Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4#69
S4-120717
21 - 25 May, 2012
update to S4-120614

Erlangen, Germany
Agenda item:
7, 13.3.1
Source:
Qualcomm Incorporated
Title:
Proposed MBMS FEC Code: Proposed MBMS FEC Code based on IETF RFC6330
Document for
Proposal for a Candidate for EMM-EFEC Work Item
1 Summary
<provide a summary>
The FEC code specified in IETF RFC 6330, titled “RaptorQ Forward Error Correction for Object Delivery”, hereafter called the 6330 code, is proposed as the FEC code for MBMS. The proposal relies on existing and well-defined IETF technology. In particular, the 6330 code is specified in IETF RFC 6330 for object delivery and has assigned FEC Encoding ID 6. For streaming delivery, the FEC scheme with temporary ID XXX2 available in draft-ietf-fecframe-raptor-11 is proposed which itself refers to the 6330 code.
For reference IETF RFC 6330 and IETF draft-ietf-fecframe-raptor-11 are attached to this submission.
The 6330 code is fully specified in IETF RFC6330, section 5.
For reference, the current code specified in MBMS, which is the same as the FEC code specified in IETF RFC 5053, titled "Raptor Forward Error Correction for Object Delivery", is hereafter referred to as the 5053 code.

This document is an update to S4-120614 to complete the submission with the code performance results and to address latest information on the standardization status. Some typos are fixed. The updates are provided with markups.
2 FEC encoder
<A full description of the normative FEC encoder specification in the level of detail as Annex B of TS26.346>
2.1 General
2.1.1 Introduction

This section defines the systematic 6330 code. The terminology below is applicable to both FEC encoding and the FEC decoding. An overview of FEC encoding is provided in section 2.2 of this document, for detailed specification refer to IETF RFC6330, section 5.3. An overview of FEC decoding is provided in section 3 of this document.
The monograph written by Amin Shokrollahi and Michael Luby (2011), “Raptor Codes”, Foundations and Trends in Communications and Information Theory, Vol. 6: No 3-4, pp 213-322 (referred to as “Raptor codes monograph” below), provides a detailed description of the design, analysis and implementation strategies for the 6330 code.
2.1.2 Definitions

The relevant definitions that document the interfaces to the 6330 code encoding and decoding are provided
· Source block: a block of K source symbols that are considered together for encoding and decoding purposes.

· Symbol: a unit of data. The size, in octets, of a symbol is known as the symbol size T. The symbol size is always a positive integer.

· Source symbol: the smallest unit of data used during the encoding process. All source symbols within a source block have the same size T.

· Encoding symbol: a symbol that can be sent as part of the encoding of a source block. The encoding symbols of a source block consist of the source symbols of the source block and the repair symbols generated from the source block. Repair symbols generated from a source block have the same size T as the source symbols of that source block.

· Repair symbol: the encoding symbols of a source block that are not source symbols. The repair symbols are generated based on the source symbols of a source block.

· Encoding Symbol ID (ESI): information that uniquely identifies each encoding symbol associated with a source block for sending and receiving purposes.
2.1.3 Overview

Symbols are the fundamental data units of the encoding and decoding process. For each source block, all symbols are the same size, referred to as the symbol size T. The atomic operations performed on symbols for both encoding and decoding are the arithmetic operations defined in Section 5.7 of RFC6330.

The basic encoder is described in Section 2.2. The encoder first derives a block of intermediate symbols from the source symbols of a source block. The encoder produces repair symbols from the intermediate block using an efficient process, where each such repair symbol is the exclusive-or of a small number of intermediate symbols from the block. At the decoder source symbols can also be reproduced from the intermediate block using the same process.
An example of a decoder is described in Section 3, for a detailed description refer to Section 5.4 of RFC 6330. The process for producing source and repair symbols from the intermediate block is designed so that the intermediate block can be recovered from any sufficiently large set of encoding symbols, independent of the mix of source and repair symbols in the set. Once the intermediate block is recovered, missing source symbols of the source block can be recovered using the encoding process in the decoder. Requirements for a 6330 code-compliant decoder are provided in Section 3 and in more details in Section 5.8 of IETF RFC6330. A number of decoding algorithms are possible to achieve these requirements. An efficient decoding algorithm to achieve these requirements is provided in Section 5.4 of IETF RFC6330.

The construction of the intermediate and repair symbols is based in part on a pseudo-random number generator. This generator is based on a fixed set of 1024 random numbers that must be available to both sender and receiver. These numbers are provided in Section 5.5 of IETF RFC6330. Encoding and decoding operations for the 6330 code use operations on octets. Section 5.7 of IETF RFC6330 describes how to perform these operations.

The construction of the intermediate symbols from the source symbols is governed by "systematic indices", values of which are provided in Section 5.6 of IETF RFC6330 for specific source block sizes between 6 and K'max = 56403 source symbols. Thus, the 6330 code supports source blocks with between K=1 and K=56403 source symbols.
Figure 1 summarizes the encoder and decoder operations to generate encoding symbols from source symbols and to generate source symbols from a set of received encoding symbols.

