3GPP SA4#65
S4-110692
Kista, Sweden, August 15-19, 2011
Title:
Inefficiency in coding the algebraic codebook indices in AMR-WB
Source:
Research In Motion

Agenda Item:
7
Document for:
Information and Discussion
1 Background
AMR-WB operates on frames of 20 msec. The input to AMR-WB is downsampled to 12.8 kHz to encode the band 50 Hz – 6.4 kHz. There are 4 subframes of 5 msecs each. At a 12.8 kHz sampling rate, this means that the subframe size is 64 samples long.

With ACELP, the fixed codebook portion of the excitation is an “algebraic codebook”. An algebraic codebook consists of choosing the locations for signed pulses of equal amplitude as a subframe excitation. In the case of AMR-WB, the 64 sample locations are divided into 4 interleaved tracks of 16 samples each. Choosing the fixed codebook excitation means finding the optimal locations of pulses in each track. The number of pulses that are used in each track varies according to the bitrate.
The 23.05 kbps and 23.85 kbps modes both use 6 pulses per track. There are
[image: image1.wmf]8008

6

16

=

÷

÷

ø

ö

ç

ç

è

æ

 different vectors of length 16 that have 6 pulses. Since
[image: image2.wmf]8008

8192

2

13

>

=

, it is clearly possible to encode the 6 pulse locations using 13 bits. Also the 6 pulse signs can obviously be encoded with 6 bits. Therefore the locations and signs of the pulses can be encoded with a total of 19 bits. The pulses are encoded with 22 bits in the AMR-WB specification. Since there are 4 tracks per subframe and 4 subframes per frame, improved efficiency in the encoding of the pulses could save a total of 3 x 4 x 4 = 48 bits per 20 msec frame. Since there are 50 frames per second, a total of 50 x 48 = 2400 bits per second could be saved with the top two rates of AMR-WB.
The 19.85 kbps mode uses 5 pulses in 2 of the 4 tracks and 4 pulses in the other 2. There are
[image: image3.wmf]4368

5

16

=

÷

÷

ø

ö

ç

ç

è

æ

 different vectors of length 16 that have 5 pulses. Since
[image: image4.wmf]4368

8192

2

13

>

=

, it is possible to encode the 5 pulse locations using 13 bits. Also the 5 pulse signs can be encoded with 5 bits. Therefore a track with 5 pulses can be encoded with 18 bits. There are
[image: image5.wmf]1820

4

16

=

÷

÷

ø

ö

ç

ç

è

æ

 different vectors of length 16 that have 4 pulses. Since
[image: image6.wmf]1820

2048

2

11

>

=

, it is possible to encode the 4 pulse locations using 11 bits. Also the 4 pulse signs can be encoded with 4 bits. So a track with 4 pulses can be encoded with 15 bits. Therefore the algebraic codebook index for one subframe can be encoded with 15+15+18+18 = 66 bits. The AMR-WB speech codec encodes the algebraic codebook index for one subframe with 72 bits. Since there are 4 subframes per frame and 50 frames per second in AMR-WB, a total of 6 x 4 x 50 = 1200 bits per second could be saved with a more efficient coding for the 19.85 kbps mode.
The 18.25 kbps mode uses 4 pulses in each of the 4 tracks. As mentioned previously, these pulses can be encoded with 15 bits. Therefore the algebraic codebook index for one subframe can be encoded with a total of 4x15 = 60 bits. The AMR-WB speech codec encodes the algebraic codebook index for one subframe with 64 bits. Since there are 4 subframes per frame and 50 frames per second in AMR-WB, a total of 4 x 4 x 50 = 800 bits per second could be saved for the 18.25 kbps mode.

2 The technique of coding pulses in AMR-WB and where it becomes inefficient
Encoding 1 pulse is obvious. If there are 16 possible positions you need 4 bits to encode the position + 1 bit for the sign for a total of 5 bits. This is easily extendible when the number of positions is a power of 2. In general if we have
[image: image7.wmf]M

2

 positions then we need
[image: image8.wmf]1

+

M

 bits to encode a single pulse. An efficient way of encoding 2 pulses is also described in the specification. If we were to encode the 2 pulses independently, then we would use
[image: image9.wmf]2

