3GPP TSG-SA4#45 meeting
Tdoc S4-070538
3 – 7 September 2007, Seattle, USA

Source:

Ericsson
Title:

eCall via CTM - Detailed Protocol Specification
Agenda item:
8 and 14.1
___________________________________________________________________________

1. Introduction

This contribution discloses a detailed proposal for the transmission of eCall data via CTM. The proposal is simple and straight forward. It uses CTM “as is”. 
This detailed proposal takes into acocunt that the eCall protocol should 
- be flexible, upgradeable in future, with respect to the content and structure of the eCall data
- have a suitable version control,
- consider that the amount of eCall data might increase in future
- consider that some definitions of eCall data in earlier versions might be unnecessary in future, 
- consider that not all potential receivers (PSAPs) might be interested in all eCall data,
- consider that some data might have to be resent selectively, e.g. to various PSAPs
- consider that CTM as basis is very robust, but not very fast.

These considerations are discussed in detail in Tdoc S4-070537 [1].
Annex A elaborates the Inter-Relation between eCall Data Specification and eCall Protocol.

This detailed proposal is further used as basis to characterize the achievable performance of eCall via CTM, see Tdoc S4-070541 [5].

It is recognized that the final definition of the eCall data, as well as the structure of it and consequently the final definition of the eCall protocol is in the responsibility of CEN/TC 278 WI 24977. The proposal given here is meant as an input to the discussion there.

2. Typical course of an Emergency Call with eCall via CTM

The following steps show a typical example for an emergency call, where an arbitrary sub-set of the specified eCall data is transmitted:

1. An accident happens and the IVS initiates an emergency voice call to e112, 
i.e. to the first level PSAP (PSAP 0). This call setup is as fast and simple as today.
It may also be setup manually.

2. The PSAP 0 human operator and the people at the IVS side may communicate per voice as usual today. In this phase the emergency call can be classified by the human operator and maybe terminated early. Or it can be forwarded by PSAP 0 to a better suited PSAP 1.

Up to this point the emergency call is handled as today, without any degradation!

3. 
The involved PSAPs may have a different upgrade status with respect to eCall.
If the PSAPs are not upgraded for eCall the sequence ends here. 
If, however, at least one PSAP is upgraded to eCall and if the emergency call is justified,
the following sequence may happen:

4. The active PSAP initiates eCall data transmission by sending a request for a specific eCall data block. The PSAP version number, e.g. PSAP-V5, is disclosed in the PSAP-Request. During the transmission time of the PSAP-Request the PSAP operator can continue to listen to what the people in the car may say (half-duplex communication).

Data block #1 contains per definition the most essential eCall data (location etc) and should always be the first, if time is critical. Otherwise eCall data block #0, which contains the IVS content list, may be requested first. The choice is up to the active PSAP.

5. The IVS (if upgraded to eCall) responds by sending the requested eCall data block. 
The highest common Version number, e.g. V4, is disclosed in the IVS-Data-Header.
During this transmission time the PSAP operator can talk to the people in the car 
(half-duplex communication). 

If the IVS is not upgraded to eCall it will not react. The PSAP will (automatically) repeat its request several times and will finally give up. The people in the car will hear the short PSAP-Request modem tones several times. Then normal voice communication continues – as today.

6. Let assume that the IVS data block is received without (detectable) errors.
Then no automatic repeat-request is generated by the PSAP.
After transmission the PSAP Operator and the people in the car can continue with full-duplex voice communication, until the PSAP operator triggers manually (or the PSAP system triggers automatically) the next request.

7. PSAP sends the next request, e.g. for eCall data block #m

It is not necessary that the PSAP requests the data blocks in consecutive order.
It is reasonable that the PSAP requests only data blocks, which are included in the IVS content list, or which are mandatory anyway. If the PSAP requests (by fault) a non-existent IVS-data block, then the IVS answers with data block #0 (IVS content list).

8. IVS sends the requested data block #m

9. Let assume this transmission is disturbed this time and the error is detected by the PSAP due to the strong CRC. Then the PSAP automatically re-sends the Request for this block and the IVS responds accordingly. 

10.  …. 

11. PSAP sends a request for block #n

12. IVS sends data block #n


PSAP does not acknowledge the correct reception of an IVS-data block. Instead it requests the retransmission of a not received or erroneous received block, or it request the next data block. In this way the IVS does not need any memory of what it has already transmitted. The IVS just sends the block requested by the PSAP as often as requested. 

The PSAP may request any block in any sequence, it need not to request all. 

