TSG-SA4#60 meeting
Tdoc S4 (10)0610
August 2010, Erlangen, DE

Source:
David Singer, Apple Inc.
Title:
On HTTP Streaming
Document for:
Discussion
Agenda Item:
7 (HTTP streaming)

1 Introduction

This is a discussion document on a variety of topics in HTTP streaming. Some of the discussion may be simply informative, some may result in Release 9 CRs, some in Release 10 feature work, when considered along with other input.

Overall, our sense is that for Release 10 – and maybe Release 9 CRs – we should build the reference software and actually experiment, for many of these (and other) areas. It can be hard to predict, for example, whether an MPD ‘size optimization’ actually shrinks or grows the MPD after gzip is applied. Similarly, client back-off and retry rules need experimentation, we feel, to be understood and refined.

Section (2) was contributed to MPEG recently as a separate document, and in the interests of harmony and convergence, it is repeated here for 3GPP (essentially verbatim).

2 General Observations and Design Points on HTTP-based streaming

2.1 Background

Over the past three years Apple has been working with Internet technology partners such as Akamai, major content providers such as Major League Baseball, Time/Warner and BSkyB, and leading tools vendors such as Inlet and Envivio to develop a highly-scalable broadcast streaming protocol that leverages the existing HTTP infrastructure to serve both live and pre-recorded content to mobile devices.

This protocol has been successfully deployed to deliver a wide range of commercial and non-commercial content to Apple's iOS devices. Examples include every Major-League Baseball game, multiple major PGA golf tournaments, World Cup, Tour de France, all NFL games, Hulu content library, Netflix content library, CNN news, Fox News, Al Jazeera (24/7), Hope for Haiti concert, MTV music and movie awards, Fox News, the NCAA Final Four tournament. Other companies have built proof-of-concept clients on other platforms; some are currently being productized.

In doing this work we have established several design points that we believe are important to the success of the protocol.

2.2 General
A good standard must enable the production of a wide variety of interoperable implementations that support a common set of useful features. This is the only sensible criterion for its success.

· Keeping the protocol simple increases interoperability.

· Reducing the number of optional features increases interoperability

Therefore:

· The choice of the core feature set must be disciplined. It must be feasible for every implementation.

· The protocol should support only a single way to answer a given question, which must be sufficiently-efficient. Redundant information at multiple levels creates opportunities for inconsistency.

· Options should only exist to provide a specific feature, and should specify a single way to obtain that feature.

In the domain of HTTP streaming, we have found that bearing a greater load of complexity in the client so that the server/provider may remain simpler significantly increases adoption and scalability. There are several reasons for this:

· Relatively speaking there are a small number of client implementations which are written by highly-skilled developers. There are many more content server/providers, of greatly varying skill level

· Implementation costs are often a barrier for content providers. Simple systems are less expensive to produce.

· Simpler systems are also less-prone to single vendor lock-in

· Server/provider variations require a great degree of customization. It is easier to customize a simple system.

· Server infrastructure scales better across simple services than complicated ones

Requiring a server to maintain a one-to-one relationship with each client does not scale.

HTTP streaming designs have largely converged on a model in which continuous content is broken up into individually-addressable segments which are referenced by a single playlist/manifest and transferred using HTTP. Within this general model, however, there are several design considerations:

· We have found that it provides valuable flexibility on the server if variants are incorporated by reference into a master playlist, so that each variant can be played independently of a master playlist, and that multiple master playlists can incorporate the same individual variants.

· We have also found that the overhead of downloading the playlist can be significant, particularly on slow networks

· Therefore we recommend that each variant exist as a separate download, and separate from the master playlist. They should not be packaged together into a single file.

We recommend that the variant advertisement include selection criteria such as required bitrate, required decoders, and video resolution.

2.3 Segments

2.3.1 Alignment of segments.

Requiring that segments align across stream variants (which are multiple versions of the content at different qualities) – i.e. segment X in variant 1 start and end at the same time as segment X in variant 2 – can impose difficult constraints on server implementations, particularly for live streams. The tighter the timing tolerances are, the higher the constraint. We have demonstrated that it is not necessary to require that segments be aligned. We recommend against this requirement, in the interests of server implementation simplicity.

2.3.2 I-frame Boundaries

Starting segments on I-frame boundaries: Requiring that each segment begin with an I-frame (e.g. an H.264 IDR) places a considerable constraint on server implementations. We have demonstrated that it is not necessary to start any segment with an I-frame. We recommend against this requirement, in the interests of server implementation simplicity.

