3GPP TSG SA WG4 Meeting #48 Tdoc S4 (08)0164

April 7-11, 2008, Jeju Island, South Korea

Source:
Research In Motion
Title:
Proposed Test Setup for eCall Candidate Selection
Document for:
Discussion and Decision
Agenda Item:
6
1. INTRODUCTION
By July 21rst, 2008 [1] companies will submit eCall candidates for selection testing. The current version of the Selection Test Plan [2] does not include a test setup to be used by the central testing facility. In this document, a test setup is proposed.
In the next section, the logical test setup is discussed including interaction with the control process. All of the connections are digital. We believe that this approach has many advantages. For example, because there is no conversion to analog, there is no tuning of voltage levels required, or selection of sound cards, cables, connectors, etc. all of which introduce certain vulnerabilities and variability into the test procedure. It has been listed as an advantage with testing using analog audio that the test setup adapts well for field testing. However, we believe that the only realistic way of testing is to have the modem integrated into the UE on IVS side and into the PSAP on PSAP side. The external audio connections will not be used in a real implementation and don’t reflect realistic use. In Section 3, the physical connections between the PC’s are discussed. Standard Ethernet connections are the only connections required. In Section 4, Python code from the attached file eCall.py is included to illustrate the Inter-Process Communication (IPC) between the testing blocks. Because of the firewall used on the different PC’s, there is no possibility to use “illegal communication” during testing.
2. Logical Test Setup

Figure 1 below shows the logical layout of the eCall test setup. The IVS and PSAP modems are the candidate eCall modem implementations. The uplink and downlink channels simulate the voice channel and other acoustic impairments in each directon. The test control block automates testing by driving the other blocks.

The connections between the IVS, PSAP, and simulated voice channels are made directly with 16-bit linear PCM samples at 8 kHz. At no point are these signals passed thorugh a D/A or A/D. Any possible analogue audio impairments can be simulated as part of each channel. These impairments could include bandpass filtering and variable delay. The PCM samples can be streamed to an audio interface for live monitoring during testing.

The voice channel is simulated by a speech encoder followed by a speech decoder. The encoded speech bits are corrupted using patterns generated offline to match each of the required channel test conditions. Each pattern file will contain enough data for one iteration of each test case. Randomization is introduced by using a random starting frame offset in the pattern file for each iteration.

The test control block reads test case configuration from a text file. It configures the simulated channels appropriately and loads a random MSD into the IVS. It triggers the PSAP request and waits the allowable time for a correctly received and decoded MSD from the PSAP. Finally, test case results are written out to a text file.

[image: image1.emf]Downlink Channel

Uplink Channel

Speech

Encoder

Speech

Decoder

Speech

Encoder

Speech

Decoder

IVS

Modem

Test Control

PSAP

Modem

+

+

Error Pattern

Audio

Impairment

Tx MSD

(140 bytes)

Audio

Impairment

C

h

a

n

n

e

l

P

a

r

a

m

e

t

e

r

s

C

h

a

n

n

e

l

P

a

r

a

m

e

t

e

r

s

Rx MSD

(140 bytes)

Start

Test ConfigurationTest Results

Error Pattern

Audio Monitor

Audio Monitor

FIGURE 1: Logical Test Setup for eCall Candidate Selection

3. Physical Test Setup

The logical test setup is mapped into a physical test setup in Figure 2. Five processes and four PCs are required.

The test lab provides and configures all four PCs. The executables psap.exe and ivs.exe are the compiled candidate algorithms. The executable channel.exe simulates the voice channel in either direction. Two instances of this are used to simulate a complete channel. Finally, control.exe orchestrates the testing process and routes communications between the other processes.

All communication between processes is via TCP/IP sockets. Physically, the test PCs are connected via Ethernet cables to a central switch or hub. All machines except the test control PC have firewalls configured to deny all incoming connections. Thus none of the test processes are able to open a direct connection with any other test process except control.exe, which functions as a trusted router of data. Since the candidate IVS and PSAP processes are located on physically separate machines, this setup eliminates the possibility of any “back channels” being created between the IVS and PSAP during testing. Since all PCM data is routed through the control PC, an audio interface on this machine can be used for real-time monitoring of both the uplink and the downlink. Streaming PCM samples to this audio interface at 8kHz also sequences operations to ensure real-time testing.

