TSG SA4#67 meeting Tdoc S4 (12)0020
30 January – 3 February, 2012, Edinburgh, Great Britain
Source:
Samsung Electronics Co., Ltd.

Title:
Proposed evaluation criteria for FEC code complexity (EMM-EFEC)
Document for:
Approval

Agenda item:
13.3.1

1 Introduction

In SP-110555 (also available as S4-110792) a new work item on "Enhancement to FEC for MBMS" has been approved during SA#53. One of its objectives is to reduce the required computational and memory resources for decoding in UEs.

This document proposes evaluation criteria to evaluate the implementation-independent complexity of a new code.
2 Computational complexity

2.1 Introduction

In Section 3.3 of S4-AHI246, the evaluation criteria are given by implementation-specific performance metrics. Those complexity metrics are based on the current state-of-the-art technologies. However, considering the speed of the advances in mobile technologies, it is recommended that the evaluation criteria for code complexity are based on not only implementation-specific performance metrics but also implementation-independent performance metrics.

The analysis in S4-050357 is a good case study for implementation-independent complexity of a code. It was focused on the operations performed upon the received source and repair symbols in order to generate the lost source symbols and there was only a brief qualitative analysis about determining the operations that need to be performed and their sequencing (‘scheduling’) which is equivalent to calculate inverse of a matrix. The operations required to calculate the inverse of the matrix is dependent on density of the matrix and the order of the finite field over which the matrix is defined. Therefore the complexity of operations to determine ‘scheduling’ have to be evaluated to judge a new code.

We categorize encoding/decoding processes into two phases. The first phase is determining the relationship between the source symbols and repair symbols for encoding process or between received symbols and missing source symbols, respectively. The second phase is calculating the repair symbols for encoding process or the missing source symbols for decoding process, respectively. For the operations in the first phase, all required operands may be in the cache of the processor.

2.2 Proposed Evaluation Criterion

We use the same argument in sec.2 of -050357 and assign the following weights to operations and associated memory accesses:

	Operation
	Weight

	32-bit memory read or write
	4

	32-bit memory read or write + standard arithmetic/logical operation (+,-,AND, OR, XOR)
	4

	32-bit standard arithmetic/ logical operation (+,-,AND, OR, XOR)
	4

	8-bit finite field log
	2

	8-bit finite field exp
	2

	8-bit finite field addition
	1

	8-bit finite field multiplication
	7 (log + log + add + exp)

	8-bit finite field multiplication plus 32-bit memory read or write
	7

Based on the above table, we measure the complexity of a FEC code in the following processes.

1. Encoding complexity:

A. The first phase (operations to determine the relationships between source and repair symbols): # of operation for given K.
Where, K = 50, 100, 200, 400, 800, 1600, 3200, 6400 and 32000.
B. The second phase (operations to calculate repair symbols using the results the first phase): # of operations per repair (parity) symbol

2. Decoding complexity:

A. The first phase (operations to determine the relationships between received and missing source symbols): # of operation for given K.
Where, K = 50, 100, 200, 400, 800, 1600, 3200, 6400 and 32000.
B. The second phase (operations to calculate missing source symbols using the results the first phase): # of operations required to recover one missing source symbol

3 Memory requirement

3.1 Introduction

The memory requirement of the algorithm is actually two separate but related things:

· The memory taken by the complied executive code itself.
· Amount of temporary “dynamic memory” allocated during the processing.
In particular, these are also implementation-specific. For example, it is possible to make an algorithm faster at the expense of memory. Using the same arguments in the previous section, we recommend an implementation-independent criterion for memory requirement.

3.2 Performance Metrics

The memory required to specify a new code should be reported which includes memory to store

· Lookup tables
· Systematic indices
4 Conclusion

It is proposed to add the code complexity evaluation in sections 2 and 3.
