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1. Introduction

The presented evaluation results target the use case "Adaptive HTTP streaming and caches". First results have been presented at SA4#61 in S4-100826 on "Caching efficiency improvement with SVC for HTTP-based video on demand". During the discussion in the IVCS group some additional evaluation have been requested by the group which are the inclusion of the last mile overhead, a chunk based caching, and different request probability distributions.
2. Overview

Progressive Download over HTTP, typically used in VoD, takes advantage of the widely deployed network caches to relieve video servers from sending the same content to a high number of users in the same access network. Since the connection characteristics may vary over the time, with adaptive Streaming over HTTP, a technique that has been recently proposed, video clients may dynamically adapt the requested video quality for ongoing video flows, to match their current download rate as good as possible. One possibility to provide adaptive streaming over HTTP is to encode multiple representations of each of the videos with H.264/AVC at the server and offer them side-by-side. Another is offering all these representations embedded in one file via Scalable Video Coding (SVC). The presented simulations compare the impact of multiple chunk based content representations on the caching efficiency either using H.264/AVC or SVC. Similar simulation results without chunks have already been presented in [2].
Figure 1 schematically shows a network over which a video library is offered by a Video on Demand (VoD) service. The operator of the access network (i.e., the cloud in the figure), offers connectivity to its customers via access links and connects to the Internet (where the content library is offered on an origin server by a third party) over a “transit” link, in the following referred to as the cache feeder link. In that way the customers of the access network operator can access video content, in particular the movies on the origin server. The network operator deploys a proxy and a cache in its network to minimize the amount of transmitted data through the “transit” link relieving the server of having to send an extremely high amount of video data. Since the cache is usually too small to host the complete video library and the content library on the origin video server often changes, the video files that are stored in the cache at every moment need to be carefully selected. This is accomplished by an appropriate caching algorithm.
[image: image1.emf]
Figure 1: A typical network, hosting a cache, over which content is offered.

There are many different cache replacement algorithms that have been proposed over the last years that optimize the caching performance based on some special criteria. Most algorithms make decisions based either on how recently an object has been requested or on how frequently an object has been requested over a time period or a combination thereof. In [1] the chunk-based delivery (video files downloaded in smaller parts thereof, i.e. chunks/segments) is exploited in a caching context. In this work the chunks that will be consumed in a near future with a high probability are predicted, assuming that it is very likely that a user playing chunk n of a given video file at the current moment will play chunk n+k of the same video file k time instants later.
2.1. Effect of Multiple Representations on the Caching Efficiency
In this contribution, we consider the scenario where users may request a certain video clip in one of a possible set of resolutions or quality versions. Hence, each video offered by the origin server must be encoded in a given number (N) of bit rates. These N versions can be encoded separately with AVC and offered side by side, a scenario we refer to as “Multi-Representation VoD (MR-VoD)”, or can be embedded in a multi-layer representation which allows for further separation into file subsets (layers) using SVC, a scenario we refer to as “SVC-VoD”. We discuss the impact of the former first and comment on the latter.

Compared to the scenario in which only one version is offered (which we refer to as the “Single-Representation VoD (SR-VoD)” scenario), in the MR-VoD scenario, the requests for a particular video clip are distributed over its N versions.
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Figure 2: Caching efficiency reduction result of offering a higher variety of representations (e.g. 4) for each file.

If each of the versions associated with a video clip is requested with more or less equal probability, the ranking in the MR-VoD scenario is almost the same as in the scenario with only one version: instead of occurring only once, each video clip occurs N times in that ranking, but with high probability in a block of N consecutive ranks. A consequence of this is that if a certain version of a video is cached it is highly likely that all other versions need to be cached as well. Consequently, in order to attain the same cache-hit-ratio in the MR-VOD scenario as in the SR-VOD scenario, the cache should be able to store all N versions of the video instead of just one. Since storing N versions side by side requires more storage, a larger cache size/capacity is needed to attain the same hit ratio. Conversely, if the same cache capacity is used, a lower cache-hit-ratio results, as illustrated inFigure 2. Note that based on a similar reasoning (and as described in more detail in Section 2.2) the SVC-VoD scenario could attain the same hit ratio with practically the same cache size. 
2.2. Scalable Video Coding and Impact on the Caching Efficiency
The main difference between MR-VoD and SVC-VoD is illustrated in Figure 3. It can be seen that by using SVC much more video clips at different representations can be stored in the cache, while with MR-VoD many files have to be removed from the cache to obtain additional space for the new incoming files or versions of them.
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Figure 3: Caching performance comparison for MR-VoD and SVC-VoD

