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1. Introduction
In [2] difficulties were reported to achieve a reasonable correlation between a series of subjective tests conducted at Audience. It was found that this applies specifically to conditions which were not part of the ETSI databases, mainly conditions with different “SNR-sweeps”. It was furthermore discussed whether the underlying subjective data used in EG 202 396-3 [1] from 2007 do not represent the latest technologies used for noise cancellation so it was suspected that there may be impairments potentially not covered correctly by the ETSI model.

In order to investigate to which extend the ETSI model EG 202 -396-3 can be extended to a wider range of SNR conditions as well as to new types of noise cancelling algorithms the databases used in [2]were used to retrain the model. A part of the data was not used for training but just for validation the model. The procedure chosen and the results achieved are described in this contribution.

2. Description of new databases
The datasets considered here are drawn from those described in COM 12 – C 288 [3]. Some relevant details from that contribution are included here for completeness
Training data was collected for a set of eight noise types, including the six types defined in ITU-T P.835, Amendment 1 Appendix III [4]. Five of the noise samples were taken from ETSI EG 202 396-1 [5]. Table 1 lists the names, descriptions, and filename from ETSI EG 202 396-1 [5] if applicable. The SNR levels were 0, 6, 12, and 24 dB.
Table 1. Noise names and descriptions for training set
	Noise Type Name
	Description
	EG 202 396-1 Filename

	Mensa
	Recording in a cafeteria
	Mensa_binaural

	Car
	Recording at the driver’s position
	Fullsize_Car1_130kmh_binaural

	Street
	Recording at pavement
	Outside_Traffic_Crossroads_binaural

	Train
	Recording at departure platform
	Train_Station_binaural

	Schoolyard
	Recording beside schoolyard
	Schoolyard_Noise2_binaural

	Music
	Rock music, guitar and drums
	n/a

	Voice
	Alternating male and female talker
	n/a

	Pink
	Uncorrelated pink noise
	n/a


The noise suppressor algorithm investigated here was a two-microphone hybrid system comprising a canceller followed by a fixed multiplicative suppressor. The canceller portion is implemented at two levels based on the distance between the two microphones, or Mic Spacing: 2-cm and 8-cm, where the former provides better noise reduction than the latter. The subsequent multiplicative suppressor stage is implemented at six fixed levels of Noise Suppression: 0, 6, 12, 18, 24, and 30dB.
The speech source for the P.835 tests training data was provided by Dynastat and included sixteen sentences, two from each of four male and four female talkers, all native speakers of American English. Four additional sentences were added to the beginning of the 16 test sentences to accommodate any convergence in processing. These 4 additional sentences were not used in listening tests or algorithm training.
For each noise type in Table 1, a P.835 listening test was conducted. Each test included 48 test conditions: 4 SNR x 2 Mic Spacing x 6 Noise Suppression. 

The generation of conditions was simulated, in a manner similar to that described in COM 12 – C 184 [6]. Two sets of impulse responses were created, one for each level of Mic Spacing, by building two acoustic mock-up handsets, and measuring speech signal impulse responses from HATS artificial mouth to each microphone on the two devices. Impulse responses from the four loudspeakers in a test room consistent with ETSI EG 202 396-1 to each microphone on the two devices were also measured to obtain noise signal impulse responses. Input signals for the algorithm, clean speech, and noisy mix, were produced by convolution of speech and noise files with the appropriate impulse responses and mixing at the specified SNRs before processing by the noise reduction systems. No additional signal processing (e.g., speech codec) was applied in the test conditions for training data. All processing was performed at a sample rate of 8-kHz for narrowband speech.
Twelve reference conditions were included, based on the reference system proposed in AH-11-029 [7], which is intended as an improvement over the MNRU reference system for the SIG rating when used for P.835 evaluation of noise reduction systems. 

In each test, 32 naïve native speakers of American English participated, listening monaurally at 79 dBSPL. A total of 128 votes were collected for each of the 60 conditions per test. The results from the School condition were a pilot test for the hybrid canceller/suppressor, covering a wider range of mic spacing, and so were not included in the final training set. Combined across the seven tests, excluding schoolyard, the new training database consists of 336 test conditions.
3. Modification of ETSI EG 202 396-3
The algorithm for the prediction of S-MOS described in [1] remains almost untouched for the retraining. The parameters extracted from the three input signals (clean, unprocessed and processed) and its Relative Approach representations are applied in the same way. Figure 1 shows the current implementation for the calculation of parameters out of these signals and its composition to an estimated S-MOS.
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Figure 1: Current ETSI EG 202 396-3 implementation for S-MOS calculation

The only modification is the replacement of the linear quadratic regression with a neural network. Also the switching of the regression coefficients depending on the N-MOS calculated before is removed. Only one network is trained with input (6 parameters described in chapter 6.5.2 of [1]) and output (S-MOS) data by a simple back-propagation algorithm.

The calculation steps for N-MOS and G-MOS are not modified, only the coefficients for both linear regressions are adapted to the new training material.
4. Results of retraining
For the retraining, the following databases were used:

· Training set of ETSI EG 202 396-3 Annex H (HEAD acoustics, 216 conditions)
· Mensa Noise (Audience, 48 condition)

· Pink Noise (Audience, 48 condition)

· Train Station Noise (Audience, 48 condition)

In overall, 360 conditions were used for the training of the neural network.

As a validation set, the following databases were used:

· Validation set of ETSI EG 202 396-3 Annex H (HEAD acoustics, 50 conditions)
· Car Noise (Audience, 48 conditions)

· Road Noise (Audience, 48 conditions)

In overall, 146 conditions were used for the validation of the retrained ETSI model. The new databases with distractors music and voice were skipped in the first step.

The prediction results for S-/N-/G-MOS are shown in Figure 2. 
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Figure 2: Results for S-/N-/G-MOS of retrained ETSI model

The retrained model shows an adequate performance for all training and validation conditions for the S-MOS calculation. The unmodified calculation of N-MOS shows a good correlation to the subjective score. As a result of a good S- and N-MOS prediction, the G-MOS calculation gives accurate score prediction.

The validation conditions of the retrained model can also be split up into the single databases; Figure 3 shows the prediction results for the HEAD acoustics validation set, Car and Train noise databases from Audience.
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Figure 3: Results for S-/N-/G-MOS per validation database of retrained ETSI model
5. Conclusions

The prediction performance of ETSI EG 202 396-3 can significantly be improved by increasing the amount of training conditions and by retraining the model to this new database. Slight modifications of the current model also provide a good backward compatibility to the current validation set.

Further work may be conducted to extend the presented retraining to more databases. The same principle can be applied for the wideband mode.
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