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1 Summary
This document specifies and explains a systematic rate-independent Reed-Solomon (SR-RS) Erasure correction scheme for EMM-EFEC. The two properties, systematic and rate-independent, are fulfilled by Lagrange polynomial interpolation. When the number of output symbols is fixed, this scheme essentially generates a Reed-Solomon (RS) code. Therefore, based on the MDS (maximum distance separable) property of RS codes [1], this erasure correction scheme is optimal (ideal), i.e. when the number of un-erased packets is equal to the number of source packets, the all source packets can be recovered.  

Previously, a Reed-Solomon (RS) code scheme for the reliable delivery of data objects on the packet erasure channel was proposed by Network Working Group RFC5510. In RFC5510, the systematic encoder uses a generator matrix which is a multiplication of an inverse of a square Vandermonde matrix and another rectangular Vandermonde matrix. Using this scheme, adding an extra repair symbol requires generating a new matrix inverse and a new rectangular  Vandermond matrix. The decoding method suggested in RFC5510 requires matrix inversion and matrix multiplication. To speed up this decoding processing, RFC5510 refers [2] where FFT over real filed is applied. Unfortunately, it is well known [3] that the real field FFT method described in [2] cannot be properly operated over the working field of RS codes used in RFC 5510.
In this document, a two-step fast recovering (decoding) algorithm using fast Walsh-Hadamard transform is presented for the proposed erasure correction scheme. This algorithm achieves the time complexity
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2 FEC encoder

2.1 Source file segmentation

In order to encode large files within the working memory constraint, the source file may need to be segmented into transmit blocks and working blocks.

2.1.1 Transmit block
Given a source file of size 
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 bytes and a transmit symbol size of 
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transmit symbols. A source transmit block is a collection of 
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 of these transmit symbols. 
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 may be different if the total number of source transmit blocks does not evenly divide the number of transmit symbols required to represent the file.  The number of source transmit blocks with 
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 transmit symbols and the number of source transmit blocks with 
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 transmit symbols are communicated to the decoder using parameters 
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, respectively.  After encoding, a transmit block consists of a source transmit block and a repair transmit block.

The transmit blocks are ordered such that the first 
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 transmit block are encoded from source transmit blocks of size 
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 transmit symbols. The remaining 
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 transmit blocks are encoded from source transmit blocks are of size 
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 transmit symbols.  The parameters 
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2.1.2 Working Blocks
In order to satisfy the working memory requirement, the transmit symbols can be further subdivided into working symbols of size 
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 bytes. A transmit symbol therefore consists of 
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 working symbols. A source working block is then a collection of working symbols selected such that an entire source working block can fit into the working memory. The ith source working block in a transmit block consists of the ith working symbol of a transmit symbol.  Additionally, a source working block is to be sized such the size of the working symbols remain a multiple of the byte alignment factor, AL.  The 
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) transmit symbols of a source transmit block can be viewed as a collection of working symbols or equivalently as a collection of source working blocks. 
After encoding, a working block consists of a source working block and a repair working block.  The receiver attempts to decode on a subset of the source and repair working symbols in a working block.
2.2 Parameter Selection

The code requires 
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 is the total file size in bytes. 
[image: image28.wmf]T

 is the transmit symbol size in bytes, and it is RECOMMENDED that it be equal to the packet payload size.  The number of transmit blocks 
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 transmit symbols (the number of working blocks with 
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 working symbols) MUST be chosen such that 
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where 
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is computed in (1) and 
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 is  the code rate for the worst-performing link in a sector. (Note: the restriction of 216R is due to the using of 16-bit symbol RS code in the correction scheme of this document.  This number will be extended to 
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 if 32-bit symbol RS code is used.)  The working symbols size in bytes, 
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is less than or equal to the working memory requirement. Additionally, 
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 MUST be chosen to be a multiple of the byte alignment factor AL and 
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 MUST be a divisor of 
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.  The byte alignment, AL, is to be chosen based on the protocol and the typical machine architectures, a value of 4 (bytes) is RECOMMENDED.  

