3GPP TSG-SA4#64
S4-110453
San Diego, USA, April 11 – 15, 2011

Source:

Telefon AB LM Ericsson, ST-Ericsson SA
Title:
Impact of time scaling on EVS complexity
Document for:
Discussion and approval
Agenda Item:
6
1 Introduction
This contribution deals with jitter management using time scaling and the impact on the codec complexity.

Jitter management without time scaling usually only adapts the jitter buffer level during the background noise or silence periods in-between the speech bursts. Such jitter management may add or remove speech frame also during active speech, but doing so often results in some kind of distortions, which often is clearly audible. Hence, good implementations try to avoid to modifying the signal during active speech and only allows for “emergency adaptation”, for example if the jitter buffer would run out of frames.

Time scaling is a function that can stretch or shorten sound signals with no or little distortions in the speech signal. Time scaling is therefore sometimes used as a part of the jitter management to allow for adapting the jitter buffer to changing jitter also during active speech.
Section 2 shows that time scaling will change the complexity of the decoder. The design constraints, [1], include a number of requirements for the EVS codec complexity. These requirements do not yet address the impact of time scaling. A proposal for how to take time scaling into account is presented in Section 4.

2 Time scaling and complexity
Figure 1 shows an example receiver where the time scaling is implemented as an external function, relative to the speech decoder. It should however be noted that whether the time scaling function is external or built-in into the source decoder makes no difference for the current discussion.

[image: image1.emf]

RTP unpack

RTP packets

Receiver

J itter buffer Decoder with ECU Play - out buffer Time scaling

JBM c ontrol

A speech frame = 20 ms A speech frame = 20 +/ - x ms

Jitter - related information

Other information , e.g. processing limitations, memory constraints, etc...

D/A converter

Decoded speech

Figure 1.
Example receiver containing jitter management with time scaling
The jitter management is, briefly described, performed in the following way:
· The JBM control function receives information related to the amount of delay jitter that is induced by the channel. The information is for example (but not limited to): timing information when frames are inserted to the jitter buffer; or current jitter buffer level, often in relation to the jitter buffer target level and/or thresholds for the minimum and maximum levels. This information is used to determine what jitter buffer level that is needed to handle the jitter that occurs on the channel. This is the so called jitter buffer target level. If the jitter on the channel changes then the JBM control may decide to change jitter buffer target level.

· If the jitter buffer target level needs to be change during in-active speech, then this can easily be done by adding or removing frames in-between the SID frames that are sent during the DTX period. This can be handled by the JBM control and the jitter buffer and needs no involvement by the time scaling.

· If the jitter buffer target level needs to be increased or decreased during active speech then the JBM control instructs the time scaling unit to either stretch or compress the synthesized signal, respectively.
· Stretching the signal means that the decoder will decode frames less frequently. This means that frames are consumed from the jitter buffer at a lower frequency, which means that the jitter buffer level will increase to the new (higher) target level. Decoding frame less frequently means that the complexity of the decoder is reduced (in terms of operations per second) since fewer frames need to be decoded during a certain time period.

· Compressing the signal means that the decoder will decode frames more frequently. This means that frames are consumed from the jitter buffer at a higher frequency, which means that the jitter buffer level will decrease to the new (lower) target level. Decoding frame more frequently means that the complexity of the decoder is increased (in terms of operations per second) since more frames need to be decoded during a certain time period.

· When the JBM control instructs the time scaling to stretch/compress the signal then it typically do this by defining a target stretching/compression value, for example “add 27 ms” or “remove 19 ms”, which the time scaling unit should then attempt to achieve. However, what amount of time scaling that is possible depends on the signal. Some signals, e.g. transients, are often hard or impossible to stretch or compress, at least if one wants to avoid distortions. Other signals, e.g. stationary voiced, are quite easy to stretch or compress, even without causing any distortions. It may therefore take several frames before the requested stretching or compression is achieved. The time scaling unit therefore signals the achieved time scaling amount back to the JBM control.
With this, it should be clear that the complexity of the decoder will vary with the amount of stretching and compression that is performed by the time scaling unit. The peak complexity of the decoder, measured in wMOPS, may therefore deviate from the average complexity, even if the number of cycles used for one decoding of one frame would be constant.
This is currently not taken into account in the design constraints.
3 Implementation aspects
When implementing a codec on a real platform, one has to consider the processing and memory capabilities of that platform. This may put constraints on how much and how frequent time scaling can be performed. It also means that the complexity, as measured during the processing of the speech files in the SA4 testing, may not be very representative for real implementations if the codec in the SA4 simulations performs lots of time scaling operations. Some platforms may allow for implementing the EVS codec, but only if limitations are applied to the time scaling or when time scaling is completely disabled.
Hence, to determine whether the EVS codec can be implemented on a certain platform, the implementer needs to know the complexity both with and without time scaling.

It should be obvious that this information is needed as soon as the EVS candidate codec modifies the length of the synthesized frame. Whether the time scaling is a separate unit outside the decoder or whether it is integrated into the source decoder algorithm also makes no difference.

4 Proposal
It is proposed that:

If the EVS codec candidate uses time scaling for jitter management then the complexity of the decoder should be reported both with and without time scaling.

The worst case complexity without time scaling (
[image: image2.wmf]woTS

WOC

) is defined as (assuming a frame length of 20 ms):

	
[image: image3.wmf]02

.

