Page 1

3GPP TSG-SA WG4 Meeting #45
(
S4-070676

Sophia Antipolis, France, 29.10.-02.11.2007
	CR-Form-v9.3

	CHANGE REQUEST

	

	(

	26.902
	CR
	0001
	(

rev
	3
	(

Current version:
	7.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	x
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Various Corrections to Video Codec Performance (Rel-7)

	
	

	Source to WG:
(

	Nomor Research, Ericsson Inc.

	Source to TSG:
(

	S4

	
	

	Work item code:
(

	VICPer
	
	Date: (

	23/10/2007

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	The changes clarify and correct several issues and update attached zip archives.

	
	

	Summary of change:
(

	Clarifications and corrections added at several places.

	
	

	Consequences if
(

not approved:
	Limited usability of the TR.

	
	

	Clauses affected:
(

	5.2, 5.2.1, 5.2.2, 5.2.3, 6.2.3, 6.3.2, 7.1.1, 7.1.2, 7.1.3, Annex A.2, Annex C, Annex F.1, Annex G, Archive QualityEvaluation.zip, Archive SA4Simulator.zip, Archive ISOFileFormatConverter.zip , Archive EncodingAnchors.zip, Archive TestSequences.zip

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

5.2
Performance Metrics

This clause defines performance metrics as used in section 6, to numerically and objectively express a Decoder's reaction to compressed video data that is possibly modified due to erasures. Only objective metrics are considered which can be computed from sequences being available in a 3G format as described in Annex D by using the method detailed in annex G.

The following section provides a general description of the quality metrics. For the exact computation with the availability of sequences in 3G format please refer to annex G.

The following acronyms are utilized throughout the remainder of this subclause:

· OrigSeq: The original video sequence that has been used as input for the video encoder.

· ReconSeq: The reconstructed video sequence, the output of a standard compliant decoder that operates on the output of the video encoder without channel simulation, i.e. without any errors. Timing alignment between the OrigSeq and ReconSeq are assumed.

· ReceivedSeq: The video sequence that has been reconstructed and error-concealed by an error-tolerant video decoder, after a) the video encoder operated on the OrigSeq and produced an error free packet stream file as output, b) the channel simulator used the error free packet stream file and applied errors and delays to it so to produce an error-prone packet file which is used as the input of the error-tolerant video decoder. For comparison purpose, a constant delay between OrigSeq and the ReceivedSeq is assumed, whereby this constant delay is removed before comparison.
Each of the following metrics generates a single value when run for a complete video sequence.

5.2.1
Average Peak Signal-to-Noise Ratio (APSNR)

The average Peak Signal-to-Noise Ratio (APSNR) calculated between all pictures of the OrigSeq and the ReconSeq or the ReceivedSeq, respectively. First, the Peak Signal-to-Noise Ratio (PSNR) of each picture is calculated with a precision sufficient to prevent rounding errors in the future steps. Thereafter, the PSNR values of all pictures are averaged. The result is reported with a precision of two digits.

NOTE:
This is the traditional metric referred to as PSNR in the academic literature and in the context of video compression research.

Only the luminance component of the video signal is used.

In case that results from several ReceivedSeq are to be combined, the average of all PSNR values for all ReceivedSeq is computed as the final result.

5.2.2
PSNR of Average Normalized Square Difference (PANSD)

The PSNR of Average Normalized Square Difference (PANSD) is calculated between all pictures of the OrigSeq and the ReceivedSeq, respectively. First, the normalized square difference, also know as Mean Square Error (MSE) of each picture is calculated with a precision sufficient to prevent rounding errors in the future steps. Thereafter, the NSD values of all pictures are averaged. The result is reported with a precision of two digits. Then, a conversion of this value into a PSNR value is carried out.

Only the luminance component of the video signal is used.

In case that results from several ReceivedSeq are to be combined, the average of all NSD values for all ReceivedSeq is computed and the final result is the PSNR over this averaged NSD.