For purposes of transmitting and receiving data, the value of K is used to determine the number of source symbols in a source block, and thus K needs to be known at the sender and the receiver. The encoding symbol ID (ESI) is used by a sender and receiver to identify the encoding symbols of a source block, where the encoding symbols of a source block consist of the source symbols and the repair symbols associated with the source block. For a source block with K source symbols, the ESIs for the source symbols are 0, 1, 2, ..., K-1, and the ESIs for the repair symbols are K, K+1, K+2, Using the ESI for identifying encoding symbols in transport ensures that the ESI values continue consecutively between the source and repair symbols.
[image: image1.png]source
symbols

Intermediate Encoding
Symbol Symbol
Generation - Generation

Systematic Tuple
Indices Generator

Sj0quiAs BuIposua

Encoding (Source) Decoding to
Symbol le———— intermediate

Generation Symbols

Decoder

Figure 1 6330 code encoder and decoder principles
2.2 FEC Encoding
The systematic 6330 code encoder is used to generate any number of repair symbols from a source block that consists of K source symbols placed into an extended source block C'. Figure 2 shows the encoding overview.
The first step of encoding is to construct an extended source block by adding zero or more padding symbols such that the total number of symbols, K', is one of the values listed in IETF RFC6330, Section 5.6. Each padding symbol consists of T octets where the value of each octet is zero. K' MUST be selected as the smallest value of K' from the table of Section 5.6 in IETF RFC6330 that is greater than or equal to K. Therefore, both the sender and receiver can compute K' from K and the K'-K padding symbols can be automatically added to the source block without any additional communication.
 ---+

 | |

 | +-----------+ +--------------+ +-------------+ |

 C' | | | C' | Intermediate | C | | |

 ----+--->| Padding |--->| Symbol |--->| Encoding |--+-->

 K | | | K' | Generation | L | | |

 | +-----------+ +--------------+ +-------------+ |

 | | (d,a,b, ^ |

 | | d1,a1,b1)| |

 | | +------------+ |

 | | K' | Tuple | |

 | +----------------------------->| | |

 | | Generation | |

 | +------------+ |

 | ^ |

 +---+--------+

 |

 ESI X

 Figure 2: Encoding Overview

Let C'[0], ..., C'[K-1] denote the K source symbols.
Let C'[K], ..., C'[K'-1] denote the K'-K padding symbols, which are all set to zero bits. Then, C'[0], ..., C'[K'-1] are the symbols of the extended source block upon which encoding and decoding are performed.
In the encoding and decoding description, these padding symbols are considered as additional source symbols and referred to as such. However, these padding symbols are not part of the encoding symbols, i.e., they are not sent as part of the encoding. At a receiver, the value of K' can be computed based on K, then the receiver can insert K'-K padding symbols at the end of a source block of K' source symbols and recover the remaining K source symbols of the source block from received encoding symbols.

The second step of encoding is to generate a number, L > K', of intermediate symbols from the K' source symbols. In this step, K' source tuples (d[0], a[0], b[0], d1[0], a1[0], b1[0]), ..., (d[K'-1], a[K'-1], b[K'-1], d1[K'-1], a1[K'-1], b1[K'-1]) are generated using the Tuple[] generator as described in Section 5.3.5.4 of IETF RFC6330. The K' source tuples and the Intermediate Source Symbols (ISIs) associated with the K' source symbols are used to determine L intermediate symbols C[0], ..., C[L-1] from the source symbols using an inverse encoding process. This process can be realized by a 6330 code decoding process.
Certain "pre-coding relationships" must hold within the L intermediate symbols. Section 5.3.3.3 of IETF RFC6330 describes these relationships. Section 5.3.3.4 of IETF RFC6330 describes how the intermediate symbols are generated from the source symbols.

Once the intermediate symbols have been generated, repair symbols can be produced. For a repair symbol with ESI X >= K, the tuple of non-negative integers (d, a, b, d1, a1, b1) can be generated, using the Tuple[] generator as described in Section 5.3.5.4 IETF RFC6330. Then, the (d, a, b, d1, a1, b1) tuple and the ESI X are used to generate the corresponding repair symbol from the intermediate symbols using the Enc[] generator described in Section 5.3.5.3 of IETF RFC6330.
3 FEC decoder
<A description of a possible FEC decoder implementation that fulfils the performance figures as provided in the submission.>
3.1 Introduction

This section describes an efficient decoding algorithm for the 6330 code. Note that each received encoding symbol is a known linear combination of the intermediate symbols. So, each received encoding symbol provides a linear equation among the intermediate symbols, which, together with the known linear pre-coding relationships amongst the intermediate symbols, gives a system of linear equations. Thus, any algorithm for solving systems of linear equations can successfully decode the intermediate symbols and hence the source symbols. However, the algorithm chosen has a major effect on the computational efficiency of the decoding.

Section 3.2 provides an overview on how to decode a source block based on the availability of encoding symbols with known ESIs and the source block size K.
Section 3.3 provides requirements for a compliant 6330 code decoder to ensure most bandwidth-efficient decoding with minimum reception overhead. The algorithm described in Section 3.2 describes a compliant decoder. Results presented in this document are generated with the compliant decoder according to Section 3.2.

3.2 Decoding a Source Block

The decoder is provided the structure of the source block it is to decode, including the symbol size, T and the number K of symbols in the source block.

Based on the number K, the decoder can generate the number K' of source symbols in the extended source block and can also generate the padding symbols in the K'-K padding symbols in the receiver and add to the received symbols.
From the algorithms described in Section 5.3 of IETF RFC6330, the 6330 code decoder can calculate the total number L of intermediate symbols and determine how they were generated from the extended source block to be decoded. In this description, the received encoding symbols for the extended source block to be decoded are passed to the decoder. Furthermore, for each such encoding symbol, the number and set of intermediate symbols whose sum is equal to the encoding symbol are passed to the decoder. In the case of source symbols, including padding symbols, the source symbol tuples described in Section 5.3.3.2 of IETF RFC6330 indicate the number and set of intermediate symbols that sum to give each source symbol.
Let N >= K' be the number of received encoding symbols to be used for decoding, including padding symbols for an extended source block, and let M = S+H+N, where S is the number of LDPC symbols and H is the number of HDPC symbols (see for example in Section 5.3.3.3 of IETF RFC6330). Then, with the notation of Section 5.3.3.4.2 in IETF RFC6330 that the linear system of equations A*C = D can be formed, where C is the vector of L symbols in the intermediate block to be determined, D is the vector of M known Low Density Parity Check (LDPC) symbols, High Density Parity Check (HDPC) symbols, and received encoding symbols including padding symbols for the extended source block, that are all known, and A is a M x L matrix describing the relationships between C and D that is known.