2.3 Protocol IEs
This section describes IEs that are used by the FEC.  All fields are big-endian.

2.3.1 FEC Payload IE

The FEC payload ID is a 4-byte field defined as follows:

[0:7] TBN, (8 bits, unsigned integer): A non-negative integer identifier indicating the transmit block number.
[8:31] SID, (24 bits, unsigned integer): A non-negative integer identifier indicating the transmit symbols in the packet.  SID 0 to K-1 indicate systematic symbols.
2.3.2 Common

The Common FEC Object Transmission Information elements used by this FEC Scheme are:

[0:39] Transfer Length (
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), (40 bits, unsigned integer): A non-negative integer.  This is the transfer length of the object in bytes.

[40:47] are reserved.

[48:63] Transmit Symbol Size (
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), (16 bits, unsigned integer): A positive integer that is less than 216.  This is the size of a transmit symbol in units of bytes.
2.3.3 Scheme Specific
The following parameters are carried in the Scheme-Specific FEC Object Transmission Information element for this FEC Scheme:

[0:7] 
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 working symbols (and the number of working blocks with 
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 working symbols). (8 bits, unsigned integer)
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 working symbols (and the number ofworking blocks with 
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 working symbols). (8 bits, unsigned integer)

 [16:30] 
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: The working symbol size in bytes (15 bits, unsigned integer)

2.4 Overview of systematic rate-independent RS encoding
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Figure 1 shows a general block diagram of systematic rate-indepent Reed-Solomon (SR-RS) encoding scheme. The scheme takes a
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source working symbols as input, where 
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bytes. Define an RS symbol a unit of two bytes. Then a working symbol contains
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RS symbols. All the first RS symbols in
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source working symbols are grouped together to become the first RS information stream, see Figure 1, and all the second RS symbols in the K source working symbols are grouped to become the second RS information stream, etc. Together there are
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RS information streams. The SR-RS encoding scheme works on every information streams individually, or in parallel. The scheme then generates encoded working symbols, with the first 
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 output symbols being the source working symbols. Furthermore, this encoding scheme can generate as many as working symbols needed as long as the number of the working symbols does not exceed
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. Therefore, we can say this scheme is systematic and rate-independent. A detailed description of this encoding scheme will be described in the next two sections.
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Figure 1. SR-RS encoding
2.5 Parameters and functions used in SR-RS encoding

· RS symbols is a unit of  bytes, or 16 bit.  
· 
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 with the arithmetic operations defined in the following.
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 represent RS symbols, i.e. elements in 
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denotes the bitwise exclusive-or of two RS symbols
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· A location function is defined by,  for any integer 
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2.6 SR-RS encoding

Input to the SR-RS encoding scheme is a source working block containing
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source working symbols,
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The  
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-th encoded working symbol is generated by the encoding function 
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where
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Moreover, since
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the encoding (4) is systematic. 
Replacing 
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 Thus, given a number 
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is an RS codeword of length  
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 (see [1] for the definition of RS code). Therefore, the encoder (4)
 generates an MDS code, an ideal erasure recovering code.

It should be noted that the integer 
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[image: image125.wmf]65536

2

16

=

. In order to extend the encoding function to integers in the range beyond
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, 32-bit RS symbol  should be considered. 
3 FEC decoder

3.1 Overview of SR-RS decoding

It is shown in Section 2 that the code generated by SR-RS encoding scheme is ideal for erasure channel. Thus, if a source working block has K working symbols, then as soon as K encoded working symbols are received, all K source working symbols can be recovered. Figure 2 presents a general diagram of an SR-RS decoding scheme. When the 
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received Symbol IDs (SIDs) are all source SIDs, then there is no need to operate further decoding, otherwise those 
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 SIDs are either all repair -SIDs or a combination of source SIDs and repair -SIDs. The proposed SR-RS decoding is operated in two procedures, see Figure 2. The first procedure, called location function evaluating (generating), takes the received
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 source working symbols. We call the second procedure the source symbol recovery engine. To produce the entire working block, one has to operate the second procedure
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Figure 2. SR-RS decoding

By applying the fast Walsh-Hadamard transform on both procedures, a fast decoding can be achieved.  