5.2.3
Percentage of Degraded Video Duration (PDVD)

The Percentage of Degraded Video Duration (PDVD) is defined as the percentage of time of the entire display time for which the PSNR of the erroneous video frames are more than x dB worse than PSNR of the reconstructed frames whereby x is set to 2 dB. This metric computation requires three sequences, the OrigSeq, the ReconSeq, and the ReceivedSeq.

Only the luminance component of the video signal is used.

In case that results from several ReceivedSeq are to be combined, the average of all PDVD values for all ReceivedSeq is computed as the final result.

6.2.3
Transport parameters

The transport parameters define the bearer settings, the applied loss masks, and the number of statistical experiments. The definition of the bearer parameters is strongly related to the applied transport software.

The applied bearers and radio dump files are numbered from 1 to 8 (Bearer ID). In all cases, for statistical significance, 128 independent trials are applied.

For details of transport parameter definition we refer to clause 7.1.3 and annex F.

6.3.2
Test cases

The definition of each test case consists of:

· Test: Test case number.

· Encoding Anchor according to table 2.

· Transport Bearer: Bearer ID, as explained in section 6.2.3.

The test case definitions for service scenario A are collected in table 3.

Table 3: Test Case Definitions for Service Scenario A

	Test Case
	Encoding Anchor
	Transport Bearer

	TA01-263
	AA1-263
	1

	TA02-263
	AA1-263
	2

	TA03-263
	AA1-263
	3

	TA04-263
	AA1-263
	4

	TA05-263
	AA2-263
	5

	TA06-263
	AA2-263
	6

	TA07-263
	AA2-263
	7

	TA08-263
	AA2-263
	8

	TA09-263
	AA3-263
	1

	TA10-263
	AA3-263
	2

	TA11-263
	AA3-263
	3

	TA12-263
	AA3-263
	4

	TA13-263
	AA4-263
	5

	TA14-263
	AA4-263
	6

	TA15-263
	AA4-263
	7

	TA16-263
	AA4-263
	8

	TA17-263
	AA5-263
	1

	TA18-263
	AA5-263
	2

	TA19-263
	AA5-263
	3

	TA20-263
	AA5-263
	4

	TA21-263
	AA6-263
	5

	TA22-263
	AA6-263
	6

	TA23-263
	AA6-263
	7

	TA24-263
	AA6-263
	8

	TA01-264
	AA1-264
	1

	TA02-264
	AA1-264
	2

	TA03-264
	AA1-264
	3

	TA04-264
	AA1-264
	4

	TA05-264
	AA2-264
	5

	TA06-264
	AA2-264
	6

	TA07-264
	AA2-264
	7

	TA08-264
	AA2-264
	8

	TA09-264
	AA3-264
	1

	TA10-264
	AA3-264
	2

	TA11-264
	AA3-264
	3

	TA12-264
	AA3-264
	4

	TA13-264
	AA4-264
	5

	TA14-264
	AA4-264
	6

	TA15-264
	AA4-264
	7

	TA16-264
	AA4-264
	8

	TA17-264
	AA5-264
	1

	TA18-264
	AA5-264
	2

	TA19-264
	AA5-264
	3

	TA20-264
	AA5-264
	4

	TA21-264
	AA6-264
	5

	TA22-264
	AA6-264
	6

	TA23-264
	AA6-264
	7

	TA24-264
	AA6-264
	8

7.1.1
Overview

The service scenario A relates to the performance of a video codec in a conversational-like environment, and especially the performance of an error-tolerant decoder can be assessed, when processing video data that has been exposed to erasures stemming from the use of the 3GPP Transport Simulator.