2

+

M

bits. However, the order of the 2 pulse positions in the index is irrelevant, so we know that some redundancy exists. We can remove one bit of redundancy by using the order of the pulses in the index to encode one of the sign bits and only explicitly encode one of the pulse signs. In other words, if the pulse position values are in increasing order in the index, then we have one sign and if they are in decreasing order then we have the opposite sign. This is an efficient way of encoding 2 pulses with
[image: image10.wmf]1

2

+

M

 bits.
The technique for encoding 3 pulses is to divide the track into two equal sections. We know that one of the sections has to have at least 2 pulses in it. So the method used is to encode 2 pulses in 8 positions (we know from above that this takes
[image: image11.wmf]1

2

+

M

= 2.3+1=7 bits), 1 bit to determine which of the two sections has at least 2 pulses, and then we assume that the 3rd pulse could be in any of the 16 locations, so to encode this single pulse takes 5 bits. So in total we need 7+1+5 = 13 bits. For this particular case of 16 possible pulse locations (
[image: image12.wmf]4

=

M

), the method described is efficient. However, for other possible values it is not efficient. Consider the case of
[image: image13.wmf]3

=

M

. According to the described method of encoding 3 pulses, we would need
[image: image14.wmf]10

1

1

1

)

1

(

2

=

+

+

+

+

-

M

M

bits. However we know that this is not efficient because there are
[image: image15.wmf]÷

÷

ø

ö

ç

ç

è

æ

3

8

 = 56 ways to choose the 3 pulse positions. Therefore we could encode the positions with 6 bits and use 3 sign bits for a total of 9. The fact that the technique for 3 pulses is not efficient for smaller values of
[image: image16.wmf]M

 is significant because for higher numbers of pulses the method described in the specification is to divide the track into two equal sections and to encode pulses in each section.
 Encoding 4 pulses in the AMR-WB specification uses the technique of subdividing the track into two equal sections,
[image: image17.wmf]A

and
[image: image18.wmf]B

. Let
[image: image19.wmf]a

 be the number of pulses in section
[image: image20.wmf]A

 and
[image: image21.wmf]b

 be the number of pulses in section
[image: image22.wmf]B

. Then it is obvious that the only possibilities for the ordered pair (
[image: image23.wmf]a

,
[image: image24.wmf]b

) are (0,4), (1,3), (2,2), (3,1), and (4,0). Each of these cases is encoded separately and then additional bits are used to distinguish the cases. This means that for the cases of (1,3) and (3,1), 3 pulses in a section are encoded using the above method. However, now they are encoded in a section of 8 possible locations, which we have previously shown to be inefficient. The cases of (0,4) and (4,0) are encoded by further subdividing the section with 4 pulses into 2 more equal sized sub-sections. At least one of these sub-sections has to have at least 2 pulses. So if we encode 2 pulses in this subsection (
[image: image25.wmf]2

=

M

), then according to previous analysis we need 5 bits. One additional bit is used to determine which subsection has at least 2 pulses and the other 2 pulses (which could be in either sub-section) are encoded across the whole section with
[image: image26.wmf]3

=

M

 and we therefore need 7 bits to encode them. So the total number of bits needed to encode 4 pulses in one section with this method is 5+1+7 = 13 bits. This is inefficient since we know that because
[image: image27.wmf]÷

÷

ø

ö

ç

ç

è

æ

4

8

 = 70, the pulse positions could be encoded with 7 bits and with 4 sign bits we only actually need 11 bits to encode 4 pulses in one section.
The method of dividing the track into sections and considering the different possibilities for the number of pulses is continued for 5 pulses and 6 pulses, where it becomes more and more inefficient.
3 An Alternative Approach

Here an alternative approach for encoding and decoding 6 pulses in a track is described. The technique is analogous for 5 pulses and 4 pulses.
If the pulse positions are
[image: image28.wmf]15

0

6

5

4

3

2

1

£

<

<

<

<

<

£

i

i

i

i

i

i

, then the set of vectors of length 16 with 6 pulses can be partitioned into 11 subsets based on the 11 possible values of
[image: image29.wmf]6

i

 . There are
[image: image30.wmf]÷

÷

ø

ö

ç

ç

è

æ

5

15

 vectors that have
[image: image31.wmf]6

i

 = 15, there are
[image: image32.wmf]÷

÷

ø

ö

ç

ç

è

æ

5

14

 vectors that have
[image: image33.wmf]6

i

 = 14, etc. So, we have
[image: image34.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

5

5

...