Different PSAPs may request different or the same eCall data block several times, without any need for inter-PSAP-communication.

A PSAP may insert pauses in the transmission, whenever needed for voice communication.

A PSAP can repeat or continue eCall transmission any time during the call.

3. Detailed Specification of the eCall Protocol

In the following the term “PSAP” refers to the eCall Protocol Handler inside the PSAP
and                   the term “IVS”     refers to the eCall Protocol Handler inside the IVS.

The eCall Protocol is a simple “pull” protocol.

The PSAP is the active partner, it can send one PSAP-Request(i) for one eCall block(i) at a time.

The IVS is the passive partner; it is only reacting on PSAP-Requests, not on its own initiative.
The IVS sends the requested eCall block(i) exactly one time per PSAP-Request(i), as often as requested.
The PSAP discloses the highest Version number it can handle in each of its PSAP-Requests.

The IVS determines the highest common Version number as the minimum of the PSAP-Request Version number and its own highest IVS-Version number.

The IVS discloses the highest common Version number in each of its IVS-Data responses.

Each PSAP-Request may disclose a different PSAP-Version number. 
The IVS shall determine the highest common Version number for each PSAP-Request again.

The IVS Content List that the IVS may send on PSAP-Request refers to that actual highest common Version number.

3.1 PSAP-Handling in detail
The eCall data transfer starts always with a PSAP-Request (i), where i is the index of the requested eCall block. The PSAP knows exactly the length(i) of the requested block(i) and knows therefore the total transmission time, Ttrans(i).

The PSAP expects the response from the IVS to begin within a short time-out period of Tout.

The default value for Tout is [1000ms]. 
A PSAP may adapt this Tout during the eCall communication to reflect the round trip delay time PSAP – IVS – PSAP. Tout shall be minimized for fastest error recovery.
If no IVS-Data are received within Tout+Ttrans(i),
then the PSAP repeats the same PSAP-Request, maximal Nrep times.

The default value for Nrep is [3].
The PSAP may start the repetition as early as it is sure that no IVS-Data burst is coming.
If no IVS-Data are received after Nrep repetitions, 
then the IVS is declared as not-eCall-enabled and the eCall protocol is terminated.

This is important for backward compatibility to today’s emergency call handling.

If the requested IVS-Data(i) is received within Tout+Ttrans(i) and no errors can be detected, 
then the transfer of eCall sub-block (i) is successfully terminated.

If IVS-Data are received without detectable errors, 
   but the received index j is not corresponding to the requested index i,
then an error occurred, 
either
a) because the PSAP-Request(i) was disturbed by transmission errors and by chance (unlikely) 
    another valid PSAP-Request(j) was received by the IVS;
    The PSAP shall repeat PSAP-Request (i) in this case;
or:
b) because the requested sub-block(i) is not supported by the IVS-Version;
    In that case the IVS should have sent the IVS-Content list, which is sub-block(j=0).
    The PSAP shall not repeat this wrong PSAP-Request(i) in this case.

If the IVS-Data are received with detectable CRC errors,
then the PSAP repeats the PSAP-Request(i), maximally Nrep times.
If the transfer is then still not terminated successfully, 
then the eCall Protocol is declared as unsuccessful and no automatic repetition shall occur.
Note: The PSAP human operator may, however, restart the eCall protocol any time.

If the IVS-Data are received with detectable errors in the IVS-Header, 
e.g. if the received IVS-Version is higher than the PSAP-Version,
then the PSAP repeats the PSAP-Request(i), maximally Nrep times.
If the transfer is then still not terminated successfully, 
then the IVS-implementation is declared as faulty and the eCall protocol is terminated.

Note: The PSAP human operator may, however, restart the eCall protocol any time.

If the PSAP receives an IVS-Data burst without prior requesting one or 
if the PSAP receives a PSAP-Request, 
then the PSAP shall ignore these erroneous eCall bursts.

3.2 IVS Handling in detail
The IVS remains inactive, but monitoring its input from PSAP, until it receives a PSAP-Request (i).

If the PSAP-Request(i) does not contain detectable errors,
then the IVS sends the requested eCall block(i).
After that the IVS returns into its monitoring mode. 

If the PSAP-Request (i) contains detectable CRC errors,
then the IVS shall ignore it completely and go into monitoring again.

If the PSAP-Request (i) does not contain detectable CRC errors, 
but contains an index i to an eCall block that is not supported by the highest common Version,
or is not flagged as valid in the IVS content list,
then the IVS shall send the IVS Content list of the highest common version, i.e.  sub-block(j=0).
After that the IVS returns into its monitoring mode. 