As the encoding symbols are generated as D=A*C, decoding an extended source block is equivalent to decoding C from known A and D. It is clear that C can be decoded if and only if the rank of A is L. Once C has been decoded, missing source symbols can be obtained by using the source symbol tuples to determine the number and set of intermediate symbols that must be summed to obtain each missing source symbol.

The first step in decoding C is to form a decoding schedule. In this step, A is converted using Gaussian elimination (using row operations and row and column reorderings) and after discarding M - L rows, into the L x L identity matrix. The decoding schedule consists of the sequence of row operations and row and column reorderings during the Gaussian elimination process, and it only depends on A and not on D.
The decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.
The correspondence between the decoding schedule and the decoding of C is as follows. Let c[0] = 0, c[1] = 1, ..., c[L-1] = L-1 and d[0] = 0, d[1] = 1, ..., d[M-1] = M-1 initially.

· Each time a multiple, beta, of row i of A is added to row i' in the decoding schedule, then in the decoding process the symbol beta*D[d[i]] is added to symbol D[d[i']].
· Each time a row i of A is multiplied by an octet beta, then in the decoding process the symbol D[d[i]] is also multiplied by beta.
· Each time row i is exchanged with row i' in the decoding schedule, then in the decoding process the value of d[i] is exchanged with the value of d[i'].
· Each time column j is exchanged with column j' in the decoding schedule, then in the decoding process the value of c[j] is exchanged with the value of c[j'].

From this correspondence, it is clear that the total number of operations on symbols in the decoding of the extended source block is the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L x L identity matrix after the Gaussian elimination and after discarding the last M - L rows, it is clear at the end of successful decoding that the L symbols D[d[0]], D[d[1]], ..., D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]], ..., C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no impact on whether or not the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian elimination is performed. Furthermore, maintaining a sparse representation of A is crucial.
Section 5.4.2 of IETF RFC6330 describes an order in which Gaussian elimination could be performed that is relatively efficient.

3.3 Requirements for a Compliant Decoder
The following requirements on a 6330 code-compliant decoder are from Section 5.8 of IETF RFC6330. If a 6330 code-compliant decoder receives a mathematically sufficient set of encoding symbols generated according to the encoder specification in Section 5.3 of IETF RFC6330 for reconstruction of a source block, then such a decoder is expected to recover the entire source block.

A 6330 code-compliant decoder SHALL have the following recovery properties for source blocks with K' source symbols for all values of K' in Table 2 of Section 5.6 in IETF RFC6330.
1. If the decoder receives K' encoding symbols generated according to the encoder specification in Section 5.3 of RFC6330 with corresponding ESIs chosen independently and uniformly at random from the range of possible ESIs, then on average the decoder will fail to recover the entire source block at most 1 out of 100 times.
2. If the decoder receives K'+1 encoding symbols generated according to the encoder specification in Section 5.3 of RFC6330 with corresponding ESIs chosen independently and uniformly at random from the range of possible ESIs, then on average the decoder will fail to recover the entire source block at most 1 out of 10,000 times.
3. If the decoder receives K'+2 encoding symbols generated according to the encoder specification in Section 5.3 of RFC6330 with corresponding ESIs chosen independently and uniformly at random from the range of possible ESIs, then on average the decoder will fail to recover the entire source block at most 1 out of 1,000,000 times.

· Note that the Example FEC Decoder as introduced in Section 3.2 above and fully specified in Section 5.4 of IETF RFC6330 fulfils both requirements, i.e., The Example FEC Decoder in Section 3.2 can reconstruct a source block as long as it receives a mathematically sufficient set of encoding symbols generated according to the encoder specification in Section 5.3 of IETF RFC6330, and
· The Example FEC Decoder in Section 3.2 fulfils the mandatory recovery properties from above. Note that the Raptor codes monograph provides a detailed description of the 6330 code and provides extensive simulations that verify that the 6330 code inherently provide these mandatory recovery properties.
4 Standardization Status
<The reference to a standard. If it is not a standard, other information shall be provided why the code is not yet standardized, what are the plans for standardization and when the completion of the standard is expected.>
The 6330 code is fully specified in IETF RFC6330 and is a "Proposed Standard" since August 2011. Independent implementations of the 6330 code as well as successfully interoperability have been announced on the IETF Reliable Multicast Transport (RMT) list.

IETF RFC6330 defines a Fully-Specified Forward Error Correction (FEC) scheme for object delivery and its application to reliable delivery of data objects in the context of FLUTE (IETF RFC3926).
Specifically,

· Section 3.2 of IETF RFC6330 defines the FEC Payload ID,
· Section 3.3 of IETF RFC6330 defines the FEC Object Transmission Information

· Section 4.4 provides the details how the FEC code is used for object delivery.
Furthermore, IETF draft-ietf-fecframe-raptor-11 describes Fully-Specified Forward Error Correction (FEC) Schemes for the 6330 code and their application to reliable delivery of media streams in the context of FEC Framework. Specifically, the scheme defined in Section 6 of IETF draft-ietf-fecframe-raptor-11for arbitrary packet flows is proposed and suitable for the application in MBMS streaming delivery. The scheme defines among others:
· The FEC scheme ID XXX2 (this is temporary and will be changed by the RFC editor to the appropriate value)