For the generation of the performance figures, the process as depicted in figure 1 is applied. The process assumes the availability of a Compressed Video in RTP format representing the encoding anchor. The generation of the encoding anchors is discussed in subclause 7.1.2.
The encoding anchor for test case according to table 3 is exposed to RTP packet erasures and delays by the 3GPP Transport Simulator. The latter is being controlled by command line configuration information, configuration files, and error pattern files, all summarized as Bearer Number in subclause 7.1.3. The Transport Bearer number assigned in table 3 assigned to respected test case has been applied.
The result of this process is Erasure-prone compressed video in RTP format referred to as Decoding Anchor. This file is being reconstructed by an error-tolerant video decoder to generate a possibly error-prone video ReceivedSeq in the 3GP file format. Note that the video decoder use the RTP timestamps to reconstruct the presentation times. The presentation timestamps are included in the erroneous video sequence ReceivedSeq.
The quality assessment uses the original video source OrigSeq (in .3GP format), the reconstructed video file before transmission ReconSeq (in .3GP format) as well as the reconstructed error-prone video ReceivedSeq (in .3GP format). The ReconSeq is necessary such that the quality evaluation tool understands if video frames have been dropped intentionally by the decoder of it has been lost due to transmission errors. It is also necessary to compute the PDVD.
[image: image1.png]RTPdump

Encoding
Anchor

OrigSeq

Quality
Evaluation
facp

ReceivedSeq [*

3GP

ReconSeq

A 2
Video
Decoder RTPdump Channel

3GP

Transport
Parameter,

RTPdump

Decoding

Anchor

Video <
Decoder

RTPdump

Figure 1: Environment for the Generation of Video Performance Figures for Service Scenario A

7.1.2
Encoding anchors

The encoding anchors are available in the attached file EncodingAnchors_710.zip.
The generation of the encoding anchor is shown is sketched in figure 2. The original sequence OrigSeq in .3GP file format is processed by a video Encoder (H.263 or H.264), controlled by the Encoder Parameters which are the service type and the bitrate. The result of this process is a Compressed Video packet stream file, conforming to the respective video compression standard, H.263 baseline or H.264 constrained baseline, the relevant RTP packetization, and the RTPdump file format as discussed in annex E. The bitstreams are encoded such that they match to the service constraints, namely low-complexity encoding as expected to run on a UE, low-delay rate control, and basic error resilience to support some extent of packet loss. More details on encoder settings for H.263 and H.264 are provided in annexes B and C, respectively.

[image: image2.png]Encoder
Parameter,

3GP RTPdump

SourceSeq

Figure 2: Generation of Encoding Anchor

The encoding anchors for scenario A are included in the archive EncodingAnchors_710.zip which is a attached to the present document.

The anchors are in RTPdump format, for details on the RTPdump format see annex E.

The naming conventions are as follows: <encoding_anchor>.rtp

encoding_anchor:
according to the definition in table 2 as AA1-263, …, AA6-264.

7.1.3
3GPP Transport Simulator

The 3GPP Transport Simulator is attached to this document in archive SA4Simulator_710.zip. Error traces from UTRAN-like packet-switched dedicated bearers have been used for generating the video performance figures, shared channels such as HSPA have not been considered.

The command line parameters to the 3GPP Transport Simulator are, the filenames of the Compressed Video in RTP format (for the performance generation this corresponds to the respective encoding anchor) and the Erasure Prone Video in RTP format (corresponds to the decoding anchor), and the Bearer ID (an integer), and the initialization of the Random Number Generator (Random Seed).

The Bearer configuration could be found in file bearers.txt and has been set as follows:

This file contains some bearer configuration. The bearers can be indexed by the number.

The specific columns are explained in the following

Number: Number of the bearer used as index (integer)

File:
 File name of the error masks, can be bit errors or packet errors

Format: Gives the format of the file (binary for bit errors, ascii for packet errors)

TTI:
 Transmission Time Interval in ms

RFS:
 Radio Frame Size in bytes describes the RLC-PDU size

note that 8*RFS/TTI results in the bit rate in kbit/s

Mode:
 Transmission Mode: UACK is unacknowledged bearer, ACKP is acknowledged bearer with persistent mode, ACKN non-persistent, FECK is unacknowledged and FEC