The IVS takes the received PSAP-Version and its own highest available IVS-Version into account for each new PSAP-Request and determines the highest common Version again. 

All eCall blocks and the IVS Content list that the IVS may send refer always to this highest common version, which is then disclosed in the next IVS Data Header.

4. Detailed Specification of the eCall Transmission
The proposal here is based on the assumption that the existing CTM implementations in terminals shall be used without any modification. Especially the functions TX-CTM and RX-CTM are used as they are. Some actions are needed to circumvent some peculiarities of the CTM specification.

In tDoc S4-070539 some improvements are discussed to overcome these CTM intrinsic restrictions by slightly modifying the CTM definition for eCall. 

4.1 Recoding of eCall data 7-to-8 prior to transmission
CTM is designed for the robust transmission of textual characters, but not for arbitrary binary data: 

1. The characters 0x05 and 0x16 are reserved for CTM-internal purposes and have a special meaning within CTM (<INQUIRY>, <IDLE>). Thus these two characters must not be used for eCall transmission, because they cannot be transmitted by CTM.

2. CTM performs an UTF-8 re-coding of all input characters prior to transmission. 
As a consequence, characters in the range of [0xA0, 0xFF] are transmitted as 2 bytes.
Under the assumption of equal distribution of data values in the range of [0x00, 0xFF], 
this UTF-8 coding would increase the transmission time by the factor 1.375 and would make the transmission time data dependent.

In order to avoid these CTM intrinsic effects, the eCall data are re-coded by the eCall sender by using the following scheme: 56 input bits (7 bytes x 8 bit) are coded as 64 bits (8 bytes x 7 bit) that can be transmitted by CTM without problems. For this purpose, at any one time 7 input bits and one leading ‘0’-bit are combined to a new intermediate byte value. Then a constant offset of 0x20 is added to every intermediate byte in order to assure that only values in the range of [0x20, 0x9F] are finally obtained. In this way no CTM-reserved characters and no values in the range of [0xA0, 0xFF] occur in the recoded data. The 7-to-8-recoding is illustrated by the following figure:

[image: image1.emf]0 0 -6 0 7 -13 014 -200 21 -27 0 28 -34 035 -41 0 42 -48 0 49 -55

byte #0 byte #1 byte #2

byte #3 byte #4 byte #5 byte #6 byte #7


This 7-to-8 recoding leads to a marginal and constant increase in transmission time by factor 1.143. If an eCall data block is specified with a length unequal to a integer multiple of 7 bytes, then some dummy 0 bits are added in the last byte of the output stream.
For the same reason no eCall-Header byte, eCall-Index byte or eCall-CRC byte may take a value outside the range of  [0x20, 0x9F].

The eCall receiver reverts all this re-coding to gain the original eCall data back.

4.2 Definition of eCall packets for Transmission

Two different types of eCall packets are specified.
The first packet type is the PSAP-Request (n).
It is sent by the PSAP to the IVS in order to initiate the transmission of eCall data block n. 
The other kind of packet type is the IVS-Data (n).
It is sent by the IVS to the PSAP as a response to the PSAP-Request. 
IVS-Data (n) contains block n of the eCall data.
4.2.1 Definition of the PSAP-Request packet

PSAP-Request (n) is sent from the PSAP to the IVS in order to trigger the transmission of eCall data block (n). The length of the PSAP-Request packet is constantly 4 bytes. The following figure illustrates its structure:


[image: image2.emf] 

PSAP - Version  

Index n  

byte #1   byte #2   byte #3  

5 MSB of  CRC  

byte #4  

7 LSB of CRC  


Figure 4.2.1-1: Structure of PSAP-Request (n)
Detailed description of PSAP-Request (n)

· Byte #1 contains the PSAP-Request-header 
Values between 0x20 to 0x5F (64 values) are reserved.
The PSAP-Request Header identifies the packet as PSAP-originated 
and indicates in addition the eCall Versions the PSAP is able to operate on.
The value 0x20 represents the first version (0) of the eCall data definition.


· Byte #2 contains the index n of the requested eCall-data block.  
Up to 128 different data block indices can be coded  [0 …127].
Since the Request must not contain bytes outside the value range [0x20, 0x9F], 
a constant value of 0x20 is added to the index before transmission.