· The FEC Scheme Specific Information as defined in Section 6.2.1 of IETF draft-ietf-fecframe-raptor-11
· The Source FEC Payload ID as defined in Section 6.2.2 of IETF draft-ietf-fecframe-raptor-11
· The Repair FEC Payload ID as defined in Section 6.2.3 of IETF draft-ietf-fecframe-raptor-11
· The procedures to generate source symbols, repair packets and the FEC code specification in Section 6.3 of IETF draft-ietf-fecframe-raptor-11.
IETF draft-ietf-fecframe-raptor-11 is approved for publication as a Proposed Standard RFC; . The document has been added to the RFC-Editor queue and the status can be checked at <http://www.rfc-editor.org/queue2.html#draft-ietf-fecframe-raptor>. The current status is EDIT*A, i.e. " Awaiting editing or being edited" with IANA actions to be completed. The document is expected to be published within a few weeks as a Proposed Standard RFC.
5 Impact on TS26.346
<An overview on the potential impact on TS26.346 to integrate the new code including draft CRs to TS26.346. Draft CRs should be attached to the submission.>
It is proposed to update the specifications as follows:

· For including the 6330 code into TS26.346 download delivery services, reference to IETF RFC6330 is made and the FEC Encoding ID =6 is added.
· For including the 6330 code into TS26.346 streaming delivery services
· Refer to IETF FECFRAME documents in TS26.346 instead of defining the FEC framework independently -> see proposed CR26.346-0248rev1 available in S4-120616.
· refer to FEC Encoding ID = XXX2.
The differences are provided in the attached draft CR in way such that the 6330 code replaces the existing MBMS FEC code. The CR is based on in S4-120616 CR26.346-0248rev1 that incorporates IETF FECFRAME in TS26.346.
The 6330 code specified in IETF RFC6330 uses exactly the same FEC OTI parameters with exactly the same meaning as the currently specified 5053 code in MBMS. Furthermore, the FEC Payload ID for IETF RFC6330 has exactly the same parameters with exactly the same meaning as the currently specified 5053 code in MBMS. Both the currently specified 5053 code in MBMS and the 6330 code specified in IETF RFC6330 were specifically designed to fit into the FLUTE download services and streaming services, and both fit into these services in exactly the same way.

The primary differences between the 6330 code and the current 5053 code that is integrated into MBMS is that:

· The 6330 code has superior recovery properties compared to the 5053 code in MBMS, and because of this,

· There is an optimized algorithm for deriving the FEC OTI parameters for the 6330 code that provides more efficient FEC OTI parameter settings.

· There is no need to carry multiple symbols in a packet to improve recovery properties when using the 6330 code compared to the 5053 code in MBMS, allowing more flexibility in terms of choosing packet sizes and reduces CPU complexity for the same size source block.

These differences are all transparent to the TS.346 specification. Conceptually, the main difference would be to refer to IETF RFC6330 instead of to IETF RFC5053. There would be some changes to use case descriptions and guidelines that would be helpful to take advantage of the improved properties of the 6330 code, and there would be some additional flexibility to support future use cases using the 6330 code that are more difficult to support with the 5053 code that is integrated into MBMS.
6 Test Vectors
<The commitment and plans to provide test vectors for the TR on Application Layer FEC.>
6.1 Introduction
Qualcomm is committed to provide suitable test vectors for selected test cases according to the format proposed in this document as part of the Technical Report that is generated in the course of the EMM-EFEC work item.
6.2 Proposed Test Vector Formats

Input source block data can be any file with at least K*T bytes in it when input parameters are K source symbols and symbol size T bytes. We recommend using ASCII text input file since it’s easier to verify visually if a file has been successfully and correctly decoded. As a reference input source data, the file http://introcs.cs.princeton.edu/java/data/dickens.txt will be used. An offset into this file with parameters K and T define uniquely and completely a source block.

A 6330-encoded file has the following format: a file header which is this C structure:

struct EncodedFileHeader {

uint32 MagicAndVersion; /* Magic number + app version */test */

uint32 K; /* Number of source symbols */

uint32 T; /* Symbol size in bytes */

uint32 TotalSymbols; /* Total number of symbols in file */

}

stored in network byte order on disk. This header is followed by a sequence of TotalSymbols of 4-byte Encoding Symbol ID (ESI) followed by T bytes of the symbol data. Total file size of a 6330-encoded file is sizeof(EncodedFileHeader) + TotalSymbols*(sizeof(ESI) + T) = 16 + TotalSymbols*(4 + T).

6.3 Provided Test Vectors
It is proposed to provide at least the test vectors 1-5 for code performance evaluation.
Table 1 Proposed Test vectors for TR
	Number
	1
	2
	3
	4
	5
	6
	7

	K
	32
	128
	256
	1024
	8192
	26052
	56403

	N
	128
	180
	1024
	3072
	30000
	35000
	80000

	T
	256
	64
	32
	256
	32
	32
	32

6.4 Sample Vectors
Attached to this document are sample test vectors 1-5 with zero offset using the file http://introcs.cs.princeton.edu/java/data/dickens.txt.
7 FEC Code Performance for Test Cases
7.1 FEC Code Performance
<The FEC code performance and implementation-specific metrics as documented in the SA4-agreed permanent document for this work item from SA4#68 in document S4-120496.>
<use the attached excel spread for the submission>
All performance results are included in the attached excel sheet.

The code parameters for the 6330 code for download and LTE streaming delivery are derived based on the Example Parameter Derivation Algorithm in section 4.3 of IETF RFC 6330 with WS = 1 MByte.
The code parameters for the 6330 code for streaming delivery are chosen as symbol size T=16. As the symbol size is fixed, a small T enables to minimize the waste due to variable size RTP packets used to build the source block.
Along with the performance of the 6330 code also the performance of ideal code is provided for comparison reasons.