System: CDMA2000, UMTS, GPRS, EGPRS, main difference is in sizes of fields added for headers

CRUIH: Compressed RTP/IP/UDP header size assuming header compression

RDel:
 (only for ACK mode) The retransmission delay before it is available at the encoder in multiples of the TTI

NoRet: (only non-persistent ACK mode ACKN) Number of Retransmission for ACK mode

#

The following bearers are defined

Number
File

Format
TTI

RFS
Mode System CRUIH

PSC Bearers

64 kbit/s

1 0

iid
20 160 UACK UMTS 5

2 PSC__64kbps_20ms_BLER_0_5.txt
ascii
20 160 UACK UMTS 5

3 PSC__64kbps_20ms_BLER_1_0.txt
ascii
20 160 UACK UMTS 5

4 PSC__64kbps_20ms_BLER_1_5.txt
ascii
20 160 UACK UMTS 5

128 kbit/s

5 0

iid
20 160 UACK UMTS 5

6 PSC__128kbps_20ms_BLER_0_5.txt
ascii 20 320 UACK UMTS 5

7 PSC__128kbps_20ms_BLER_1_0.txt
ascii 20 320 UACK UMTS 5

8 PSC__128kbps_20ms_BLER_1_5.txt
ascii 20 320 UACK UMTS 5

NOTE: Software usage requires the above bearer settings to be put in ./Config/bearers.txt relative to the executable.
The following configuration for the channel simulator has been used:

RTPinfile

= filename of input file

RTPoutfile

= filename of output file

LogFile

= filename of logfile

StatFile

= filename of statistics file

Bearer

= see below

RandomSeed

= 1-128

ErrorFreeRTP
= 4

TSModeSender = 0 # 0 use TS

MaxSendingDelay = 0 # 0 ignore TS

MaxE2EDelay = 500 # 0 ignore TS, > 0 drop packet at receiver if delayed
NOTE: The configuration is put in a text file and indicated to the software by –f argument (for example below in ‘Usage of simulator’). Software usage requires at least one space or tab character before any line ending in this file.

With this configuration all packets arriving later than 500 ms compared to the time they were generated, are being removed from the Erasure Prone Video RTP file. Similarly, all packets containing which would have been mapped on a erroneous RLC/MAC-frame are being removed. The first four RTP packets are excluded from the error simulation, so to ensure that the parameter sets and the first intra slice are available for processing at the H.263 and H.264 decoder.

NOTE:
This optimization is justified as H.264 parameter sets, in a real-world environment, are made available to the decoder through the session negotiation process and the delay of the initial I-frame should not harm the decoding.

Usage of simulator:

sa4sim -f psc.cfg -p RTPinfile=<user defined> -p Bearer=<1-8> -p RandomSeed=<1-128>

A.2
Encoder performance assessment

This test intends checking the performance of an implemented video encoder against the provided performance figures. A reference decoder reconstructs the output of implemented encoder. The following procedure may be followed.

Figure A.2 shows the use of setup for video encoder assessment for scenario A. To assess the video encoder in service scenario A, an Encoding Stream is generated by applying the setup in figure 1, but instead of the reference encoder, the encoder under assessment is applied. The encoder should encode to match the service bitrate.

The generated encoded stream is highlighted in figure A.2. This stream is exposed to the channel by applying the transport parameters, but also the 3G file is reconstructed without application to the channel, but back-to-back usage of the decoder. In both cases a reference decoder is applied to generate a reconstructed 3GP video sequence and an error prone 3GP video sequence. Along with the original sequence, these two sequences are assessed applying the quality evaluation tool.

[image: image3.png]RTPdump

Transport
Parameter,
A 2
i Video
OrigSeq Decoder RTPdump

1l

3GP sep RTPdump
Quality 3GP
Evaluation ReconSeq
facp

. 3GP Video «
ErrorSeq Decoder RTPdump

Figure A.2: Setup for video encoder assessment for scenario A

Annex C:
H.264 Codec description

C.1
Decoding process

The H.264 decoder used for the performance figure generation:
· Allowed processing RTPdump files.
· Employed "last picture copy" error concealment technique,i.e. when the loss of pictures or picture parts is detected. That is, missing macroblocks are copied from the spatially co-located macroblocks in the previous reconstructed picture.