2.3.3 Advertisement of I-frames.

Indicating where the I-frames lie within each segment in the playlist file can enable certain small optimizations. But it is not necessary to do so to enable seeking and switching between variants and it increases the complexity of the playlist file. Therefore we recommend that indicating I-frames should be optional for server implementations, and that clients be required to operate correctly (if less efficiently) without them.

2.3.4 Segment durations.

We have encountered several content-provision scenarios that require each segment to be of different duration. We recommend support for variable segment duration.

2.4 Timing Model

In order to manage the load of clients polling the playlist file of a live stream on the server, the design must specify a timing model that includes polling limits and failure backoff, but which does not allow a compliant client to miss the posting of new segments by a compliant server and thus run dry.

2.5 Edge compatibility.

We have demonstrated that HTTP streaming can be relayed by standard caching HTTP servers. We recommend that this be a requirement, in the interests of scale and adoption. The protocol must account for the cache latency (e.g. TTL) of these servers

2.6 Client/Server clock synchronization.

Requiring that the real-time clocks on the client and the server be synchronized to any degree of accuracy is a significant constraint on both. We have demonstrated that such a requirement is not necessary. We recommend that the protocol tolerate substantial real-time clock disagreement between client and server.

2.7 Bandwidth management.

Because the server cannot maintain a one-to-one relationship with a client (for reasons of scale), it cannot make any decisions that depend on connection bandwidth. It must offer a set of variants at bit rates it believes are reasonable (and may re-tune that decision based on subsequent analytics). But the client must control all decisions that rely on instantaneous connection bandwidth, such as amount to buffer before starting and when to switch bit rates.

2.8 Playlist Format

A simple playlist file format that is easy to read and dynamically generate has been very popular with adopters.

We recommend that the playlist file indicate the protocol version with which it complies.

We recommend (in retrospect) that durations be expressed as floating-point numbers of seconds

2.9 Lifetimes

In order to properly support a user-interface for seeking, the protocol must provide an efficient means to indicate segment lifetime. Note that in a live stream each segment may expire at a different time. However, there must be enough "slop" in this protocol to support playlist and media delivery via caching systems like CDNs where clocks are not necessarily synchronized.

We recommend that the presence of an element in a playlist file guarantees its availability from the server – subject to expiry rules – so that clients only need to deal with polling one thing, the playlist file.

2.10 Tracks/Streams

2.10.1 Alternate audio

Presenting alternate audio tracks as a completely independent presentation that must be synchronized with the video presentation places a considerable implementation burden on the client for managing its bandwidth decisions. We recommend that alternate audio be defined as a sidecar download on each media segment to simplify the client implementation.

2.10.2 Other Content, and Protection

For interoperability, it is important to specify the client treatment of tracks that it does not recognize.

The protocol should define a basic level of content encryption that does not require transferring media over SSL, and that does not require all clients and servers to implement a particular key-management system.

3 Profiles

3.1 Introduction

At the moment we have only one ‘profile’ – the release 9 specification. However, Open IPTV Forum has already adopted this as a basis and has some additional requirements, and MPEG is also using this as a starting point. We expect to make functional improvements in Release 10.

It could be that all these variants are signaled by different MIME types; but that would mean that a file could only indicate being in conformance with one profile when it may, in fact, be in conformance with more. An intrinsic profiling mechanism would solve this, and also avoid a proliferation of profiles.

The following text was drafted at the recent MPEG meeting. It allows the definition of profiles by a number of bodies and avoids the trouble and expense of managing a registration authority. However, it does ‘allow’ anyone to define a profile; that may not be desirable.

3.2 Definition of the parameter

Profiles [of DASH] are defined so as to enable interoperability and the signaling of the use of features etc.

A profile has an identifier and refers to a set of specific restrictions. Those restrictions might be on features of the media presentation description (MPD) file, usage of the network, media format(s), codec(s) used, protection formats, or on quantitative measures such as bit-rates, segment lengths, screen size, and so on.

(For example, a profile might be restricted to using only MPEG-2 transport streams containing layer 2 audio with MPEG-4 video, with a maximum segment size of 200 kilobytes, the 'template URL' feature of the MPD may not be used.)

The profile identifier is either a plain name, or a reversed domain name. Plain names are reserved to ISO, i.e. implicitly in the org.iso.xxx or org.3gpp.xxx space. Other names are defined by the identified body, e.g. one asks example.com what com.example.purple.simple means.

A profile is a claim and a permission; it claims that the file conforms to the profile, and gives 'permission' to a reader that implements that profile to read the file, interpret what it recognizes, and ignore the material it does not understand.