In summary, the following is observed:

· For LTE-Streaming, the 6330 code performs as well as the ideal code for all but 2 of the 48 test cases. Indeed, it is only one test case, as the simulation statistics for the two cases are identical. The total number of block errors for ideal code is 24 over the simulated 24 hours period while 6330 code with the same parameters yields 25 errors. For LS23 and LS24, one more of the available 400 packets need to be dedicated to repair to achieve the MBTF criteria for a total of 22 errors. In summary, the differences between the 6330 code and the ideal code can be ignored for any practical manners.
· For LTE-Download the following is observed:

· For all files of size up to 3 MByte the performance is essentially as good as for the ideal code except for few exceptions where one addition transmission overhead packet is needed. As one example, LD2 was checked in more detail. For the ideal code 98 of 10000 users fail to decode with the sufficient transmission overhead for ideal of 1.97%, whereas for the 6330 code 100 of 10000 users fail to decode at this transmission overhead and therefore one extra overhead symbol needs to be considered resulting in transmission overhead of 2.09%.

· For larger file sizes of 128MByte and 1.8 GByte, the necessary separation of the file into multiple source blocks does cause some small divergence from the ideal code (which always encodes a file as a single source block, i.e., does not take into account memory constraints at the receiver). However, the differences are quite small and consistently within at most 1.1% additional overhead even for very large files and very high loss rates. Note that if the ideal code were applied to the same source block structure as the 6330 code, i.e, if the ideal code also took into account realistic memory constraints and source block restrictions, then the difference in overhead results between the ideal code and the 6330 code would match those above for smaller files, i.e., the 6330 code would be essentially as good as the ideal code.
· For UTRAN-based streaming the 6330 code always performs identical to the ideal code under the given simulation conditions.

· For UTRAN-based download delivery the 6330 code always performs identical to the ideal code under the given simulation conditions except for one case, for which one additional symbol is necessary to achieve the performance criteria.
· For code performance the results for the two methods are provided. To come to meaningful numbers 1e108 and 2.5 e108 iterations are simulated. The first and the second method show exactly the same trend. In the explanation of results we focus on the second method, as this method is considered more insightful. First of all it is confirmed that the code and decoder combination fulfil the normative requirements in 1, 2, and 3 in section 3.3 of this document for all test cases. Again for all test cases,
· with any exactly K symbols received, decoding fails about every 200 times on average.
· with any exactly K+1 symbols received, decoding fails about every 40,000 times on average.
· with any exactly K+2 symbols received, decoding fails about every 8,000,000 times on average.
· with any K+3 symbols received, no decoding failure is observed.
The results are independent of whether the received symbols contain more source symbols or more repair symbols. Also independent of K and N, the average receive overhead is as between 0.004 to 0.005 symbols. This is an important reduction when compared to the existing MBMS 5053 code by a factor of 500-100. The K=32 and N=34 is an ideal code.
7.2 Implementation-specific Performance Metrics

<The complexity and memory requirements shall in particular be provided for the following use cases:

· 1.8 GByte at 20% Markov model error rate;

· 4sec @ 1MBit/s streaming at the 20% Markov model error rate;

· 20sec protection period for RTP based streaming at 384 kbit/s and the 20% error rate.>
7.2.1 Encoding latency/speed
For a particular implementation of the encoder, encoding speeds in excess of 2 GBit/s per core are achieved on a laptop, with Intel Core2Duo CPU at 2.66 GHz, when encoding a 1 MBit/s DASH stream, with segments of 4 seconds duration, to protect against losses for the 20% Markov model error rate. Note that the encoding and decoding operations are essentially symmetric, where encoding is essentially the same as decoding from K received encoding symbols (see Raptor codes monograph for details).
7.2.2 Decoding Complexity

<To judge the complexity of a decoding algorithm, the decoding speed in terms of bit/s on top of a recognized mobile processor platform running a recognized mobile operating system can provide good insight into the feasibility of executing the code for mobile applications.>
The decoding complexity for a 6330 compliant decoder is implementation dependent. One way to provide some rough measure of the decoding complexity of a particular implementation that is independent of the operating system and mobile processor platform is introduced in S4-050357, which provides a measure in terms of basic operations on symbols performed by the implementation, where basic operations include read, write, XOR, and finite field operations. Although this measure does not provide exact predictions of the speed of the implementation on specific operating systems and platforms, it does provide insight into how an implementation might perform on specific operating systems and platforms compared to other implementations of the same or different FEC codes.

Table 2 summarizes this measure for a particular implementation of a decoder for the 6330 code. In this table, K is the number of source symbols, LOSS% is the per cent of sent encoding symbols that are lost (not received), EXTRA is the number of received encoding symbols beyond K that are used to decode (decoding is performed using K + EXTRA encoding symbols), XOR is the number of XOR-of-pairs-of-symbols operations per decoded source symbol, STOR is the number of load, write or copy symbol operations per decoded source symbol (called store symbol operations), and GF256 is the number of symbol operations over the finite field GF[256] per decoded source symbol. For example, if K = 1,000, LOSS%= 30%, EXTRA = 0, XOR = 20, STOR = 4 and GF256 = 1, then there are K = 1,000 source symbols in the decoded source block, the encoding symbols are generated and transmitted in sequential order and a random 30% of the transmitted symbols are not received, the first K+EXTRA = 1,000 encoding symbols received are used to recover the 1,000 source symbols, there were XOR*K = 20,000 XORS-of-pairs-of-symbols operations during the decoding, there were STOR*K = 4,000 store symbol operations during the decoding, and GF256*K = 1,000 GF[256] symbol operations during the decoding.
Table 2 Operation Counts Per Symbol for different conditions