C.2
Encoding process

The high-level H.264 encoder settings for the generation of the anchors were as follows:

· Single, (temporally) most recent reference frame for motion compensation.
· Only 16x16, 16x8, 8x16 and 8x8 inter-prediction modes allowed.

· Constant bitrate encoding, frame skips not allowed.

· Pseudorandom intra macroblock refresh rate of 5 %.

· In-loop deblocking filter enabled.

Annex D:
3GPP file format extension for raw video

The raw video sequences are stored in a format such that display timing is maintained. The 3GP file format was viewed as most appropriate. Attached to this document is a package ISOFileFormatConverter_710.zip which allows conversion of yuv video files to and from 3GPP file format. This package contains the relevant library as well as sample applications.
An alternate software is the reference code for the 3GPP file format (indeed, all ISO file formats), which can be obtained on request from the -MP4' registration authority at http://www.mp4ra.org. Some explanation on how to use the reference software for the same purpose (conversion of yuv video files and 3GPP file format) is provided in the following.
Raw video is stored as samples in a video track in ISO Base Media Format family files (such as MP4, 3GP and so on). That is, it uses the same video handler, video media header, etc., as a video track containing, for example, H.263. Raw video can take various formats - based on choice of color model, sub-sampling, and so on. As is usual in ISO files, the format of the video (the -decoder' needed) is declared by the sample entry 4-character-code. For YUV 4:2:0 video the 4-character code is -j420' (jay four two zero) (this happens to match QuickTime's current 4CC for 4:2:0).

Many video formats add boxes to the sample entry to parameterize the video (e.g. an AVC configuration box for AVC video); this format adds no boxes.

Note that the sample size table can use the compact form (constant sample size), storing only one value. Similarly the time-to-sample table can run-length compress to a single value for the input files (which have a constant frame rate).

For the use in 3GPP testing, the timescale of the media should match the movie timescale. A value of 600 is used. Likewise, the sample entry dimensions must record the image size (dimensions of the Y array), and these dimensions should be reflected in the track and movie dimensions.

Reference code for the 3GPP file format (indeed, all ISO file formats) can be obtained on request from the -MP4' registration authority at www.mp4ra.org. The source code below shows a sample program which converts a YUV file at a constant frame rate into a 3GPP file. It can also make a QuickTime movie file; in this case, QuickTime can be used to play the file, which may be advantageous. (QuickTime does not currently support opening 3GP files containing raw video.)

The example code from the registration authority contains a sample program for reading files, also.

A complete specification for the structure of 3GPP files may be obtained as a freely available standard from ISO (www.iso.ch); the standard is ISO/IEC 14496-12:2005.

/*

sample program to build raw YUV 4:2:0 QuickTime (or 3GP) files using the file

format reference software

Dave Singer, May 2006

*/

#include "ISOMovies.h"

#define infile "foreman_QCIF.yuv"

#define outfile "foreman_QCIF.mov"

#define x_width 176

#define y_height 144

#define bytes_per_frame ((x_width * y_height * 3)/2)

#define timescale 600

#define
frameduration 20

MP4Err createMyMovie(char *filename);

MP4Err addMySamples(MP4Track theTrack, MP4Media theMedia, MP4Movie moov, char* fromfile);

int main(int argc, char **argv)

{

MP4Err err;

err = createMyMovie(outfile);

fprintf(stderr, "createMyMovie returns %d\n", err);

return err;

}

MP4Err createMyMovie(char *filename)

{

MP4Err err;

MP4Movie moov;

MP4Track trak;

MP4Media media;

u64 mediaDuration;

err = MP4NoErr;

