
The CVO – CVO scenario is presented here as a reference. Both clients have signaled support for CVO in SDP during call setup.
1) Ongoing communication with same orientation at both sides. Note that in this example, the camera module is in the same orientation with the mobile phone display in both devices. In the first figure both devices have been rotated 90 degrees CCW relative to the start of the video call, therefore the encoding scan order is bottom-up-left-to-right relative to the current device orientation, requiring use of RTP header extension orientation information for correct display. Both devices send the rotation value 90 degrees CCW to each other.

[image: image16.png]

2) User at the left side rotates the device 90 degrees CW, therefore the device returns back to the original orientation.
3) CVO client in the sender to the left detects the change of orientation thanks to its orientation sensor and indicates the new rotation/symmetry value in the RTP payload extension, which is now zero degrees.
4) CVO client in the receiver to the left continues to rotate the received image by 90 degrees CCW. It has also detected change of devices own orientation and applies it when rendering the received image. Note that the local rotation of the UI is assumed to be a generic platform operation and not specific to CVO or video calls in general.
5) CVO client in the receiver to the right detects the change of orientation/symmetry in the RTP payload extension and applies it when rendering the received image. The recipient at right learns the image does not need to be rotated.
6) Orientation change is complete.

[image: image2]
7) Should the CVO client terminal to the right now also change orientation by rotating the device 90 degrees CW, therefore the device returns back to the original orientation. Its orientation sensor should then trigger the rendering such that it keeps the received video image content upright, similar to the left receiver adjustment in step 4 above. Again note that the local rotation of the UI is assumed to be a generic platform operation and not specific to CVO or video calls in general The CVO client sender to the right also changes the orientation information in the RTP payload extension for the sent stream.

[image: image3]
2.2
CVO client to non-CVO client
One client (in these examples the one to the right) indicated CVO support but the other did not. Thus, neither terminal will be able to use any RTP header extension with rotation information, and the scenario is the same when neither party indicates the support for CVO. CVO device falls back to non-CVO operation. There are several alternatives in how the CVO client could handle interworking with a non-CVO client and a selected set of them are elaborated below.
The common starting point for all sub-chapters below is a situation where the encoding scan order and the device orientation are aligned for both devices.

[image: image4]
2.2.1
No orientation compensation in sender, local UI orientation lock on in both devices
In this case, neither the sending nor the receiving part of the device makes any adjustment whatsoever to the encoded or received image when the device is rotated. Note that this assumes the local UI is not rotated by the mobile platform when the device is rotated, either the user has locked the UI orientation or the platform does not support UI rotation.
1) User at the device (to the right) changes orientation of the device by 90 degrees CCW.

2) Neither left nor right side decoder sees any characteristics change of the received stream, decodes and displays it, as normal
3) The receiver side image is shown tilted on both left and right clients.

[image: image5]
4) The receiving user to the left is probably not happy with this situation and will likely rotate the device to display the received image correctly (or the right user could rotate back its own device, or ask the left user orally to rotate that device), resulting in that the both terminals device orientation align and they finally receive a correctly oriented image.

[image: image6]
Note again that this case assumes the local UI is not rotated in the left device when the device is rotated, either the user has locked the UI orientation or the platform does not support UI rotation. If the platform rotates the UI, the image is again in wrong orientation. This case also assumes the left device is able to rotate the device in order to correct the received video’s orientation, this is not feasible e.g. with video call client running in a PC.

2.2.2
No orientation compensation in sender, local UI orientation lock on in one device
In this case, the receiving part of the device adjusts the display of the received image when the own device is rotated, since that functionality is anyway present in all modern mobile platforms.

1) User at the CVO client (to the right) changes orientation of the device by 90 degrees CCW.

2) The receiving part of the device adjusts the display of the received image as part of local UI rotation, leading to a correctly oriented received image, but the device to the left receives a tilted image.

[image: image7]
3) The receiving user to the left is probably not happy with this situation and will likely rotate the device to display the received image correctly, resulting in that the device to the right now instead shows a tilted image Note again that this assumes the local UI is not rotated by the mobile platform when the left device is rotated, either the user has locked the screen orientation or the platform does not support UI rotation.

[image: image8]
4) The only way to have both clients show correct orientation is to align both devices with the encoder scan order, which however is not feasible with PC clients. This scenario is therefore not desired.
2.2.3
Sender side compensation in one device, local UI orientation lock on in both devices
In this case, the sending part of the device makes adjustments to the encoded image when the device is rotated. The image is re-sized, cropped and/or padded (amounts at the choice of the implementer) to accommodate that the camera and display now have different orientations.

1) User at the device to the right changes orientation of the device by 90 degrees CCW.

2) The sending part of the device to the right triggers the rotation/scan change logic on the input to the encoder,
and, as one or both devices are not CVO capable, the CVO operation is not possible, therefore the sender first re-sizes (and possibly also crops) the image, and then (depending on the amount of applied re-size and crop) adds padding to make the resulting image the same size and orientation as it was before. In this example, the full portrait image is re-sized to fit in the landscape frame (no cropping) and then padded to original size.
Since there is no change in encoded image resolution there is no strict requirement to create an intra frame from the first “orientation-compensated” image, but the image will very likely be significantly different from the previous image and encoding it as intra is then a reasonable encoding choice.

Alternatively, the sender can only rotate the image but continue to send with the same resolution without any cropping, resizing and/or padding, but just the image is now in portrait instead of landscape. In this case the recipient notices the image has changed from portrait to landscape, and performs the required resizing and padding if needed, depending on the recipient’s screen orientation.

