3GPP TSG-SA4#70 meeting
Tdoc S4-121078
13th – 17th Aug, 2012, Chicago, USA

Source:
Fraunhofer IIS
Title:
Randomization Tool for EVS
Document for:
Discussion and Approval
Agenda Item:
8
Introduction

The source hereby proposes a simple randomization tool for tasks that require random selection of a subset of items from a larger pool. The input is a random seed and the pool of items. Other command line parameters are provided, to also accomplish other tasks for EVS that rely on random numbers. The RNG is based on the ITU-T EID_random function, available as part of STL2009 [1], which was only slightly modified to work on 64-bit Mac OSX (as there a “long” is 64 bits wide, whereas an “int” is, luckily, 32 bits on OSX and Win32).
Random number generation

The RNG is a linear congruential sequence generator, as described in [2] and [3]. It should be noted that this RNG is only a pseudorandom number generator [4]. The deterministic behavior is an advantage, as it allows identical behavior, no matter where the tool is run. It is however also a disadvantage, as deterministic behavior conflicts with real randomness. The seed inserted therefore needs to be still random to overcome the weakness of pseudorandom number generators, while allowing reproducible results.
Command Line
The tool outputs the following text to the command line, if operated without any parameters:
usage: random [OPTIONS] [ITEM_LIST]

 OPTIONS:

 -s SEED any number in between 0 and 4294967295 as a seed
 for the RNG, default: 3141592653

 -d PRERUNS number of dummy pre-runs to alter the seed, default: 0

 -r START STOP range mode, values define lowest and highest allowed value,
 not set by default

 -n NUM_ITEMS select the number of items from the provided item list,
 default: 1
It is possible to select with this tool a subset of unique items from a larger pool of items, e.g. with a command similar to the following example, to select two items from the list A B C D E F:

random -n 2 -s 1234567890 A B C D E F
This selects items D and F from the list, if the seed is 1234567890.

In addition, it is possible to further randomize the selection, with just a single seed, if another parameter as additional input is given, that recalculates the seed a number of times to bring additional randomness. This parameter could then e.g. be fixed for a single command line, but different across different uses of the tool. The seed can then still be common to all calls of the tool.

random -n 2 -s 1234567890 –d 10 A B C D E F

This selects items B and E from the list, as the random number is recalculated ten times before the selection of items from the pool is made.
For the cases where we need simply a random number, the range command is more appropriate than providing all possible numbers, as outlined in the following example:

random -s 1234567890 –r 0 10000
This selects value 5550 from the range. This can also be combined with the dummy runs and to select multiple values from the range, that are not unique, to have different random numbers with a single seed.
Verification

The source did not run an extensive verification, except as provided in this section. One reason for this was that the STL implementation was considered exhaustively tested; the additional mechanics seemed to be not adding too much complexity.
Furthermore, it was observed that the initial seed does not change much, if it is low, due to the multiplicative behavior of the RNG and the low value for the multiplier. An example on the sh shell is given below, with the command and the output, if only the seed is changed, starting from zero:

for i in {0..80000}; do random -s $i A B C D E; done | sort | uniq -c

24874 A

17817 B

12437 C

12436 D

12437 E

To analyze the issue, the following commands were issued to narrow down the issue:

for i in {0..12436}; do random -s $i A B C D E; done | sort | uniq -c

12437 A

for i in {0..12437}; do random -s $i A B C D E; done | sort | uniq -c

12437 A

 1 B

This would therefore favour the first item in a list, and would make the seed directly decisive, instead of a random number generator doing so. The reason is that the initial seed is not changed enough by the first iteration of the seed calculation. Since MAX_UINT over the multiplier in the random number generator times the number of items in the pool, i.e. 4294967295/(69069*5)~=12436 is the limit, we should be careful here, and a seed below 12437 would therefore always select the first item initially if, as in this case five items are in the pool.
The source then used instead the dummy pre-runs with the command like as writing in the following to check the distribution of selected values, if pre-runs are used:

for i in {0..100}; do random -d $i -s 0 A B C D E; done | sort | uniq -c

 27 A

 21 B

 16 C

 10 D

 27 E

Then the distribution is no more depending on the initial value. It is therefore proposed to use some dummy pre-runs, e.g. a two-digit or three-digit number, if possible, to not put any constraints on the seed selection entity selecting an appropriate number of the right length. The number of pre-runs could be easily fixed, e.g. by throwing dice to find good values, as this additional RNG would be there just to create differences. This would then allow using the same seed, i.e. a master seed, for a multitude of purposes where randomization is needed.