//
err = New3GPPMovie(&moov, 6); if (err) goto bail;

err = QTNewMovie(&moov); if (err) goto bail;

err = MP4NewMovieTrack(moov, MP4NewTrackIsVisual, &trak); if (err) goto bail;

err = MJ2SetTrackDimensions(
trak, x_width<<16, y_height<<16);

err = MP4NewTrackMedia(trak, &media, MP4VisualHandlerType, timescale, NULL);

if (err) goto bail;

err = MP4BeginMediaEdits(media); if (err) goto bail;

err = addMySamples(trak, media, moov, infile); if (err) goto bail;

err = MP4EndMediaEdits(media); if (err) goto bail;

err = MP4GetMediaDuration(media, &mediaDuration); if (err) goto bail;

err = MP4InsertMediaIntoTrack(trak, 0, 0, mediaDuration, 1); if (err) goto bail;

err = ISOWriteMovieToFile(moov, filename); if (err) goto bail;

err = MP4DisposeMovie(moov); if (err) goto bail;

bail:

return err;

}

MP4Err addMySamples(MP4Track trak, MP4Media media, MP4Movie moov, char* the_file)

{

MP4Err err;

MP4Handle sampleEntryH;

MP4Handle sampleDataH;

MP4Handle sampleDurationH;

MP4Handle sampleSizeH;

u32 first_sample;

FILE* fd;

fd = fopen(the_file, "r");

err = MP4NoErr;

err = MP4SetMediaLanguage(media, "und"); if (err) goto bail;

err = MP4NewHandle(0, &sampleEntryH); if (err) goto bail;

err = MP4NewSampleDescription(trak, sampleEntryH,

1,

0,

0,

0,

0,

0,

NULL); if (err) goto bail;

err = ISOSetSampleDescriptionDimensions(sampleEntryH, x_width, y_height);

if (err) goto bail;

err = ISOSetSampleDescriptionType(sampleEntryH,

MP4_FOUR_CHAR_CODE('j', '4', '2', '0')); if (err) goto bail;

err = MP4NewHandle(sizeof(u32), &sampleDurationH); if (err) goto bail;

((u32) *sampleDurationH) = frameduration;

err = MP4NewHandle(bytes_per_frame, &sampleDataH); if (err) goto bail;

err = MP4NewHandle(sizeof(u32), &sampleSizeH); if (err) goto bail;

* ((u32 *) (*sampleSizeH)) = bytes_per_frame;

first_sample = 1;

for (;;)

{

int read_count;

read_count = fread(*sampleDataH, 1, bytes_per_frame, fd);

if (read_count < bytes_per_frame) break;

err = MP4AddMediaSamples(media, sampleDataH, 1,

sampleDurationH, sampleSizeH,

(first_sample ? sampleEntryH : NULL), NULL, NULL);

if (err) goto bail;

first_sample = 0;

}

if (sampleEntryH)

{

err = MP4DisposeHandle(sampleEntryH); if (err) goto bail;

sampleEntryH = NULL;

}

fclose(fd);

bail:

return err;

}

F.1
Simulator Package

The simulator and the corresponding error masks are attached to this document in archive SA4Simulator_710.zip. The simulation tool has been used for different purposes in 3GPP SA4, e.g. in 3GPP TR 26.936 [16] for the performance verifications in error conditions, but some modifications and updates have been done to fulfil the requirements of this work.

Annex G:
Quality evaluation Tool

For quality evaluation, an archive QualityEvaluation_710.zip is attached to this document. Note that some libraries in the package ISOFileFormatConverter_710.zip.

The usage of the tool is as follows:

QualEval [OrigSeq in 3G format] [ReconSeq in 3G format] [ReceivedSeq in 3G Format]

whereby
· OrigSeq corresponds to one the original sequence in 3G format.
· ReconSeq corresponds to the reconstructed sequence without transmission.
· ReceivedSeq corresponds to received sequence after transmission.
The output of the program are the following six values:

· The number of video frames in OrigSeq.
· The number of video frames in ReconSeq.
· The number of video frames in ReceivedSeq.
· The average PSNR in dB.
· The PSNR of the average NSD in dB.
· The PDVD value.
Updates to Archive QualityEvaluation.zip

The archive QualityEvaluation.zip is replaced by QualityEvaluation_710.zip.