[image: image9]
3) The receiving user to the left is assumingly happy with this situation and will not make further device orientation changes. The user to the right is however likely not happy with the tilted image, as this case assumes the local UI is not rotated in the right device, e.g. due to UI orientation lock on.
As in the previous chapter, the only way to have both clients show correct orientation is to align both devices with the encoder scan order, which is however not feasible with PC clients. Alternatively the user to the right could release the UI orientation lock.
2.2.4
Sender side compensation in one device, local UI orientation lock off
In this case, the receiver part of the right hand device makes adjustments to the display of the received image by rotating the local UI and the sender part compensates before encoding when the device is rotated, combining the approaches from the previous two chapters. Left hand device does not rotate the local UI nor perform sender compensation,
1) User at the device (to the right) changes orientation of the device by 90 degrees CCW.

2) The sending part of the device to the right makes rotation/scan change, and other transformations in the (right side) encoder, resulting in that the receiving device to the left shows correct orientation of the video image content, but that the image is re-sized, cropped and/or padded (amounts at the choice of the implementer) to accommodate that the camera and display now have different orientations.

Alternatively, the sender can only rotate the image but continue to send with the same resolution without any cropping, resizing and/or padding, but just the image is now in portrait instead of landscape. In this case the recipient notices the image has changed from portrait to landscape, and performs the required resizing and padding if needed, depending on the recipient’s screen orientation.

3) The receiving part of the device to the right makes local adjustment of the received image to the new display orientation by rotating the local UI.

[image: image10]
4) Both users should assumingly be happy with this situation since both clients show correctly oriented (although re-sized and padded/cropped) images.

5) However, should the receiving user to the left happen to be unhappy with the correctly oriented but possibly too small (padded) or cropped image, it could be tempting for the left user to also change device orientation, since it looks like the small portrait image would better fit a portrait-oriented device. If doing so, it will instead result in tilted and padded/cropped received images at both devices, as this case assumes the device on left has the UI orientation lock on. If the lock was off, the image would have been rotated perfectly on the left hand device.

[image: image11]
6) In this case, either one of the users will likely initiate another orientation change to avoid the situation, possibly resulting in the other user also having to change orientation. That also means that except for the case in item 3, orienting either device differently from the encoding scan order is not practically possible under these conditions, i.e. when assuming only one device is able to rotate the local UI and capable to rotate the image in the sender side. This scenario is therefore not desired.

2.2.5
Sender side compensation in both devices, local UI orientation lock off

In this case, the receiver part of both devices make adjustments to the display of the received image by rotating the local UI and the sender part compensates before encoding when the device is rotated. This is similar to the previous scenario but the sender compensation and UI rotation is performed in both devices.
1) User at the device (to the right) changes orientation of the device by 90 degrees CCW.

2) The sending part of the device to the right makes rotation/scan change, and other transformations in the (right side) encoder, resulting in that the receiving device to the left shows correct orientation of the video image content, but that the image is re-sized, cropped and/or padded (amounts at the choice of the implementer) to accommodate that the camera and display now have different orientations.

Alternatively, the sender can only rotate the image but continue to send with the same resolution without any cropping, resizing and/or padding, but just the image is now in portrait instead of landscape. In this case the recipient notices the image has changed from portrait to landscape, and performs the required resizing and padding if needed, depending on the recipient’s screen orientation.

3) The receiving part of the device to the right makes local adjustment of the received image to the new display orientation by rotating the local UI.

[image: image12]
4) Both users should assumingly be happy with this situation since both clients show correctly oriented (although re-sized and padded/cropped) images.

5) If the receiving user is unhappy with the correctly oriented but possibly too small (padded) or cropped image, it could be tempting for the left user to also change device orientation, since the small portrait image better fits a portrait-oriented device. If doing so, the image is rotated perfectly on the left hand device. At the same time, the sending part of the left hand device makes rotation/scan change, and other transformations in the (left side) encoder, resulting in that the receiving device to the right shows correct orientation of the video image content.

[image: image13]
6) In this case, both users are happy no matter how the device(s) are rotated, therefore this alternative is recommended.

3
Conclusion
This document describes example scenarios for non-CVO interworking.
Non-CVO interworking applies when one or both parties of the video session are not capable for CVO. When one or both UEs in the video session did not indicate CVO support, neither UE will be able to use any RTP header extension with rotation information, and the scenario is the same when neither party indicates the support for CVO. CVO capable UE falls back to non-CVO operation in this case.

The UE in the video session should not assume the other party in the video session can rotate the screen easily, e.g. PC users cannot be asked to rotate the screen and camera in order to receive properly oriented image.

The UE in the video session should not assume the other side rotates the local UI when its device (and camera module) is rotated. Although all modern mobile platforms support UI rotation, the user may have locked the UI orientation.

Therefore it is recommended to rotate the own UI if possible, and perform the sender compensation (i.e. rotation) before sending out the image. In addition, either the sender or recipient may also perform cropping, resizing and padding to the image. If this logic is applied in both mobile clients in the video session, the result is perfect image orientation regardless how the devices are rotated. If this logic is applied in mobile client in a video call with PC client, the result is perfect image orientation regardless how the mobile device is rotated. If the device cannot be rotated (e.g. PC client), it does not need to implement the local UI rotation or sender compensation either.

4
Proposal
The proposal is described in S4-121334.
CVO

CVO

CVO

CVO

CVO

CVO

CVO

[image: image1][image: image14.wmf][image: image15.png]