Detailed specification of the protocol used over TCP/IP sockets for this configuration are left for the reference Python code. The final implementation for each process will be a Win32 executable.
[image: image2.emf]PSAP Simulation PC

psap.exe

IVS Simulation PC

ivs.exe

Test Control PC

control.exe

Channel Simulation PC

channel.exe

(UL)

channel.exe

(DL)

F

i

r

e

w

a

l

l

F

i

r

e

w

a

l

l

F

i

r

e

w

a

l

l

Hub/Switch

Audio

Monitor

FIGURE 2: PHYSICAL TEST SETUP FOR ECALL CANDIDATE SELECTION
\
4. PYTHON CODE WHICH ILLUSTRATES THE IPC BETWEEN THE BLOCKS USING SOCKETS
For convenience the python code in ecall.py is presented here:

Reference Python code for eCall test system. This illustrates the

inter-process communication (IPC) protocol used between the test processes.

#

Depending on the command line argument specified, one of the following

processes will be started:

- control: Test control

- ul: Uplink voice channel

- dl: Downlink voice channel

- ivs: IVS modem

- psap: PSAP modem

#

Copyright (C) 2008 Research In Motion, Ltd.

import sys

import socket

import select

import struct

import array

import time

import cStringIO

import random

Possible messages

ACK = 0

CH_RESET = 1

IVS_RESET = 2

PSAP_RESET = 3

PSAP_RX = 4

PCM_DATA = 5

def sendMsg(dest, msg, **param):

 headerFmt = 'BH'

 if msg == ACK:

 payload = ''

 ack = False

 elif msg == CH_RESET:

 payload = ''

 ack = True

 elif msg == IVS_RESET:

 payload = array.array('B', param['msd']).tostring()

 elif msg == PSAP_RESET:

 payload = ''

 ack = True

 elif msg == PSAP_RX:

 payload = array.array('B', param['msd']).tostring()

 ack = True

 elif msg == PCM_DATA:

 payload = array.array('h', param['samples']).tostring()

 ack = False

 header = struct.pack(headerFmt, msg, len(payload))

 dest.send(header + payload)

Blocking receive with specified length

def recvall(sock, length):

 buf = cStringIO.StringIO()

 count = 0

 while count < length:

 rx = sock.recv(length - count)

 if rx == '':

 break

 buf.write(rx)

 count = count + len(rx)

 return buf.getvalue()

def recvMsg(sources):

 headerFmt = 'BH'

 inRdy, outRdy, eRdy = select.select(sources, [], [])

 source = inRdy[0]

 header = recvall(source, struct.calcsize(headerFmt))

 if len(header) == 0:

 # Socket was closed

 return (None, None, None)

 else:

 msg, length = struct.unpack(headerFmt, header)

 payload = recvall(source, length)

 param = {}

 if msg == ACK:

 pass

 elif msg == CH_RESET:

 pass

 elif msg == IVS_RESET:

 param['msd'] = array.array('B', payload).tolist()

 elif msg == PSAP_RESET:

 pass

 elif msg == PSAP_RX:

 param['msd'] = array.array('B', payload).tolist()

 elif msg == PCM_DATA:

 param['samples'] = array.array('h', payload).tolist()

 return (source, msg, param)

def sendAck(dest):

 sendMsg(dest, ACK)

def recvAck(source):

 while True:

 source, msg, param = recvMsg([source])

 if msg == ACK:

 break

Skeleton for voice channel block

def channel(host, port):

 print 'Starting CHANNEL'

 control = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 control.connect((host, port))

 while True:

 source, msg, param = recvMsg([control])

 if source == None:

 break

 elif msg == CH_RESET:

 # Reset, configure channel here

 sendAck(control)

 elif msg == PCM_DATA:

 # Process audio frame here

 sendMsg(control, PCM_DATA, samples = param['samples'])

 control.close()

Skeleton for IVS block

def ivs(host, port):

 print 'Starting IVS'

 control = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 control.connect((host, port))

 while True:

 source, msg, param = recvMsg([control])

 if source == None:

 break

 elif msg == IVS_RESET:

 # Reset internal state, set MSD here

 sendAck(control)

 elif msg == PCM_DATA:

 # Process audio frame here

 sendMsg(control, PCM_DATA, samples = param['samples'])

 control.close()

Skeleton for PSAP block

def psap(host, port):

 print 'Starting PSAP'

 control = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 control.connect((host, port))

 while True:

 source, msg, param = recvMsg([control])

 if source == None:

 break

 elif msg == PSAP_RESET:

 # Reset internal state, configure options here

 frameCount = 0

 lastFrame = random.randint(1, 75)

 sendAck(control)

 elif msg == PCM_DATA:

 # Process audio frame here

 sendMsg(control, PCM_DATA, samples = param['samples'])

 # If MSD was correctly received, send message to control

 frameCount = frameCount + 1

 if frameCount == lastFrame:

 sendMsg(control, PSAP_RX, msd = [1, 2, 3, 4])

 control.close()

Driver for a singe test case

def testCase(ul, dl, ivs, psap):

 # Channel reset will need to include channel parameters

 sendMsg(ul, CH_RESET)

 sendMsg(dl, CH_RESET)

 sendMsg(ivs, IVS_RESET, msd = [1, 2, 3, 4])

 sendMsg(psap, PSAP_RESET)

 for p in [ul, dl, ivs, psap]:

 recvAck(p)

 # Audio frame buffers (at each end of voice channels)

 ulIn = range(0, 160)

 ulOut = range(0, 160)

 dlIn = range(0, 160)

 dlOut = range(0, 160)

 success = False

 startTime = time.time()

 # Process for 1s (would be much longer in actual test)

 for i in xrange(0, 50):

 sendMsg(ul, PCM_DATA, samples = ulIn)

 sendMsg(dl, PCM_DATA, samples = dlIn)

 sendMsg(ivs, PCM_DATA, samples = dlOut)

 sendMsg(psap, PCM_DATA, samples = ulOut)

 # Output samples to audio interface here as a way to lock to 8kHz

 ulDone = False

 dlDone = False

 ivsDone = False

 psapDone = False

 while not (ulDone and dlDone and ivsDone and psapDone):

 (source, msg, param) = recvMsg([ul, dl, ivs, psap])

 if source == ul:

 ulDone = True

 ulOut = param['samples']

 elif source == dl:

 dlDone = True

 dlOut = param['samples']

 elif source == ivs:

 ivsDone = True

 ulIn = param['samples']

 elif source == psap:

 if msg == PCM_DATA:

 psapDone = True

 dlIn = param['samples']

 elif msg == PSAP_RX:

 if param['msd'] == [1, 2, 3, 4]:

 success = True

 endTime = time.time()

 print 'Success = %s, time elapsed: %d ms' % (

 success, (endTime - startTime) * 1000)

Skeleton for test control block

def control(host, ulPort, dlPort, ivsPort, psapPort):

 print 'Starting CONTROL'

 ulSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ulSock.bind((host, ulPort))

 ulSock.listen(1)

 dlSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 dlSock.bind((host, dlPort))

 dlSock.listen(1)

 ivsSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ivsSock.bind((host, ivsPort))

 ivsSock.listen(1)

 psapSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 psapSock.bind((host, psapPort))

 psapSock.listen(1)

 ul, ulAddr = ulSock.accept()

 dl, dlAddr = dlSock.accept()

 ivs, ivsAddr = ivsSock.accept()

 psap, psapAddr = psapSock.accept()

 # Loop over all channel conditions

 for config in ['Config 1', 'Config 2', 'Config 3']:

 # Read test configuration from file here

 print 'Channel configuration: %s' % config

 for iteration in xrange(0, 10):

 testCase(ul, dl, ivs, psap)

 # Write test results to file here

 ul.close()

 dl.close()

 ivs.close()

 psap.close()

 print 'Press return to continue...'

 sys.stdin.readline()

For now, all test processes run on the same machine. For the actual test setup

they will be split up on multiple machines.

host = 'localhost'

ulPort = 10000

dlPort = 10001

ivsPort = 10002

psapPort = 10003

Start as appropriate process depending upon command-line parameter

if sys.argv[1] == 'control':

 control(host, ulPort, dlPort, ivsPort, psapPort)

elif sys.argv[1] == 'ul':

 channel(host, ulPort)

elif sys.argv[1] == 'dl':

 channel(host, dlPort)

elif sys.argv[1] == 'ivs':

 ivs(host, ivsPort)

elif sys.argv[1] == 'psap':

 psap(host, psapPort)

else:

 print 'Invalid ecall component \'%s\'' % sys.argv[1]

5. PROPOSAL
The test setup introduced in this document based on TCP/IP sockets should be used in eCall Candidate Selection.

6. ReferenceS
[1] PD1 eCall Phase 2 Time Plan
[2] PD3 eCall Selection Test Plan