The profiles with which an MPD complies are indicated in [TBD] the 'profiles' attribute of the MPD element. The profiles may also be indicated as a parameter in the MIME type of the MPD (e.g. video/vnd.mpeg.mpd;profiles="X,Y,Z").

If there is a profiles attribute in the MPD itself, then this parameter must not list profiles which are not also listed inside the MPD, and ideally the two lists match.

3.3 The release 9 profile

We will need a profile to identify Release 9, and an indication that if no profile is supplied inside the file, Release 9 should be assumed.

3.4 Other profiles, considerations

We would need a section defining what may be profiled, and so on (e.g. MPD size, alternatives, whether non-zero groups are allowed, URL forms, codecs, media file types, and so on).

4 DRM

We have so far taken the hard-nosed approach that encryption/DRM is orthogonal to transport and the responsibility of the media layer, or, if transport security is desired, of SSL (HTTPS).

 However, in the Apple solution we have learned that content owners find media-layer systems such as OMA DRM and Fairplay, and HTTPS both rather heavyweight for some applications, and they indicate a desire for something ‘simpler’ that can protect against (a) transport sniffing and (b) simple ‘curl’-style download-to-keep of media content.

In the Apple solution, we protect the MPEG-2 transport streams with AES-128, and then indicate the key and IV in the MPD using a URL and value. The key URL might be HTTPS (and that, in turn, might require the player to authenticate itself), or if the stream is to be consumed by a custom application, it might be a ‘custom’ URL that is parsed and resolved by the application and the resulting key and IV passed to the streaming sub-system.

In general, a player that implements this would need to have some degree of robustness (e.g. do not decrypt the files to a visible place such as a cache folder on disk!), and content suppliers might require a level of robustness before they will supply the credentials needed to authenticate the key delivery mechanism. Multiple URLs could also be supplied (e.g. if the keys are available either from Al Jazeera or CNN).

The one complication we have is that we probably only want to encrypt the ‘media’ and not the indexes (segment index boxes) or the movie fragment headers.

5 Timing model

We had a long discussion of the ‘pump’ timing model last time. I’m not sure that anything that was said (including what I said) was right.

In the Apple solution, we have a primary timing parameter the ‘target time’. This is both the intended segment duration, and the duration of update of the MPD. In particular, the client:

a) does not update the MPD if the MPD contains an ‘end of updates’ indicator;

b) updates the MPD if it desires more material (i.e. it thinks that it’s running dry of media) and at least the target time has elapsed;

c) updates the MPD if it gets an error (404 etc.) on a media segment; this actually deals with clock drift in the case where the client has ‘fallen off the early end’ of the media available (it will update and find that it thought it wanted segment N, but only N+1 or later is advertised and therefore available);

d) does a retry ‘back off’ if it tries to update and gets the same file again (T * 0.5, T * 1.5, T * 3, and so on)

This way, availability by the server is determined not by accurate timing, but by, well, availability. In addition, the clients are encouraged to be ‘spread out’ in time, and the back-off requirements mean that fetch-storms (all the clients fetching at once) are avoided. It may be that explicit randomness in the fetch would help further here.

The 3GPP specification currently requires accurate time-alignment, but as noted in the above paragraph, the Apple solution does not. It may be worth working out: what aspect of the spec requires accurate time alignment? Period accurate times are a ‘drift’ solution, but (as noted above) we think that HTTP availability and back-off timers might be better. Before we do something ‘accurate’ for drift, we’d like to analyze how often a ‘stop and re-buffer’ or ‘stop and skip ahead’ (hitting the new or old ends of the time-shift, respectively) are likely to happen.

In particular, we currently have an overlap in timing – segments have durations, and so do periods. This isn’t great systems design, as they can disagree. Apart from saying that they should not (much), do we have any way for clients to handle this?

Lastly, we are puzzled by the buffering time. Buffering should be a client-side decision (what data rate am I getting, how much jitter/variation in rate, and so on) inasmuch as it applies to network experience. Is the buffering time saying something about the encoding? If so, what? (In RTP, this can be used to describe the maximum ‘deliberate’ jitter applied at the source to do traffic smoothing – which does not apply in HTTP streaming.)

6 Alternatives, matching and time

The current 3GPP solution has the option of providing alternative content (e.g. language alternative audio) in either (a) extra tracks in the normal download or (b) with video and audio in separate groups.

The one-file approach has the obvious bandwidth issue – one ends up loading tracks that the client does not need (e.g. two or three language choices might be acceptable; 50 is probably not).

The multiple-group approach has the problem that one has to run two media-fetching ‘data pumps’ and media engines in parallel; there is no easy way to re-integrate the video and audio, say, to send it through one pump and media player. Essentially, a SMIL ‘par’ has to be run.