	Conditions
	Operation Counts Per Symbol

	K
	LOSS%
	EXTRA
	XOR
	STOR
	GF256

	100
	30
	0
	21
	5
	2

	100
	90
	0
	25
	5
	2

	1,000
	30
	0
	25
	4
	1

	1,000
	30
	15
	17
	4
	0

	1,000
	90
	0
	28
	4
	1

	1,000
	90
	15
	20
	4
	0

	10000
	30
	0
	26
	4
	1

	10000
	30
	15
	17
	4
	0

	10,000
	90
	0
	30
	4
	1

	10,000
	90
	15
	21
	4
	0

	50,000
	30
	0
	32
	4
	1

	50,000
	30
	25
	20
	4
	0

	50,000
	90
	0
	35
	4
	1

	50,000
	90
	25
	24
	4
	0

For the particular implementation above, the vast majority of the XOR symbol operations are sequences of operations where different symbols are all XORed into the same symbol, and these operations are particularly efficient since the same symbol is typically stored in an accumulator register as the other symbols are XOR-ed into its value. All of the GF[256] operations consist of multiplying a given symbol by a fixed finite field element alpha, and since alpha is fixed it is possible to optimize these operations.

The non-zero EXTRA values were chosen to be above the point where GF[256] operations are no longer necessary for decoding, thus providing a higher decoding speed. These non-zero EXTRA values correspond to modest reception overheads, e.g., EXTRA = 15 is a reception overhead of 1.5% for K=1,000, EXTRA = 15 is a reception overhead of 0.15% for K = 10,000 and EXTRA = 25 is a reception overhead of 0.05% for K = 50,000. Note that for many situations, a vast majority of the receivers are likely receive at least this number of extra encoding symbols, since the number of transmitted encoding symbols is typically set to overcome the loss experienced by the 95th or 99th percentile end user. Thus, the typical end user device will experience the lower complexity decoding measures and consequent higher decoding speeds.

For this particular implementation, these measures are generally lower when LOSS% is lower and when EXTRA is non-zero. However, even for a worst case LOSS% = 90% and EXTRA = 0, all of these measures are quite reasonable. For this particular implementation, the actual decoding speed between when LOSS% = 30% and when EXTRA is non-zero is around 25% faster than when LOSS% = 90% and when EXTRA = 0.

Based on this data for the specific cases the following holds:

· 1.8 GByte at 20% Markov model error rate

· The maximum source block size is K=28913

· 53 source blocks are generated for the 1.8 GByte file

· The maximum symbol loss rate for one source block does not exceed 30%

· This means that the following numbers in the table above hold as upper bounds
· K LOSS%
EXTRA
 XOR
 STOR

 GF256
· 50000 30%

0 32

4

1

· 50000 30%

25 20

4

0

· For a reception overhead of 25 symbols and more, the decoding complexity is upper-bounded by 42*106 operations for the symbol size 1288 is upper-bounded by 120*106 operations for the symbol size 452.
· For a reception overhead of less than 25 symbols, the decoding complexity is upper-bounded by 43*106 operations for the symbol size 1288 is upper-bounded by 180*106 operations for the symbol size 452.
· 4sec @ 1MBit/s streaming at the 20% Markov model error rate;
· For the Markov model at 3 km/h for the 1 second segment duration loss rates up to 65% may happen and need to be corrected, with source block size up to K=100. For the 4 second duration loss rates up to 30% may happen and need to be corrected, with source block size up to 400.
· This means that the following numbers in the table above hold as upper bounds

· K LOSS%
EXTRA
 XOR
 STOR
GF256
· 100 90%

0 25

5

2

· 1000 30%

0 25

4

1

· The numbers of operations per source symbol for decoding do not exceed 30. With at most 100 source symbols per second (typically less), the decoding complexity is upper-bounded 3000 operations/second.
7.2.3 Memory Requirements

<In terms of memory requirements, a reasonable measure is the required random access memory in the MBMS client to decode large files, such as considered in the video delivery use cases from above. >
Taking into account the constraints for maximum size block that is decodable in working memory is 1 MByte, then for 1.8 GByte file download less than 3.5 MByte are required.

For streaming delivery based on DASH at 1 MBit/s and 4 seconds protection period resulting in a source block of size 512 kByte the 6330 decoder implementation requires 1.1 MByte.
7.2.4 Library Footprint

<Another performance metric for successful integration into mobile platforms is the library footprint of the code and the footprint of hardware functions if any.>
The library footprint on ARM platform is less than 70 kByte (program and data) and less than 90 kByte on x86 PC platforms.
8 Verification
<The procedures on how the FEC encoder/decoder implementation can be accessed for verification of the performance results.>
8.1 Overview
For verification a set of test applications including FEC encoder and decoder are provided for interested parties. These test applications permit to verify the FEC code performance results as provided in section 7.1 in this document.

The test applications are provided in binary form for Linux and Windows.

The license terms for the test applications are summarized in section 8.2.

For detailed license terms as well as for getting access to the test applications please contact Thomas Stockhammer <c_tstock@qualcomm.com>.
8.2 License summary

Qualcomm is providing any interested company (referred to as "Licensee") the Test Application Package in accordance with the terms and conditions contained in a specific agreement to be signed. Qualcomm is providing the Test Application Package to a Licensee for testing purposes only to enable Licensee to (a) conduct the evaluation procedures and testing described in S4-120552, and (b) report the results of such evaluation and testing to 3GPP SA4, and not for any other purpose.
For detailed license terms as well as for getting access to the test applications please contact Thomas Stockhammer <c_tstock@qualcomm.com>.
8.3 Provided Test Applications

8.3.1 Overview

The following test applications are provided:

· An encoder for the 6330 code encoding as documented in section 8.3.2. This encoder permits to hand over a data block and specifying K, N and T and provides encoding symbols according to the test format specified in section 6.1 of this document.

· A decoder for the 6330 code decoding as documented in section 8.3.3. This decoder reconstructs a data block based on a test vector as specified in section 6.1 of this document.

· Different loss generators that can emulate the losses of the relevant channels in this submission as documented in section 8.3.3 and 8.3.5.

