TSG SA4#70 meeting
Tdoc S4-121100
13-17 August, Chicago, United States of America


Source:
Huawei

Title:
SD card writing test for MBMS FEC
Document for:
for discussion and agreement

Agenda Item:
9.6
1. Introduction 

This document is intended to provide some highlights on what is ongoing when doing the following test as specified in the test plan, and explain what is really tested:
1. adb shell

2. cd /data/local/tmp/
3. time -v network2sd info.txt  
4. cat info.txt | time -v decoder -o download 2> time.txt
5. (generate md5 and TOI > out.txt)

The conclusion is that it is likely that nothing meaningful is really tested, and the test plan should be slightly updated to provide a more meaningful figure.
2. Writing to a storage device
2.1 Principles of writing to a storage device

Android is using a linux kernel. While adapted to suit the constraint of a mobile device, the principles of the linux kernel still apply.
What is written below is an overly simplified description of the processes which happen when writing to a device. The actual procedures are much more complex (and more performant than this simplistic description), however the "basic picture" should be the same.

Each device has a certain amount of RAM (my Samsung Galaxy S2 seems to have 1 GB). This memory is used to store programs, data for the programs, etc. The rest of the memory is free to be used by the kernel for e.g. storing buffers (note that some of the memory used by programs can also be stored in a swap partition if unused – the Samsung device I own does not seem to have a swap partition, I believe this is not intended to be used by Android devices).

These buffers are used to hold data which has just been read from a storage device or is about to be written. The kernel is making a liberal use of the free memory. If a program needs memory (for its data, e.g. via a malloc() ) and there is not enough free memory, the kernel is going to free some unused read buffers and/or wait until some of the write buffers are written down to the storage devices, and allocate them as working memory.

When a program wants to write to a storage device (here the SD card), it calls one of the write functions of the operating system, a buffer is allocated using the free memory, and the data is written to it, then the function call returns, and the program can continue. At the point where the function call returns, the data is usually NOT written to the storage device. Then a separate process of the kernel actually writes data to the storage device at the speed supported by the storage device (a Class 10 SD card has a nominal speed of 10 MB/s). Once the data is written, the write buffers can be liberated – at least if needed for other things.

If a program wants to write to a storage device, but all buffers are full and no memory is left, then the program will stall (the write function call doesn't return) until some buffers can be freed, e.g. by writing them off to the storage device. At this point, the buffers will be freed, and the data will be written to them, and the function call will return.

What happens then in our case ?

The programs will write data to the buffers as fast as it is received/decoded. In parallel, the data will be written to the SD card at the speed the SD card can support, freeing (more) slowly use write buffers. If the program hits a limit where all buffers are used, the program will stall and wait that buffers are written to the SD card. Finally, once the program has written all its data to the buffers, it will return (the time command will measure this moment as the end time). Then the kernel will (slowly) write the remaining buffers to the SD card.

It can be questioned whether the end time measured has any significance, especially for the "bigger" use cases, where it is likely that some of the candidates have hit a limit that has not been met by the other candidates. Note that in "real life", the available memory is likely to be much lower (no performance mode, concurrent programs being used, etc), so no candidate will be spared from this "out of memory" situation.
What can be done ?
There is a function call (fsync()? – to be verified) that is meant to ensure that all buffers are written to storage before continuing. This function call could be mandatorily included in the candidates' executable before exiting. Alternatively, the "sync" command is supposed to achieve the same and only return once all write buffers are sync'ed to the storage devices. We could decide to measure the end time of this writing instead (the time command only measures the duration of a single command, so we may have to adapt the script to include both commands or add the results from both commands…).

Moreover, if e.g. in the commands above, some time is left between step 3 and step 4, it will allow to write down the remaining buffers, whereas, if executed in sequence (e.g. as part of a script), then the second command will have as many buffers/memory as it needs without any slowdown. We need to decide which strategy to adopt (although, if the "sync" is part of the test, this issue becomes moot).

2.2 Writing to the SD card
To write to a device, a number of  layers are present in the kernel. Below is a simplistic description only.
Two main components interest us here: the device driver (to access the SD card hardware) and the file system (I believe we use FAT32 in our test plan – not the most performant, but default).

When writing data to a storage device, the kernel passes data through these two layers. The file system driver decides where in the logical structure of the filesystem the data should be stored. The device driver then accesses the hardware according to the hardware specifications and writes the bits and bytes to the storage device. Note that in the case of SD card, there is additional logic to actually write in parts of the card which are still valid (a card may have some "low quality" parts, etc. invalid blocks, and all) according to its own logic. In any case, for any read/write operation, full blocks may be read/written.
The nominal speed of an SD card (at least 10 MB/s for a Class 10 SD card as a minimum non-fragmented sequential write speed) is not achieved if data is not written sequencially.

The "writing" strategy of the program can greatly reduce the actual speed of the device.

It is unknown to me if the writing strategy of the different candidates is different and whether it will "hit" their performance differently, however, it is believed that this will also affect the "real world" use case accordingly, so it is meaningful to measure this.
3. Proposal

It is proposed to take the above in consideration, and after discussion, amend the test plan accordingly.
As a side issue, the two following points may be obvious, but just in case:

· It is advised that candidates make their test on several SD cards, as the performance of each individual card (even if the same brand/model) may vary slightly (or not so slightly in some cases).

· It is advised that when testing the different candidates, the same conditions are used, i.e; the device is left to cool down, and restarted to empty buffers and all, before changing candidates (this could be done also between each test).
1