In the Apple approach, ‘sidecar’ files are aligned with their main-car equivalent, and can be combined with them. For example, each video segment might document “my alternative english audio is here, german is here, and so on”. These audio segments are aligned with the video with which they might be paired, and therefore the same ‘data pump’ can fetch them, they can be integrated fairly easily and passed to a single media engine.

The problem of pumps and choices becomes more acute if more than one group offers bit-rate alternatives; what am I supposed to do at the client if I have bit-rate choices for both video and audio?

Lastly, we somehow need to indicate what the client should do ‘lacking other information’. If a reduce the choices presented to me down to those that ‘could’ work (e.g. I have the codecs, the user speaks the language, and so on) and I still have multiple, then what? Maybe the content author or network prefers me to start ‘aggressive’ (high bit-rate) and only if that doesn’t work, back down; maybe they prefer starting ‘in the middle’, and so on. A ‘default’ indicator only works if it is assured to be in the ‘possible’ set. Perhaps priority is better?

7 Trick Modes

7.1 Review

(This section was previously presented in email).

Trick modes today are 'supported' by the client doing special processing of a normal 3GP file. For example, it's possible to identify samples (video frames) that have no dependency on others (the sample dependency table tells you this). For accelerated trick modes (forward or reverse) it's possible to 'skip' down the file playing only those. For rewind (reverse play at normal speed), it's a little trickier. In this case, what we (QuickTime) do is to decode intervals from random access points (RAPs) forwards, and then play them out backwards. This works as long as the RAPs are not too far apart. We tend to mute the audio, or play 'short segments' forwards, for both reverse play and high-speed.

7.2 Solutions

The question is, can we optimize this? The following are three proposed solutions. We take rewind as the hardest case.

1) In any given period, provide a representation that has the content 'flipped'. So, for example, if a scene is of a car that emerges from a garage, hits another car, and burns, in the first three minutes, then this alternative would show the fire in the first minute, the impact in the second minute, and emerging from the garage in the third. The content is reversed against the timeline.

2) Provide a 'normal' forward encoding for which the process I describe above makes reverse playback easier or at least no harder. So, one might have an encoding in which forwards play involves significant frame buffering and re-ordering post-decode (and this would be documented by the composition offsets). One would, again, take periods, decode them forwards – and find that that was supplying frames in their natural reverse playout order. (This is Clinton's suggestion, I believe).

3) Provide a file that, unlike 'normal' files, has to be processed in reverse. This file is built so that one has to supply frames (file format samples) to the decoder starting from the end of the file and working towards the beginning. One runs the clock backwards, the 'data pump' runs backward over time, and so on. Frames are displayed as the clock crosses their presentation time in the negative direction. Logically, one builds this by (i) reversing the frame order of the original material (ii) encoding that using a normal video encoder (iii) reversing the encoded video, and storing that in the file. Note that this means that the content-time mapping (which was reversed in the first solution) is in its normal relationship again.

7.3 Analysis

For fast-play modes, (2) and (3) could supply a file optimized for that; a file optimized for 10x playback might be at 3 fps instead of 30 fps, for example, so it 'looks right' when the clock is run 10x fast.

In both (2) and (3), if you hit the beginning of a period, then you back up into the previous period, and carry on. Both (2) and (3) retain the property that the program material is laid out exactly the same on the timeline as a normal forwards play. (1) does not do this, and I think a number of us do not like it for that reason. (2) is do-able today, as is providing files at lower frame-rates for fast-forward play. (3) really needs labeling in the file format (as well as the MPD), as such files would be unplayable forwards (one would have to do the same trick as suggested above for reverse play of normal files).

We need to decide how much ‘trick mode’ support is needed here, given that (a) no-one ever implemented it in RTSP/RTP, as far as I know and (b) it has never been a problem for local playback of MP4/3GP files (or at least, not to the extent of anyone making a work item of it).
8 Choices

At the MPEG meeting there was some indication of a desire to look at a two-level structure for the MPD: some high level file describing the high-level choices, and then MPDs that implement them. We think that this is important; the frequency at which terminals change their screen-size or language choice, for example, tends to be very low, whereas MPDs need to be re-fetched reasonably often during live content. Loading the MPD down with choices I will never make (e.g. HD versions of video, for a portable device, or Mongolian audio for a european) is wasted bandwidth – and wasted processing/decision time on each update.

Importantly, if there is a two-level structure, it should be made clear that any choice offered at the high level must not be offered again at the low level, and indeed profiles should probably be developed in which choice is only at the high level.

HTTP Streaming
7/7
Apple