3.2 SR-RS decoding principle

Input to a SR-RS decoding scheme is

· A set of SIDs of the received 
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 working symbols: 
[image: image136.wmf]{

}

1

0

,

,

-

=

K

u

u

L

L


· The working symbol corresponding to SID 
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The  
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-th decoded working symbol is generated by the decoding function 
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This proves thing SR-RS decoding is optimal (ideal).
3.3 A realization of the decoding principle: two-step SR-RS decoding (informative)

This section provides one of the realization method on the decoding principle defined in Section 3.2. Let the input to the decoding as defined in Section 3.2.  Define an extended locator function
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and an evaluation function
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Then the decoding principle in Section 3.2 can be carried out in the following two steps:

Step 1. Evaluate 
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Step 2.2. Compute and output  
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3.4 Fast decoding (informative)

This section presents a low complexity method for the decoding procedure in Section 3.3
3.4.1 Hadamard matrices

10 Initialization: define the order 0 Hadamard matrix
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3.4.2 Walsh-Hadamard transform and its property

Denote the dimension v binary vector space by 
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Define an order “<” on 
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Walsh-Hadamard transform (WHT) on 
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is then defined by 
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In order to state a crucial property of WHT the following two operations are needed:

· Component-wise product 
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· Convolution product 
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A crucial property of WHT is 
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3.4.3 Fast Walsh-Hadamard transform

A fast Walsh-Hadamard transform (FWHT) algorithm on a function 
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can be presented as follows:
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3.4.4 Fast SR-RS decoding using fast WHT
The two steps SR-RS decoding in Section 3.3 can become more efficient by applying the fast WHT reviewed in Section 3.4.3. In fact, one can use the algorithm in [4] to fulfil this task. In this section, we explain that algorithm within the content of this document. 
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Furthermore, (7)
 can be written in the domain of 
[image: image242.wmf])

2

(

v

GF

 as

[image: image243.wmf])

2

(

   

)),

(

)

(

(

)

(

'

)

2

(

v

GF

L

GF

GF

Log

Exp

v

Î

+

C

=

F

Õ

Î

x

y

x

x

x

y

.

Since 
[image: image244.wmf]]

[

]))

[

(

(

i

RS

i

RS

SHT

EXT

=

 when 
[image: image245.wmf]1

2

-

£

v

i

and
[image: image246.wmf]{

}

1

2

0

|

])

[

(

)

2

(

-

£

£

=

v

v

i

i

RS

SHT

GF

, we have 


[image: image247.wmf]î

í

ì

Ï

=

F

Î

=

F

=

F

L

i

i

RS

SHT

L

i

L

i

i

RS

SHT

i

L

i

 

and

 

))

(

(

 

if

)

,

(

 

and

 

))

(

(

 

if

})

{

\

,

(

)

(

'

x

x

x


Moreover, 
[image: image248.wmf](

)

)

(

)

(

)

(

))

(

'

(

log

)

2

(

x

y

x

x

x

y

Log

Log

L

GF

L

GF

v

Ä

C

=

+

C

=

F

å

Î

. Therefore, 
[image: image249.wmf])

(

'

x

F

can be evaluated using (10)
 with FWHT. Basically this is Step 1 of two-step decoding in Section  3.3.
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, the next major calculation of two-step decoding in Section 3.3 is
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which can be implemented using (10) with FWHT..
3.4.5 The complexity of the fast SR-RS decoding

The time complexity for the fast decoding in Section 3.4.4.. is 3*K+35*V+66*V*log_2(V), where V is given in (11)
. With parallelism, the lowest time complexity can be 3K+35*V+66*log_2(V), which is linear.
4 Standardization Status

The SR-RS coding scheme is being standardized by IETF.  Completion of the standardization process is expected in the coming months

5 Impact on TS26.346

A few minor edits are required to update the FEC name and references.  These include the follow changes:

1.   Remove reference to RFC 5053

2.   Remove references to Raptor REC

3.   Update FEC Encoding ID

4.   Update FEC Payload ID

5.   Generalize SBN and ESI

6.   Update Annex B with the new FEC specification.

Please refer to the attached draft CR for more details.  Please refer to Section 2 and 3 of this document for the FEC specification to be used in Annex B of the draft CR.
6 Test Vectors

Broadcom is committed to providing test vectors for the TR on Application Layer FEC.  Test vectors are available upon request
7 FEC Code Performance for Test Cases
7.1 FEC Code Performance
SR-RS encoding generates a RS code, which is a MDS code by theatrically proof. Therefore, it gives an optimal performance. 

Furthermore, the FEC Code Performance results are included in the attached EFEC_eval_data xls spreadsheet.