· An inspection tool for test vectors as documented in 8.3.4.
8.3.2 6330Encoder

Usage: 6330Encoder input_file K N T output[.enc] [offset]
This application 6330 encodes a data block of K*T bytes taken from file input_file and produces an ouput file called output.enc (suffix .enc added if not present) with K input symbols of T bytes followed by N-K (N > K) repair symbols. If optional parameters offset is provided, start at byte index offset into input_file to extract the input source block. The result output vector file has the format described in Section 6.1.

8.3.3 6330Decoder

Usage: 6330Decoder input.enc output.txt [O]
This application reads a 6330-encoded file input.enc and put a copy of decoded data block into output file output.txt if input.enc is decodable. If optional parameter O is provided, the application uses the first K+O symbols for decoding instead of using all symbols. If decoding is successful, the index of the last ESI is printed on standard output. If input.enc has less than K or K+O symbols, an error message will indicate this situation. If decoding is not possible an error message indicates this situation with the code overhead. Using -1 as the value for optional parameter O, 6330Decoder displays the content of input.enc in human readable format instead of decoding.
8.3.4 LossGenerator

Usage 1: LossGenerator -f tracefile input.enc output.enc [Z i]
Usage 2: LossGenerator -p seed input.enc output.enc

With the first usage a loss trace file tracefile dictates which symbols are kept and which symbols are “lost”. The format for tracefile is a sequence of two characters, “0”s and “1”s the second one indicating a symbol loss. The application MarkovTrace described below produces traces of this kind. With the optional parameters Z and i, each (j*i+Z)-th element of the loss trace are used for j=0,1,… up to the number of symbols in input.enc. This feature allows to simulate file downloads when number of blocks Z is larger than 1.
 With the second usage, the application reads file input.enc in and put a random permutation dependent on the seed parameter value into file output.enc.
8.3.5

8.3.6 MarkovTrace

Usage: MarkovTrace [–p|-c [-l]] bler N seed tracefile

This application generates a loss trace file called tracefile with target BLER of bler percent, covering N packets using integer seed for the random number generator. If optional parameters –p, -c and –t are left out, the loss is independent and identically distributed (i.i.d.) according to bler. Otherwise the loss trace comes from a two-state Markov chain with hard-coded parameters taken from document R1-120831.Valid values for the parameters and commands are:

· Optional commands –p and –c are mutually exclusive with –p indicating a pedestrian at 3km/h while –c is for a car at 120km/h.

· bler: 1, 5, 10 and 20 (unit: percent)

· Optional command –l indicates is for the lower bearer rate 266 kbps used with MCS21 and TTI 40ms, see below.
The sampling of the Markov chains in R1-120831is 10ms matching the TTI of bearer rate 1066 kbps with MCS21 and bearer rate 398 kbps with MCS9. In the case of bearer rate 266 kbps with MCS21 and TTI 40ms, only each 4-th generated data points are kept (sub-sampling).
8.4 Simulation Procedures

A pseudo code description is available on request. Please contact Thomas Stockhammer <c_tstock@qualcomm.com>.

9 Additional Information
< Additional information should be provided on matters such as:

· existing AL-FEC

· information on available implementations and deployments>

As mentioned in Section 5, the 6330 code uses exactly the same parameters with exactly the same meanings as the current 5053 code specified in MBMS, and the 6330 code fits into the FLUTE download services and the streaming services exactly the same way as the current 5053 code specified in MBMS.

The 6330 code can provide the same flexibility and applicability as the 5053 code currently specified in MBMS, with similar encoding and decoding complexity. However, the 6330 code provides the following additional benefits:
· Reduces reception and transmission overheads when sending small files due to superior recovery properties.

· Improves reception and transmission overheads when sending large files due to the ability to natively support a much larger number of source symbols per source block.

· The recovery properties are essentially those of an ideal code, eliminating the need to carry multiple symbols in a packet to reduce the code overhead. Some of the benefits provided are:

· Improves flexibility in terms of choosing packet sizes, thus avoiding for example the need to use a different packet size for each segment when supporting DASH streaming over FLUTE.
· Simplifies the protocols and procedures.

· Reduces CPU complexity for the same source block size. This is especially true for small blocks to be generated by live sessions for the upcoming DASH over FLUTE streaming. Since UE power consumption is extremely important nowadays, this positions the 6330 code as an important technology to achieve this goal just like other technologies such as asynchronous CPU cores, smaller node, better compiler technology, etc.
· Increases flexibility to support future use cases, such as for example providing bundled protection over multiple media streams when supporting DASH streaming over FLUTE.
· A substantial increase in the number of encoding symbols that can be generated, i.e., essentially an unlimited number of encoding symbols can be generated from a source block. This provides additional flexibility and simplicity to support future use cases.
In terms of deployments, the supported platforms of the 6330 code are:

· Linux x86 32-bit and 64-bit,
· Windows x86 32-bit and 64-bit,
· Solaris/SPARC8,
· Android/ARM,
· Linux/ARM,
· Linux/SH4,
· Mac OS X 32-bit and 64-bit,
· IOS/ARM.
The 6330 code is deployed in
· Large file distribution over satellite for digital cinema

· HD video-conference systems

· Mobile Electronic News Gathering devices using multiple bonded cellular streams

10 Summary on Addressing Work Item Objectives
The 6330 code can provide the same flexibility and applicability as the 5053 code currently specified in MBMS, with similar encoding and decoding complexity.

The performance of the 6330 code is at least as good as the 5053 code for all defined test cases, but the 6330 code provides the following additional benefits:
· Reduces reception and transmission overheads when sending small files due to superior recovery properties.

· Improves reception and transmission overheads when sending large files due to the ability to natively support a much larger number of source symbols per source block.