Applications

Some tasks in the EVS qualification experience rely on random selection, to ensure fairness of the process. The following tasks are immediately on the mind of the source:
· noise files out of the pool

· noise file offset

· music item selection from the pools

· JBM random offsets for the error profiles
In the following, concrete proposals are made for the different applications. Note that the value of ARBITRARY_NUMBER would be unique for each single application of the tool.
Noise file selection

A fixed command line with all accepted noise files of one noise type is to be added to the processing plan. The file names of the accepted noise files are spelled out in lexicographical order, e.g. as car_A.raw car_B.raw car_C.raw. The value for the pre-runs is arbitrary, but different for all applications of the master seed. The master seed is provided by ETSI after submission of the executables.

random -n 1 -s MASTER_SEED –d ARBITRARY_NUMBER car_A.raw car_B.raw car_C.raw
This selects one item from the pool. The same example can be re-used, with different number of pre-runs for each of the noise types.
Noise file offset
For each of the noise types, a random offset is needed. As the length of the available noise files is 5 minutes, the maximum offset should be 14400000 samples (5 minutes) – 11232000 samples (the length of the concatenated speech file, i.e. 232s) – 1.
random -n 1 -s MASTER_SEED –d ARBITRARY_NUMBER –r 0 3167999
The same example can be re-used, with different number of pre-runs for each of the noise types.

Music items selection

A fixed command line with all music items in the pool for each of the proponents is to be added to the processing plan. The file names of the items in the pool are provided in lexicographical order and spelled out, if available before finalization of the processing plan. The value for the pre-runs is arbitrary, but different for all applications of the master seed. The master seed is provided by ETSI after submission of the executables.

random -n 36 -s MASTER_SEED –d ARBITRARY_NUMBER SORTED_POOL_FOR_PROPONENT
This selects 36 items from the pool, the first 12 are used for NB, the next 12 for WB, the last 12 for SWB experiments. This command needs to be run with different numbers of pre-runs and potentially with a different pool for each of the PCs.
Delay and error profile offset

For each of the JBM profiles, a random offset is needed. As the JBM profiles can be looped, the range should be the entire profile, i.e. 7500 entries. The master seed is provided by ETSI after submission of the executables.
random -n 1 -s MASTER_SEED –d ARBITRARY_NUMBER –r 0 7499
The same example can be re-used, with different number of pre-runs for each of the JBM profiles.

Summary

The source proposes the tool in order to allow randomization for EVS. Pre-runs can and should be used in addition; the numbers for the pre-runs can be fixed and known, if e.g. derived from throwing dice
.

These command lines can then be added to the processing plan, including the value for the number of pre-runs; in the end only a master seed is needed to randomly select what is needed for the EVS qualification.

It is the intention of the source to provide this tool for all cases where random assignments are needed, except the presentation sequences of stimuli in subjective experiments, as those are already in preparation by the host lab and also a too complex use-case for the proposed tool.

References:

[1]
ITU-T T.Rec. G.191 (03/2010) Recommendation ITU-T G.191. Software tools for speech and audio coding standardization
[2]
Knuth, D.E. 1981: "Seminumerical Algorithms" vol.2 of The Art of Computer Programming; Reading, Mass.; Addison-Wesley.