Please refer to Section 10 for a discussion of the Performance Metrics tab
7.2 Implementation-specific Performance Metrics
Both encoding and decoding of SR-RS code are very structuralized. They lend themselves perfectly for hardware acceleration. Due to the Walsh-Hadamard transform that is used, the implementation complexity of this RS scheme is vastly lower than for other RS coding schemes.

With the addition of a small amount of hardware, virtually any throughput can be achieved, with ideal performance.

· .8 GByte at 20% Markov model error rate; 
· Complexity: O(Flog(F)) in software and O(F) with hardware acceleration, where F is the file size.  

· Memory: Working memory
· 4sec @ 1MBit/s streaming at the 20% Markov model error rate; 
· Complexity: (Flog(F)) in software and O(F) with hardware acceleration , where F is the file size.  

· Memory: Working memory
· 20sec protection period for RTP based streaming at 384 kbit/s and the 20% error rate.
· Complexity: (Flog(F)) in software and O(F) with hardware acceleration where F is the file size.  

· Memory: Working memory
7.2.1 Decoding Complexity

Refers to Section 3.4.5.
7.2.2 Memory Requirements
With a hardware implementation, the SR-RS code can be implemented in working memory.

7.2.3 Library Footprint

With hardware acceleration, the SR-RS code can be implemented with a library footprint of a few KB.
8 Verification

Please email eriks@broadcom.com for access instructions.

After a request for access is received, the steps for access will include establishment or update of NDA and an establishment of a SLA.  The object code will then be provided as a windows x86 executable.
9 Additional Information

· Differences to existing AL-FEC

· The SR_RS FEC is optimal code. The existing AL-FEC is not optimal and requires receive overhead.  The SR-RS scheme can decode with zero receive overhead. 

· Any number of source transmit blocks size are supported. No padding bits are needed for both encoding and decoding.
· Similarities to existing AL-FEC
· The SR-RS FEC can use the same block partition structure of the existing AL-FEC. It is a direct replacement for the existing AL-FEC and requires a minimum of changes to 26.346.
· information on available implementations and deployments
· The SR-RS code has been ported to Windows, Linux, and Android operating systems in software with hardware acceleration. It has been ported to ARM and x86 processors in software with hardware acceleration.

10 Summary on Addressing Work Item Objectives
The goal of the EMM-EFEC work item is to select a new application layer FEC that provides improvement over the existing FEC.

The SR-RS code shows significant improvement over the existing RFC5053, as based on the SA4 defined test cases.  The results are summarized in the following table.

	Test Group
	Sub Case
	Total Test Cases
	SR-RS better than existing RFC5053
	Comments

	CP Cases
	Method 1
	10
	10
	SR-RS is better for all cases

	
	Method 2
	12
	12
	SR-RS is better for all cases

	LTE Download
	
	
	
	SR-RS is better for all cases

	
	HD Cases
	24
	24
	SR-RS is better for all cases

	
	SD Cases
	24
	24
	SR-RS is better for all cases

	
	Non SD/HD Cases
	72
	72
	SR-RS is better for all cases

	UTRAN Download
	
	36
	36
	SR-RS is better for all cases

	LTE Streaming
	
	48
	48
	SR-RS is better for all cases

	UTRAN Streaming
	
	18
	18
	SR-SR-RS is better for all cases


1. Probability of decoding failure, for a given receive overhead
SR-RS coding scheme is an ideal erasure coding system. When the number of the received encoded working symbols equals to the number of source working symbols, the decoder will never fail. No receive overhead is needed. 
2. Transmit overhead
The transmit overhead required by the SR-RS code is significantly reduced compared to the RFC5053 code.  The SR-RS code is the ideal code except for the SD and HD cases for LTE download, where the limitation comes from using 16-bit field and segmentation into transmit blocks is required. Even for those cases SR-RS code also performs close to the ideal code.  It is possible to extend the field size of SR-RS code so that the SD and HD cases can be encoding using the ideal code, without segmentation. 

The following figures illustrate the performance improvement of the SR-RS  code vs the RFC5053 code for the SA4 test cases. As a part of the transmit overhead measurement, the characteristics of the channel play a significant role, unlike the receive overhead.  

The following figure shows the performance improvement of the SR-RS  code for the UTRAN download test cases.  These results show that the SR-RS  code outperforms RFC5053 due to its optimal/ideal property.