· The recovery properties are essentially those of an ideal code, eliminating the need to carry multiple symbols in a packet to reduce the code overhead. Some of the benefits provided are:

· Improves flexibility in terms of choosing packet sizes, thus avoiding for example the need to use a different packet size for each segment when supporting DASH streaming over FLUTE.

· Simplifies the protocols and procedures.

· Reduces CPU complexity for the same source block size.

· Increases flexibility to support future use cases, such as for example providing bundled protection over multiple media streams when supporting DASH streaming over FLUTE.

· A substantial increase in the number of encoding symbols that can be generated, i.e., essentially an unlimited number of encoding symbols can be generated from a source block. This provides additional flexibility and simplicity to support future use cases.
In terms of addressing the work item objectives
The objective of the work item is to investigate and evaluate the proposed FEC technologies and adopt one which provides the most significant enhancement to the performance of the MBMS system over the Rel-6 application layer FEC in MBMS. Aspects of system performance which would provide benefit to the system include, but are not limited to,

· Improving the bandwidth efficiency of streaming and download services delivery over MBMS

· Improving the reliability of streaming and download services delivery over MBMS, e.g. by increasing the amount of tolerable lost packets for a given FEC overhead

· Reducing the required computational and memory resources for decoding in UEs

· Addressing backward compatibility issues by considering deployments of pre-Rel-11 MBMS FEC

The evaluation and selection process for the proposed improvements will be documented in a TR. In the case of qualifying FEC solutions with similar evaluation results, the selection process shall favour open and available standardized FEC solutions. Performance requirements for FEC decoders, and test vectors for FEC encoders shall be specified.
Based on the above summary and the results, it is obvious that the 6330 code provides improved bandwidth efficiency for both, download and streaming services due to improved code performance. By doing so it also improves the reliability for both streaming and download services. The 6330 code also reduces the required computational complexity as the decoding for the 6330 code is similar to the 5053 code, but due to the improved performance typically only a single symbol per transport payload is required instead of multiple ones for the 5053 code.
A summary is provided in Table 2.

Table 3 Summary of 6330 properties

	a.
	Probability of decoding failure, for a given receive overhead
	The performance of the 6330 code is at least as good as the 5053 code for all defined test cases, and better for a significant amount of test cases. It is identical to the ideal code for a many test cases. Specifically looking at the code performance results, the 6330 code performs as good as an ideal code in 99.5% of the cases (see 1-P(O=0) for method 1 and method 2). In the remaining 0.5% one additional received symbol is sufficient for all practical cases.

	b.
	Transmit overhead
	The performance of the 6330 code is at least as good as the 5053 code for all defined test cases, and better for a significant amount of test cases. It is identical to the ideal code for a many test cases.

	c.
	Receive overhead
	The receive overhead is very low for a variety of source block sizes K and encoding symbols size N.
For all K and N tested in the code performance test cases, the average receive overhead is at most 0.005 symbols. In 99.5% of the cases decoding is possible without any receive overhead symbols. In the remaining 0.5% one additional received symbol is sufficient for all practical cases.

	d.
	Encoding latency
	The systematic encoding latency of the code is zero as the 6330 code is a systematic code. Encoding speed is at least 2000 times faster than the real-time speed. The factor 2000 is achieved with a laptop encoder, for a high-end BMSC server significantly higher encoding speeds are expected to be achieved. Therefore, encoding latency is in milliseconds range for typical streaming applications.

	e.
	Decoding latency
	The systematic decoding latency is determined by the source block size and the protection period. For all cases in the simulations the required limits are maintained in the encoding, such that the protection period is not exceeded.
The decoding speed is very fast by several magnitudes smaller on typical processors than the protection period.

	f.
	Encoder SW complexity
	For a particular implementation of the encoder, encoding speeds in excess of 2 GBit/s per core are achieved on a laptop, with Intel Core2Duo CPU at 2.66 GHz, when encoding a 1 MBit/s DASH stream, with segments of 4 seconds duration, to protect against losses for the 20% Markov model error rate. Note that the encoding and decoding operations are essentially symmetric, where encoding is essentially the same as decoding from K received encoding symbols (see Raptor codes monograph for details).

	g.
	Decoder SW complexity
	The decoder SW complexity is in the same range as for the 5053 code, details are provided in section 7.2.2.

	h.
	Decoding memory requirements
	 Taking into account the constraints for maximum size block that is decodable in working memory is 1 MByte, then for 1.8 GByte file download less than 3.5 MByte are required.

For streaming delivery based on DASH at 1 MBit/s and 4 seconds protection period resulting in a source block of size 512 kByte the 6330 decoder implementation requires 1.1 MByte.

	i.
	Footprint requirements
	The library footprint on ARM platform is less than 70 kByte (program and data) and less than 90 kByte on x86 PC platforms.

	j.
	Amount of tolerable loss packets for a given FEC overhead
	The performance of the 6330 code is at least as good as the 5053 code for all defined test cases, and better for a significant amount of test cases. It is identical to the ideal code for a many test cases.

For all K and N tested in the code performance test cases, the average receive overhead is at most 0.005 symbols. In 99.5% of the cases decoding is possible without any receive overhead symbols. In the remaining 0.5% one additional received symbol is sufficient for all practical cases.

	k.
	Implementation choices/options
	 In terms of deployments, the supported platforms of the 6330 code are:

· Linux x86 32-bit and 64-bit,
· Windows x86 32-bit and 64-bit,
· Solaris/SPARC8,
· Android/ARM,
· Linux/ARM,
· Linux/SH4,
· Mac OS X 32-bit and 64-bit,
· IOS/ARM.
The 6330 code is deployed in

· Large file distribution over satellite for digital cinema

· HD video-conference systems

· Mobile Electronic News Gathering devices using multiple bonded cellular streams

- 18/21 -

