3GPP TSG-SA4#49

Tdoc S4-080368
30 June – 3 July 2008, Philadelphia, USA

Source:
Telefon AB LM Ericsson

Title:
Checksum verification of pre-distributed SDPs
Document for:
Discussion and agreement
Agenda Item:
8
1 Introduction
The pre-distribution of SDPs is considered already in the original RTSP 1.0 RFC. However, if the SDP files are pre-distributed (e.g. to speed-up the access time), there is no additional check defined to ensure, that the SDP file has not changed in the mean time. If the SDP file changes, either the terminal will stop with an error or the end-user will receive a bad or degraded quality. With the introduction of 3GPP PSS fast content switching (FCS), this scenario is once again considered in settings where SDPs are distributed through, for example, Electronic Program Guides (EPGs). The overall objective of the FCS work was to provide the best possible end-user experience. The start-up of the streaming session was modified to become faster. The content switching time was modified to also become faster. One further objective was also to allow for a good end-user experience, even when not everything went as planned (e.g. the RTSP set-up does not break and close with an error, when the server does not support pipelined start-up.

SDP files or URI of SDP files may be pre-distributed with ESGs. Terminals may fetch the SDP files in order to provide a very fast access to the service. During the distribution of SDPs, various factors may cause an SDP to be no longer valid for a given resource.
The SDP RFC (2327) states:

“[..] Also, since announcements may be transported via very unreliable means (e.g., email) or damaged by an intermediate caching server, the encoding was designed with strict order and formatting rules so that most errors would result in malformed announcements which could be detected easily and discarded.”

However, we have encountered occasions when an SDP can pass as a valid SDP and yet cause unexpected behavior in the client, as well as the server, because it is not the intended and valid SDP for a requested resource. A missing media component may never be detected because the server will happily set up only the media component that the client asks for.

Our initial proposal was based on taking the complete SDP and calculating the MD5 of its entirety. This was for the sake of simplicity. We accept the fact that an SDP may be rewritten in a way so that it is still valid, such as adding/removing non-significant lines, reordering lines, and adding additional trailing whitespace. We hereby put forward a second proposal that, while still being simple, takes those cases into consideration.

2 Proposal
A client that supports this feature sends the additional header “SDP-Available” in every SETUP and PLAY request for which it wants to verify that the local copy of an SDP matches the one on the server.
The header value is calculated from the SDP as such:
All v, m, a, and k-lines are singled out with trailing whitespace (\r \n \t \s) removed.

For every line, a hash value is calculated according to the simple formula used by the hashCode() method in Java’s String class:

s[0] * 31n − 1 + s[1] * 31n − 2 + ... + s[n − 1]

using int arithmetic, where s[i] is the ith character of the string, n is the length of the string. (The hash value of the empty string is zero.)

See http://java.sun.com/javase/6/docs/api/java/lang/String.html#hashCode()
It can be implemented in C like this (provided as an example only):

int hashCode(char* instr, int len) {

int i, h=0;

for (i=0; i < len; i++) {

h = 31 * h + instr[i];

}
return h;

}

The resulting hash codes of the individual lines are then multiplied together to form a new 32-bit integer. Thus, the ordering of the lines within the SDP has no significance for the correctness of the checksum. The value of the SDP-Available header is the resulting integer represented as a hexadecimal string with little-endian byte ordering and lowercase letters, for example:

SETUP <uri> RTSP/1.0

SDP-Available: 00504aa9

A server that supports this feature must include the SDP-Available header in every response to a request that contains this header with a correct checksum, indicating that the checksum comparison was successful (with the value “OK”). Thus, the client will know if the server supports this feature. The client may choose how to proceed if the SDP-Available header is not present in the response, although the response code is 200.

Example:

RTSP/1.0 200 OK

SDP-Available: OK

If the checksum comparison fails, the server sets response code 450 with phrase “Incorrect SDP checksum” and includes the correct SDP in the body of the response.

Example:

RTSP/1.0 450 Incorrect SDP checksum
Content-Type: application/sdp

Content-Length: <nnn>

v=0

o=..

3GPP