[3]
http://en.wikipedia.org/wiki/Linear_congruential_generator
[4]
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
Appendix A – random.c:
The source code below can be easily compiled with the MinGW compiler suite, as attached in binary form, e.g. by issuing gcc –o random.exe random.c
/*---*
 * Randomization tool, V1.1 *
 * -- *
 * (C) 2012 Fraunhofer IIS. All rights reserved. Provided by Fraunhofer IIS *
 * for exclusive use of selecting items randomly out of a list or a range. *
 * *
 * The LCS generator is copied from ITU-T G.191, file STL/eid.c. *
 * *
 * Fraunhofer IIS makes no representation nor warranty in regard to *
 * the accuracy, completeness or sufficiency of The Software, nor *
 * shall Fraunhofer IIS be held liable for any damages whatsoever *
 * relating to use of said Software. *
 ---/
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <math.h>
#define MAX_ITEMS 1000
#define VERBOSE 0
#define DEFAULT_SEED 3141592653U
typedef enum {
 SUBSET = 0,
 FROM_RANGE = 1
} MODE;
/*
==
 double EID_random (unsigned long *seed); inherited from STL/eid.c,
       ~~~~~~~~~~~~~~~~~
       Description:
       ~~~~~~~~~~~~
 Returns a new random number, generated a linear congruential
 sequence (LCS) generator. See: Knuth, D.E. 1981: "Seminumerical
 Algorithms" vol.2 of The Art of Computer Programming; Reading,
 Mass.; Addison-Wesley.
 Parameters:
       ~~~~~~~~~~~
       seed: ... long seed.
       Return value:
       ~~~~~~~~~~~~~
 Returns a random number as double in the range 0..1.
 Author: <hf@pkinbg.uucp>
       ~~~~~~~
       History:
       ~~~~~~~~
 28.Feb.92 v1.0 Release of 1st version <hf@pkinbg.uucp>
 20.Apr.92 v2.0 Change of polinomial generator to LCG
 <hf@pkinbg.uucp>
 26.Jan.98 v3.0 Corrected bug for 64-bit operating systems (where
 longs have 64, not 32 bits). Implemented by
 <simao.campos@comsat.com>, after bug reported
 by <claude.lamblin@cnet.francetelecom.fr>
 12.Aug.12 v4.0 Changed unsigned long to unsigned int to have identical
 behavior on at least Windows, Linux, OSX
== */
static double EID_random(seed)
unsigned int *seed;
{
 /* Size in bits (=size in bytes * 8) for int variables*/
 static double bits_in_int = sizeof(unsigned int) * 8;
 /* Update RNG */
 *seed = ((unsigned int)69069L * (*seed) +1L);
 /* Return random number as a double */
#ifdef WAS
 return(pow((double)2.0, (double)-32.0) * (double)(*seed));
#else
 return(pow((double)2.0, -bits_in_int) * (double)(*seed));
#endif
}
static void usage()
{
 fprintf(stdout,"usage: random [OPTIONS] [ITEM_LIST]\n");
 fprintf(stdout," OPTIONS:\n");
 fprintf(stdout," -s SEED any number in between 0 and %u: as a seed for the RNG, default: %u\n", UINT_MAX, DEFAULT_SEED);
 fprintf(stdout," -d PRERUNS number of dummy pre-runs to alter the seed, default: 0\n");
 fprintf(stdout," -r START STOP range mode, values define lowest and highest allowed value, not set by default\n");
 fprintf(stdout," -n NUM_ITEMS select more than one item from the provided item list, default: 1\n");
 exit(-1);
}
int main(int argc, char** argv)
{
 unsigned int seed = DEFAULT_SEED;
 MODE mode = SUBSET;
 unsigned int num_items = 1;
 unsigned int num_dummyruns = 0;
 unsigned int items_in_list = 0;
 unsigned int selected_item = 0;
 unsigned int verbose = 0;
 unsigned int i = 0, j = 0;
 unsigned int range_start = 0, range_stop = 1;
 double rand_f = 0.0f;
 char * item_list [MAX_ITEMS] = {0};
 for(i=1; i<argc; ++i) {
 /* help */
 if(!strcmp(argv[i],"-h")) {
 usage();
 }
 /* verbose output */
 if(!strcmp(argv[i],"-v")) {
 verbose = 1;
 }
 /* seed */
 if(!strcmp(argv[i],"-s")) {
 if(++i >= argc) usage();
 seed = atoi(argv[i]);
 continue;
 }
 /* num items to select */
 if(!strcmp(argv[i],"-n")) {
 if(++i >= argc) usage();
 num_items = atoi(argv[i]);
 continue;
 }
 /* num dummy runs before the item selection is started - similar to different seed */
 if(!strcmp(argv[i],"-d")) {
 if(++i >= argc) usage();
 num_dummyruns = atoi(argv[i]);
 continue;
 }
 /* select item within given range instead of a subset */
 if(!strcmp(argv[i],"-r")) {
 mode = FROM_RANGE;
 if(++i >= argc) usage();
 range_start = atoi(argv[i]);
 if(++i >= argc) usage();
 range_stop = atoi(argv[i]);
 continue;
 }
 break;
 }
 if(mode == SUBSET) {
 /* list items are the last */
 if(i == (argc)) usage();
 items_in_list = argc - i;
 if(items_in_list > MAX_ITEMS)
 {
 fprintf(stderr, "only up to %u items are supported by this tool\n", MAX_ITEMS);
 exit(-2);
 }
 }
 for(i=0; i<num_dummyruns; i++) {
 EID_random(&seed);
 }
 if(mode == FROM_RANGE)
 {
 for(j=0; j<num_items; j++) {
 rand_f = ((range_stop - range_start + 1)*EID_random(&seed));
 printf("%i ", range_start + (int)rand_f);
 }
 printf("\n");
 }
 else if(mode == SUBSET)
 {
 if(num_items > items_in_list)
 {
 fprintf(stderr, "requested %u items, but only %u in list\n", num_items, items_in_list);
 exit (-1);
 }
 for(i=0; i<items_in_list; i++) {
 item_list[i] = argv[argc - items_in_list + i];
 }
 for(j=0; j<num_items; j++) {
 rand_f = ((items_in_list)*EID_random(&seed));
 selected_item = (int)rand_f;
 printf("%s ",item_list[selected_item]);
 if(verbose)
 printf("\t", item_list[i]);
 for(i=0; i<items_in_list;i++) {
 if(i<selected_item) {
 if(verbose)
 printf(" %s", item_list[i]);
 }
 else if(i==selected_item) {
 if(verbose)
 printf(" -");
 if(i<items_in_list-1) {
 item_list[i] = item_list[i+1];
 if(verbose)
 printf(" %s", item_list[i]);
 }
 }
 else if(i>selected_item && i<items_in_list-1) {
 item_list[i] = item_list[i+1];
 if(verbose)
 printf(" %s", item_list[i]);
 }
 }
 if(verbose)
 printf("\n");
 items_in_list--;
 }
 if(!verbose)
 printf("\n");
 }
 return 0;
}
� The source went to Graham Crackers Comic Books, just next block here in Chicago, to get hold of some dice, with several numbers of sides. Those should do the job of finding pre-run values. Everybody in SA4 is invited to perform the lucky throws – then we only need the master seed in addition, and we’re good.

Page: 5/7