0

))

(

(

i

woTS

frame

erations

numberOfOp

worstCase

WOC

=

	Eq. 1

The worst case complexity with time scaling (
[image: image4.wmf]wTS

WOC

) is defined as (assuming a frame length of 20 ms):
	
[image: image5.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

)

(

)

(

*

02

.

0

)

(

i

i

i

wTS

frame

les

mberOfSamp

producedNu

frame

s

erOfSample

normalNumb

frame

erations

numberOfOp

worstCase

WOC

	Eq. 2

where:

[image: image6.wmf])

(

i

frame

s

erOfSample

normalNumb

 is the number of samples that the decoder would have produced, for the given frame, if time scaling would not have been used, and:

[image: image7.wmf])

(

i

frame

les

mberOfSamp

producedNu

 is the number of samples that the decoder produces, for the given frame, after time scaling has been applied.

The table below describes how the proposal can be implemented in the design constraints. The table below is taken from [1]. Change marks were removed before adding the proposed text.
	Complexity
	Complexity limits are applied according to the following categories. The complexity of the codec for each category shall be measured with ITU-T STL2009 [REF to STL] as the observed worst-case encoder + observed worst-case decoder complexity within the same category:
· Required operation modes (up to SWB, mono) incl. required functionality (e.g. VAD/DTX/CNG) excluding AMR-WB interoperable modes (see below) and codec support functions (see below)

Computational:

wMOPS
(85 wMOPS, approximately 2 x wMOPS complexity of AMR-WB estimated with ITU-T STL2009.

Memory:
RAM
([80, 105, 128] kwords (([12, 16, 20] (RAM of AMR-WB speech codec: [TBD] kwords)

ROM
([50, TBD, as low as possible, implementable] kwords (([5] x ROM of AMR-WB speech codec: [TBD] kwords)

Program ROM ([TBD, as low as possible, implementable]*Program ROM of AMR-WB speech codec (=[TBD] * [TBD] ETSI basic operators)

· AMR-WB interoperable modes incl. VAD/DTX/CNG excluding codec support functions (see below)

Computational:

wMOPS
([55, 60] wMOPS, [1.28, 1.4] x wMOPS complexity of AMR-WB estimated with ITU-T STL2009

Memory

RAM
([26, TBD] kwords (([4] (RAM of AMR-WB speech codec: [TBD] kwords)

ROM
([30, TBD] kwords (([3] x ROM of AMR-WB speech codec: [TBD] kwords)

Program ROM ([2, TBD]*Program ROM of AMR-WB speech codec (=[TBD] * [TBD] ETSI basic operators)

· Recommended and optional operation modes excluding codec support functions (see below)

Computational:

wMOPS
([90, 95, 100, 125, 170] wMOPS, [2.1, 2.2, 2.3, 2.9, 4.0] x wMOPS complexity of AMR-WB estimated with ITU-T STL2009

Memory

RAM
([TBD, 210] kwords (([TBD, 32] (RAM of AMR-WB speech codec: [TBD] kwords)

ROM
([70, TBD, as low as possible, implementable] kwords (([TBD] x ROM of AMR-WB speech codec: [TBD] kwords)

Program ROM ([TBD, as low as possible, implementable]*Program ROM of AMR-WB speech codec (=[TBD] * [TBD] ETSI basic operators)

· Support functions: audio resampling, (per channel)

Computational:

wMOPS
(3 wMOPS, ≈ 0.07 x wMOPS complexity of AMR-WB estimated with ITU-T STL2009

Memory

RAM
([0.2, TBD] kwords (([TBD] (RAM of AMR-WB speech codec: [TBD] kwords)

ROM
([0.2, TBD] kwords (([TBD] x ROM of AMR-WB speech codec: [TBD] kwords)

Program ROM ([0.01, TBD]*Program ROM of AMR-WB speech codec (=[TBD] * [TBD] ETSI basic operators)

.
	6.1.5
	The EVS Codec should be implementable on a mobile device using today’s technology. The EVS codec should provide low computational complexity not significantly exceeding the design limits set during the AMR-WB codec standardization, and should have low memory usage. Increased computational complexity and memory usage should be commensurate with the gain in quality of user experience (e.g. higher audio bandwidth such as SWB or stereo if it is supported) or with increased efficiency (e.g. lower bit rate for same quality when compared to a reference codec).

The complexity of the EVS speech decoder shall be reported without time scaling (WOCwoTS).

If the EVS codec candidate uses time scaling then the complexity with time scaling (WOCwTS) shall also be reported.
The complexity of the decoder without time scaling is calculated according to Eq. 1.
The complexity of the decoder with time scaling is calculated according to Eq. 2.

The sources would like to leave it for discussion whether the complexity design constraints should apply to the nominal worst case codec complexity without time scaling or the worst case complexity with time scaling. It is in any case felt important for implementations that the worst case complexity with time scaling is reported.
5 References
[1] S4-110373, “EVS Permanent Document #4 (EVS-4): EVS design constraints”, v0.6.0.
_1363516411.unknown

_1363543807.doc

[image: image1]

RTP unpack

RTP packets

Receiver

Jitter buffer

Decoder with ECU

Decoded speech

JBM control

A speech frame�= 20 ms

Time scaling

Play-out buffer

A speech frame�= 20 +/- x ms

Jitter-related information

Other information, e.g. processing limitations, memory constraints, etc...

D/A converter

_1363515593.unknown

_1363516108.unknown

_1363516160.unknown

_1363515685.unknown

_1363515568.unknown