********* diff for File QualEval.cpp **********

5,8d4

< #include <time.h>

< #ifndef __CYGWIN__

< #include <lcms.h>

< #endif

130,131c126,127

< const int rdSz = 1024*1024;

< unsigned char *decBuffer = new unsigned char[rdSz];

> const int rdSz = 16*1024;

> unsigned char decBuffer[rdSz];

185,188d180

< fseek(fd->fp,chOff->chunk_offset[0],SEEK_SET);

<

< delete [] decBuffer;

<

192,195c184

< //clock_t readTicks = 0;

< //clock_t qualTicks = 0;

<

< int ImgRead(char *file_name, IMAGE *img, SA4VideoFile *fd, int fileMode)

> int ImgRead(char *file_name, IMAGE *img, SA4VideoFile *fd, int fileMode)

197d185

< // clock_t start = clock();

200c188

< if(!fd->vfr && fileMode != FILE_MODE_ISO)

> if(!fd->vfr)

207,225c195

<

<
 size = img->width * img->height;

<
 if ((rsize=(int)fread(img->buf, sizeof(unsigned char), size, fd->fp)) < size)

<
 return 0;

<

<
 size = img->uwidth * img->uheight;

< fseek(fd->fp, 2*size, SEEK_CUR);

<

< if(0)

< {

<
 if ((rsize=(int)fread(img->ubuf, sizeof(unsigned char), size, fd->fp)) < size)

<
 return 0;

<

<
 size = img->vwidth * img->vheight;

<
 if ((rsize=(int)fread(img->vbuf, sizeof(unsigned char), size, fd->fp)) < size)

<
 return 0;

< }

<

< if(fileMode == FILE_MODE_ISO)

> else

232,233c202

< unsigned int num = (fd->frameindex)%tts->decoded_sample_delta.getSize() == 0 ? tts->max_sample_delta : tts->decoded_sample_delta[(fd->frameindex)%tts->decoded_sample_delta.getSize()];

< fd->timeindex += (num/tts->min_sample_delta);

> fd->timeindex += (tts->decoded_sample_delta[fd->frameindex]/tts->min_sample_delta);

236a206,207

> fd->frameindex++;

>

241c212,218

< fd->frameindex++;

>
 size = img->width * img->height;

>
 if ((rsize=(int)fread(img->buf, sizeof(unsigned char), size, fd->fp)) < size)

>
 return 0;

>

>
 size = img->uwidth * img->uheight;

>
 if ((rsize=(int)fread(img->ubuf, sizeof(unsigned char), size, fd->fp)) < size)

>
 return 0;

243c220,222

< //readTicks+=(clock()-start);

>
 size = img->vwidth * img->vheight;

>
 if ((rsize=(int)fread(img->vbuf, sizeof(unsigned char), size, fd->fp)) < size)

>
 return 0;

273,279d251

< void rewindFile(SA4VideoFile *fd)

< {

< ChunkOffsetBox *chOff = (ChunkOffsetBox *)fd->headerContainer.getBoxRecursive(IsoBoxTypes::type_ChunkOffsetBox);

<

< fseek(fd->fp,chOff->chunk_offset[0],SEEK_SET);

< }

<

283d254

< // clock_t start = clock();

294,295d264

<

< // qualTicks+=(clock()-start);

323d291

< int loopCount = 1;

325c293

< if (argc != 4 && argc != 5)

> if (argc != 4)

327c295

< printf("\nUsage: QualEval [Original File] [Reconstructed File] [Decoded File] [Opt: loop Count, default 1]\n");

> printf("\nUsage: QualEval [SourceSeq in 3G Format] [ReconSeq in 3G Format] [ReceivedSeq in 3G Format]\n");