[image: image263.jpg]
Figure 3. Tx overhead for UTRAN Download cases.  SR-RS code (which is Ideal) and RFC5053.

The following figure illustrates the transmit overhead for the LTE download non SD/HD test cases.  the SR-RS code is ideal code and performs better than RFC5053.

[image: image264.jpg]
Figure 4. Tx overhead for LTE Download non SD/HD cases.  In this case SR-RS is Ideal and it vastly outperforms RFC5053 by requiring lower transmit overhead.
The following figure illustrates the transmit overhead for the LTE download SD test cases.  The SR-RS code performs better than RFC5053.

[image: image265.jpg]
Figure 5. Tx overhead for LTE Download non SD cases.  SR-RS, Ideal, and RFC5053.  The SR-RS code vastly outperforms RFC5053 by requiring lower transmit overhead.

The following figure illustrates the transmit overhead for the LTE download HD test cases.  Again, the SR-RS code performs better than RFC5053.

[image: image266.jpg]
Figure 6. Tx overhead for LTE Download HD cases.  SR-RS, Ideal, and RFC5053.  The SR-RS code outperforms RFC5053 by requiring lower transmit overhead.
The reduced transmit overhead also results in a performance improvement for the streaming test cases.  This is clearly evident in the following two figures where the supported streaming bit rate is higher for the SR-RS code than for the RFC5053 in most test cases.  The performance of the ideal RS-SR code and RFC5053 code are equivalent in the remainder of test cases.  The following figure illustrates LTE streaming transmit overhead test case results.

[image: image267.jpg]
Figure 7. LTE Streaming. SR-RS and RFC5053.  As an ideal code, SR-RS code outperforms RFC5053 by supporting a higher bit rate.

The following figure illustrates UTRAN streaming test case results.  Again, the SR-RS code supports a higher bit rate than RFC5053 in most test cases, and is equivalent in the remainder of test cases.

[image: image268.jpg]
Figure 8. : UTRAN Streaming.  SR-RS and RFC5053 Code.  As an ideal code, the SR-RS code outperforms RFC5053 by supporting a higher bit rate.

As an ideal code, SR-RS code shows significant improvement over RFC5053 when transmit overhead is used as the performance metric.
3. Receive overhead
Since SR-RS code is MDS (ideal) code, no receive overhead is needed. 
The CP test cases show that the expected number of received symbols for successful decoding drops from several symbols to 0 symbols.  The figure below shows the improvement graphically, showing that the SR-RS code is the ideal code.
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Figure 9. Rx overhead for CP cases.  SR-RS and RFC5053 Code.  The SR-RS code needs 0 overhead and thus vastly outperforms RFC5053.
4. Encoding latency/speed
Assuming a MBMS server with 3GHz quad core x86, encoding latency for a 4 second 1MBit/s stream is approximately a few ms.
5. Decoding latency
Assuming a 1GHz ARM Cortex A9, 512KB L2 Cache, decoding latency for a 4 second 1MBit/s stream is approximately a multiple of ms.
6. Encoder SW complexity
Encoding SW can be performed using fast Walsh-Hadamard transform with the complexity O(nlog(n)). 
7. Decoder SW complexity
Decoding SW can be performed using fast Walsh-Hadamard transform with the complexity O(nlog(n)). 
8. Decoding memory requirements
The working memory used is configurable by the working memory requirement, such that decoding can occur using slightly more than the target working memory
By using  hardware acceleration, the memory can be vastly reduced.
9. Footprint requirements 
The code encoder and decoder library can be implemented in an executable approximately a few KB.  With hardware acceleration, the requirement will be much smaller than the requirement for the existing RFC5053.
10. Amount of tolerable loss packets for a given FEC overhead
The amount of tolerable packet loss for a given FEC overhead is characterized by the receive overhead.  The better the receive overhead requirements for a code, the more packet loss that can be tolerated.  As an ideal, SR-RS code can tolerate the maximum number of lost packets possible for a given FEC overhead.
11. Implementation choices/options
The SR-RS code has been ported to Windows, Linux, and Android operating systems.  It has been ported to ARM and x86 processors.  Ports for other operating systems and processors are planned. 

Due to its highly structured construction, SR-RS coding scheme is ideally suited for hardware acceleration. 
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