When considering a VoD service with multiple available representations based on layers of SVC, first the amount of data that has to be transmitted to and stored in the cache is reduced compared to the MR-VoD case, and second, more clients request the same data (layers) since clients requesting different representations of a same video clip are expecting to receive a set of layers, where some layers are common for all of those requests, e.g. the base layer. Thus, the HTTP request for a certain quality results in a multiple HTTP request for each of the mentioned layers and all requests for a single content incorporate at least the base layer representation. Consequently, the probability of a cache-hit for files containing the lowest layers of SVC streams, which most of the users are interested in, is increased.
Note that requesting multiple layers for each segment could be done in twofold manner. One is within one single TCP connection requesting each layer after the other. The first approach (single TCP connection) introduces additional buffering requirement (for lower layer segments) at the clients, in addition to the playout delay, since client has to wait until highest layer segment is received before playout can start. Another possibility could be to setup parallel TCP connections. The second approach (parallel TCP connections) would reduce (but not eliminate) this buffering and playout delay but introduces additional HTTP overhead (new connection per layer). The simulation results analyze the effect of different video codings on the caching efficiency. Therefore, the impact on the buffering requirements at the clients is not considered here.
3. Model
3.1. User demand and network set up

The simulations are based on real data statistics. The requests have been extracted from the observation of a deployed VoD service. The statistics have been measured within the time period of one month. The provided VoD service offers a wide variety of movies of more than 5000 files among which the users can make their selection from. In these statistics an average of about 3400 requests per day is reported. Further statistics on the data are given in Figure 4, Figure 5, Figure 6, and Table 1.
Figure 4 shows the number of requests issued by all users for all files grouped per hour. A clear diurnal and weekly pattern can be observed. Day 1, 8, 15, 22 and 29 seem to have the largest peaks and these days were identified as Saturdays. 
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Figure 4: Requests statistics
Figure 5 shows the average over 30 days of the diurnal pattern. That is, the evolution over each individual day was cut out of the evolution shown in Figure 4 and these 30 curves were averaged. It can be seen that the peak demand occurs at 8pm.
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Figure 5. Number of requests per hour averaged over 30 days.

Figure 6 shows the popularity evolution for the 10 most popular multimedia objects. The number of requests for a particular media object is accumulated over a day (so that diurnal effects cannot be seen). The weekly patterns can be observed with peaks on the Saturdays and although not very prominent some multimedia objects expose an aging effect, i.e., as time goes by the interest in them decreases. 
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Figure 6. Number of requests accumulated over one day for the 10 most popular files.


Table 1 shows the distribution of the requests for the films.
Table 1: Nb of requests for the films within the time period of 31 days
	Nb of requests
	% of nb of films
	Cumulative percentage

	300 - 691
	0,312%
	0,312%

	200 - 299
	0,502%
	0,814%

	100- 199
	1,679%
	2,493%

	 30-99
	7,201%
	9,694%

	1-29
	76,355%
	86,049%

	0
	13,952%
	100%


The requests extracted from the real data are distributed among the users connected to the service, and congestion is simulated as described below in Section 3.3.

3.2. Caching algorithm

The performance of the cache is here analyzed for two different caching algorithms (operating on chunks):
· LRU: where the most recently requested chunks are kept in the cache.  

· CC: An algorithm described in [1] that takes into account the number of guaranteed hits of chunks (if the HTTP streaming client keeps on selecting the same version as it currently does), which uses an improved movie content scoring algorithm that combines the LRU and LFU basics.
In case of considering SVC there are n chunks per time interval, where n corresponds to the number of layers. In other words, the layers are transmitted and stored in the cache separately and therefore count as different objects for the cache-hit-ratio evaluation. In case of offering the n version side by side via AVC, each time interval has n independent versions, in the sense that if one version is cached and another is requested no cache hit can be counted.

3.3. Congestion control

Clients (on the same access network) of a multimedia service typically share (transport and caching) resources with other multimedia clients and/or users downloading any type of data from the Internet, which produces some cross-traffic in the network causing congestion. This results in a temporarily reduced available download rate for the clients of the service.