5

14

5

15

6

16

. We can therefore use the value of
[image: image35.wmf]6

i

 to select the starting indices for the vectors in each of these sets. For example if
[image: image36.wmf]6

³

n

, then we know that there are
[image: image37.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

å

-

=

6

5

1

5

n

k

n

k

 EMBED Equation.3 [image: image38.wmf]vectors that have
[image: image39.wmf]6

i

 less than
[image: image40.wmf]n

. Therefore we can give vectors in the set with
[image: image41.wmf]6

i

=
[image: image42.wmf]n

 an index of
[image: image43.wmf]÷

÷

ø

ö

ç

ç

è

æ

6

n

 or higher. So we are assigning the block of indices
[image: image44.wmf]÷

÷

ø

ö

ç

ç

è

æ

6

n

 through
[image: image45.wmf]1

6

1

-

÷

÷

ø

ö

ç

ç

è

æ

+

n

 to the set with
[image: image46.wmf]6

i

=
[image: image47.wmf]n

. We have not yet said how to assign indices from this block to vectors within the set. However, just as we did with
[image: image48.wmf]6

i

, within any of these sets we can further organize the indices according to the value of
[image: image49.wmf]5

i

 and this process can be repeated for
[image: image50.wmf]4

i

,
[image: image51.wmf]3

i

,
[image: image52.wmf]2

i

, and
[image: image53.wmf]1

i

. The result is that any vector with 6 pulses can be encoded as the sum
[image: image54.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

1

2

3

4

5

6

1

2

3

4

5

6

i

i

i

i

i

i

 (where
[image: image55.wmf]÷

÷

ø

ö

ç

ç

è

æ

k

n

 for
[image: image56.wmf]k

n

<

 is defined to be 0). To decode an index
[image: image57.wmf]x

, we first find the largest value of
[image: image58.wmf]n

 such that
[image: image59.wmf]÷

÷

ø

ö

ç

ç

è

æ

6

n

 is still less than
[image: image60.wmf]x

. This is
[image: image61.wmf]6

i

. We then subtract
[image: image62.wmf]÷

÷

ø

ö

ç

ç

è

æ

6

6

i

 from the value of
[image: image63.wmf]x

 and store this as
[image: image64.wmf]x

. Now, we find the largest value of
[image: image65.wmf]n

 such that
[image: image66.wmf]÷

÷

ø

ö

ç

ç

è

æ

5

n

 is still less than x. This is
[image: image67.wmf]5

i

. We then subtract
[image: image68.wmf]÷

÷

ø

ö

ç

ç

è

æ

5

5

i

 from the value of
[image: image69.wmf]x

 and store this as
[image: image70.wmf]x

. Similarly, this process is repeated until all pulse positions are found.
What is described above is one possible coding. There are many equivalent encodings based on arithmetic coding.

4 Conclusion

AMR-WB has 9 speech coding rates. In kilobits per second, they are 23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85, and 6.60.

The algebraic codebook indices for the 4 highest rates of AMR-WB could be coded more efficiently, i.e. without any loss of information a reduction in bitrate is possible.
2400 bps could be saved off the top two rates, 1200 bps off the 3rd highest rate, and 800 bps off the 4th highest rate.

So 23.85->21.45, 23.05->20.65, 19.85->18.65, 18.25->17.45.

_1318183768.unknown

_1318186816.unknown

_1318188986.unknown

_1318189387.unknown

_1318190314.unknown

_1318190541.unknown

_1318191367.unknown

_1318189556.unknown

_1318189228.unknown

_1318187927.unknown

_1318188881.unknown

_1318187036.unknown

_1318183859.unknown

_1318186768.unknown

_1318183924.unknown

_1318183787.unknown

_1318183819.unknown

_1317131171.unknown

_1317131425.unknown

_1317131802.unknown

_1317131833.unknown

_1317131215.unknown

_1315960601.unknown

_1315960871.unknown

_1315960759.unknown

_1315950997.unknown

_1315953765.unknown

_1315954539.unknown

_1315955526.unknown

_1315956032.unknown

_1315960490.unknown

_1315956187.unknown

_1315955962.unknown

_1315954830.unknown

_1315953921.unknown

_1315953970.unknown

_1315953824.unknown

_1315953599.unknown

_1315952354.unknown

_1315952723.unknown

_1315951540.unknown

_1315775195.unknown

_1315950236.unknown

_1315950370.unknown

_1315948326.unknown

_1315948786.unknown

_1315774932.unknown