337c305

< else if(!stricmp(&inp->rec_filename[strlen(inp->rec_filename)-4], ".iso") || !stricmp(&inp->rec_filename[strlen(inp->rec_filename)-4], ".3gp"))

> else if(!stricmp(&inp->rec_filename[strlen(inp->rec_filename)-4], ".iso"))

345,352d312

< if(argc == 5 && fileMode == FILE_MODE_ISO)

< loopCount = atoi(argv[4]);

< else if(argc == 5)

< {

< printf("Looping only allowed in ISO mode!\n");

< loopCount = 1;

< }

<

353a314

> fd1=ImgOpenForReading(inp->orig_filename);

357d317

< fd1=ImgOpenForReading(inp->orig_filename);

363d322

< fd1=IsoFileOpenForReading(inp->orig_filename);

374c333

< if (!(fd4 = fopen("details.txt", "w")))

> if (!(fd4 = fopen("Results\\details.txt", "w")))

399d357

< int setTimeIndex = 0;

401,408d358

< for(int loopIndex = 0 ; loopIndex < loopCount ; loopIndex++)

< {

< if(fileMode == FILE_MODE_ISO)

< {

< rewindFile(fd2);

< rewindFile(fd1);

< setTimeIndex = 1;

< }

411c361

< while(ImgRead(inp->rec_filename, &rec, fd2, fileMode))

> while(ImgRead(inp->rec_filename, &rec, fd2, fileMode))

415,417c365

< while(ImgRead(inp->orig_filename, &org, fd1, fileMode))

< {

< if(setTimeIndex)

> while(ImgRead(inp->orig_filename, &org, fd1, FILE_MODE_SA4))

419,423d366

< org.timestamp = rec.timestamp;

< fd1->timeindex = fd2->timeindex;

< }

< setTimeIndex = 0;

<

509,511d451

< }

<

< //printf("Reading time %f, quality time %f\n",(double)readTicks/CLK_TCK,(double)qualTicks/CLK_TCK);

531a472

> #if 0

546a488,496

> #else

> printf("%4d\t%4d\t%4d\t%6.4lf\t%6.4lf\t%6.4lf\n",

>

 NumberOfOriginalFrames,

>

 NumberOfEncodedFrames,

>

 NumberOfDecodedFrames,

>

 ADP,

>

 PDANSD,

>

 PDVD);

> #endif

********* diff for File Makefile **********

17c17

< INCDIR= ../../ISOFileFormatConverter/include

> INCDIR= ../../../include

24c24

< LIBS= -lm ../../ISOFileFormatConverter/lib/Unix/bin/ISOFileLib.a

> LIBS= -lm ../../../lib/Unix/bin/ISOFileLib.a

Updates to Archive SA4Simulator.zip

Note: The updates are:
· SA4Simulator.zip is replaced by attached archive SA4Simulator_710.zip

· SA4Simulator_710.zip contains two additional files in directory bin

· bearers.txt

The content of the file bearers.txt could be found in Section 7.1.3

· psc.cfg

This file gives an example of the configuration for channel simulator as explained in Section 7.1.3:
RTPinfile
= "infile.rtp"

RTPoutfile
= "outfile.rtp"

LogFile

= "log.txt"

StatFile
= "stat.txt"

Bearer

= 1

RandomSeed
= 1

ErrorFreeRTP
= 4

TSModeSender = 0 # 0 use TS

MaxSendingDelay = 0 # 0 ignore TS

MaxE2EDelay = 500 # 0 ignore TS, > 0 drop packet at receiver if delayed
Updates to Archive ISOFileFormatConverter.zip

Only the archive’s name is updated as ISOFileFormatConverter_710.zip

·
·
Updates to Archive EncodingAnchors.zip

Only the archive’s name is updated as EncodingAnchors_710.zip

Updates to Archive TestSequences.zip

Only the archive’s name is updated as TestSequences_710 .zip

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