These clients (HTTP streaming-clients) detect these variations in the connection rate available to them and adapt the bit rate at which they download their ongoing video stream, by requesting the following chunks/segments in an appropriate version. Therefore, every time a user requests a new chunk of a video an additional decision has to be made with respect to which version it will be download. This choice depends on:

•
the capability of the terminal of the user.

•
the congestion state between the cache and the end user (i.e., the access). If requesting the version that a user wants to download would congest the link, this request is downgraded as many times as needed to alleviate congestion.

On the access link other services run (i.e., a user may be downloading a large file, may be browsing the web, etc.) besides the HTTP streaming video client streaming a video. This type of congestion can occur any time of the day and is not necessarily restricted to peak hours. The model for this type of congestion that we have simulated in this paper is shown in Figure 7. This figure illustrates a Markov-chain with four states corresponding to four possible download rates and selected OPs.
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Figure 7: Model for congestion due to cross-traffic

In fact we assume that the cross traffic on the access link which is the result of sharing this link with one or more HTTP streaming clients or any other client requesting data from the Internet is such that the HTTP streaming client requesting the version in the next slot, can be described by a Markov chain. 

As seen in Figure 7 this Markov chain consists of four states where the transition probabilities pij of the transition matrix P=[pij] with |j-i|>1 are set to zero, i.e. it is only possible to go from a state to its neighbour states. The rest of the parameters (represented in the figure) were set to values that lead to realistic situations.

The most important parameters to take into account to consider whether the selected values correspond to a realistic situation or not are the mean state sojourn time (mean duration of being in a state: E[ti]) and average percentage of time in each of the states (pi), which can be derived easily from the transition probabilities, as shown in Eq.(1) and Eq.(2). 
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where, π={p1,p2,p3,p4}is the left eigenvector of P (associated with eigenvalue 1), a.k.a. steady state vector, which fulfils
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The simulation time step in the presented Markov-chain model corresponds to the selected chunk size, since the adaptation is performed by the HTTP streaming clients on a chunk basis.
3.4. Performance targets

In order to compare the system where the different version of a video are offered encoded in AVC side by side with the system in which the versions are embedded in one SVC stream, we consider cache-hit-ratio and cache capacity:

· The cache-hit-ratio: calculated on a chunk basis, or when SVC is considered on smaller objects, corresponding to each of the layers of each of the chunks. It represents the percentage of these objects that can be served from the cache and do not need not to be transported over the cache feeder link.
· The cache capacity is measured in media units, which are equivalent to the size of a video clip of 90 minutes at 500 kbps (1 media unit=337.5 MB).

4. Simulation results

The results presented in the following show the performance of the system comparing both multiple representations encoded with AVC (MR-VoD) offered side-by-side and multiple representations encoded with SVC (SVC-VoD). The rate distribution for the different video representations is summarized in the table below with an SVC overhead of 10% using bit rate adaptation with quality scalability and one quality layer as similarly shown in [2].
Each of the video clips is offered at four different encoding bitrates. The bitrate assumptions for AVC and SVC encodings are summarized in Table 2.

Table 2: Rate distribution for the video representations

	
	Rep. 1
	Rep.2
	Rep.3
	Rep. 4

	AVC
	500 kbps
	1000 kbps
	1500 kbps
	2000 kbps

	SVC
	500 kbps
	1066 kbps
	1633 kbps
	2200 kbps



The chunk length is 10s.
The results shown in Table 3 correspond to the case where the bottleneck is the access link, as a consequence of some cross-traffic produced by other users. The transition probabilities can be found in the following transition matrix.
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The shown transition probabilities correspond to an adaptive HTTP client that spend on average an equal percentage of time in each state of 25%, in the following referred to as heavy cross traffic.
Table 3: Cache-hit-ratio for congestion in access links

	Cache capacity

(media units)
	LRU
	CC

	
	AVC
	SVC
	AVC
	SVC

	500
	 30.9 %
	45.6 % (+14.7%)
	42.9 %
	56.6 % (+13.7%)

	1000
	 42.1 %
	58.2 % (+16.1%)
	52.0 %
	64.5 % (+12.5%)

	2000
	54.6%
	69.0% (+14.4%) 
	61.5%
	72.0% (+11.5%)


The results in Table 3 show the difference between the use of AVC and SVC for both caching algorithms LRU and CC. Different versions of the requested videos are stored in the cache which leads to a spoilage of the available storing capacity of the cache when a single layer codec is considered, whereas when SVC is used the available resources are much more efficiently used. A similar effect was observed in S4-100826. Furthermore, the hit-ratio increases due to the fact that many users make requests for the same data since, even though they may be interested in different version of the same video, their requests are split into multiple request, one associated with each layer that they are requesting. Since the layers built on top of each other, a user requesting layer k, needs to request layer 1 to k-1 too. In particular the base layer is requested by everyone.

Since the difference between both AVC and SVC are more disparate for this case we have conducted the simulations for a higher range of values for cache capacity (C) only focusing on the LRU caching algorithm, leading to the results shown in Figure 8.
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Figure 8: Congestion due to heavy cross traffic

In this figure, the cache-hit-ratio over cache capacity is depicted. It can clearly be seen how the use of SVC improves the performance of the system in terms of cache-hit-ratio compared to the use of MR-VoD. It is also noticeable that the cache-hit-ratio for the AVC case is even lower than for the highest layer (layer 4) when SVC is used almost for all cache capacity values, since the storage capacity at the cache runs out faster with the higher diversity in requested files due to using the MR-VoD approach. Furthermore, the caching performance for the base layer is significantly higher compared to the other files and layers as the number of request for this is higher than for the other layers or different representations when AVC is considered.
The increased cache hit ratio leads to an reduced traffic through the "transit" link, which is shown in Figure 9 for SVC-VoD and MR-VoD for heavy cross traffic and LRU algorithm. 
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Figure 9: Average traffic through the “transit” link

The number of representations influences the saved traffic on the transit link as shown in Figure 10.
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Figure 10: Saved traffic in the transit link with the use of SVC for different number of representations
In Figure 11 it is shown how the SVC penalty influences the performance of the cache hit-ratio.
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Figure 11: Cache hit-ratio for different SVC encoding overhead (0% to 20 %)
Figure 12 shows the cash-hit-ratio for a different set up of the simulation, simulating a situation with less heavy cross traffic, resulting in the HTTP streaming client residing in the highest state (4) more often. In this case, the percentage of time in each state is unequal with p={9.1%, 9.5%, 19.1%, 62.3%}, as well as the mean state sojourn time E[ti]=(approx.){2s, 2s, 10s, 40s}, which may be closer to that which may happen in the reality. The correspondent transition matrix is shown below:
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Figure 12: Cache hit-ratio for congestion due to light cross traffic
Although the variety of versions requested for this set up is supposed to be lower than in the case before, the gains of SVC-VoD compared to MR-VoD are still noticeable. Due to this reduced variability the MR-VoD performs slightly better than before but still quite poorly when compared to SVC-VoD. It can be also clearly seen how the cache-hit-ratio for the base layer is reduced (layer 1) and the cache-hit-ratio for the highest layer is increased (layer 4). If we keep on reducing the congestion all lines would converge.
The SVC penalty influences the traffic on the last mile. It is influenced by the SVC coding penalty itself but also by the congestion behaviour, since the base layer does not involve any overhead. Table 4 shows the average overhead for the two scenarios for two different assumed SVC overheads. With the assumed SVC overhead of 10% for heavy congestion it is 6.4% since the base layer is requested more often and 8.6% with light congestion, since the highest quality is requested more often. With an assumed SVC overhead of 20% the last mile overhead for the heavy congestion case is 12.7% and the light congestion of 17.2%.
Table 4: SVC last mile overhead

	
	Heavy congestion
	Light congestion

	Last mile overhead
(10% SVC overhead)
	6.4%
	8.6%

	Last mile overhead
(20% SVC overhead)
	12.7%
	17.2%


5. Conclusion

HTTP Progressive Download is a promising technique for video delivery in VoD services. However, providing a wide variety of files at different encoding rates, in order to satisfy all users with different capabilities, typically results in a sub-optimal performance of the network caches.

The adoption of SVC as a media codec enhances the efficiency of the network caches in comparison to the use of AVC at multiple encodings, significantly reducing the load on the video server.
6. Proposal

We propose to include the presented results to the current TR.
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