· Byte #3 and byte #4 contain a 12 bit CRC, see below.
Since the Request must not contain bytes outside the value range [0x20, 0x9F], 
a constant value of 0x20 is added to each part of the CRC before transmission.
4.2.2 Definition of the IVS-Data packet

IVS-Data (n) is sent from the IVS to the PSAP as a response to the PSAP- Request (n). 
Each IVS-Data (n) consists of the IVS-header, the index of the transmitted eCall data block, the data part, and a 28 bit (4-byte) CRC. The following figure illustrates its structure:


[image: image3.emf] 

IVS - Version  

Index n  

byte #1   byte #2  

IVS - data block of Index n  with (predefined) length k  

byte #2+1   byte #2 +k  

28 - bit CRC  

byte #2+k+1   byte #2+k+4  


Figure 4.2.2-1: Structure of IVS-Data (n)

Detailed description of IVS-Data (n):

· Byte #1 contains the IVS-Data Header 
Values between 0x60 to 0x9F (64 values) are reserved.
The IVS-Data Header identifies the packet as IVS-originated 
and indicates in addition the eCall Versions the IVS is able to operate on,
more precisely: the highest common version of PSAP and IVS.
The value 0x60 represents the first version (0) of the eCall data definition.


· Byte #2 contains the index n of the transmitted eCall data block.  
Up to 128 different data block indices can be coded [0 …127]
Since the IVS-Data must not contain bytes outside the value range [0x20, 0x9F], 
a constant value of 0x20 is added to the index before transmission.


· Bytes #2+1 to #2+k contain the k bytes of the 7-to-8 recoded eCall data block (n).


· Bytes #2+k+1 to #2+k+4 contain the 28-bit CRC in 4 parts of 7 bit each.
Since the IVS-Data must not contain bytes outside the value range [0x20, 0x9F], 
a constant value of 0x20 is added to each 7-bit part of the CRC before transmission. 


4.2.3 Definition of CRC checksums

The eCall protocol uses two different kinds of CRC checksums due to different reliability requirements. The IVS-Data packets are secured by a strong 28 bit CRC, while the PSAP-Request packets contain a weaker 12-bit CRC.

The following figure illustrates the structure of the 12-bit PSAP-Request CRC:

[image: image4.emf]CRC bits 11-7 0 CRC bits 6-0

0

Byte #1 Byte #2

7 8

0    0    0

15


The exact specification is found in the C-Reference.

Note: Undetected errors in a PSAP-Request are less severe for the overall eCall protocol, because the PSAP will in any case detect, if the correct eCall data packet is transmitted or nothing is transmitted and may request it again. So the strong CRC of the IVS-Data packet protects in addition indirectly also the weaker PSAP-Request. Therefore a 12-bit CRC is sufficient.
The following figure illustrates the structure of the 28-bit IVS-Data CRC:

[image: image5.emf]CRC bits 13-7 0 CRC bits 6-0

0

Byte #3 Byte #4

7 8

CRC bits 27-21 0 CRC bits 20-14

Byte #1 Byte #2

0 0

15 23 16 31 24


The exact specification is found in the C-Reference.

Undetected errors within the IVS Data may lead to severe consequences (e.g. wrong location, wrong Service Provider) and shall be avoided as much as reasonably possible. Therefore a strong 28-bit CRC is used.


In order to assure that the CRC bytes don’t contain values that CTM cannot transfer well, each CRC byte is increased by 0x20 before transmission.
By this way, all CRC bytes are in the allowed range of [0x20 ; 0x9F] prior to transmission.

5. References

[1]
S4-070-537
Reasoning for the proposed eCall Specification

[2]
S4-070-538
eCall via CTM - Detailed Protocol Specification

[3]
S4-070-539
Potential improvements for eCall via CTM

[4]
S4-070-540
The Greater Picture for eCall

[5]
S4-040-541
Performance Characterization of eCall via CTM

[6]
S4-040-542
eCall via CTM: Reference C-Code

Annex A: Inter-Relation of eCall data Specification and eCall Protocol

The eCall data Specification (responsibility: CEN) and the eCall Protocol (responsibility: 3GPP) shall be specified as independent as possible. Future extensions of the eCall data specification shall be possible without modification of the eCall protocol. The eCall protocol shall not need to know the eCall data in detail.

Some agreements on the interrelation between eCall data Specification and eCall protocol are necessary, in the one or other form. These interrelations may be very simple, e.g. one monolithic block of a maximum size shall be transmitted one time.
Or they may be more sophisticated for substantially more efficient operation by allowing a very flexible definition of sub-blocks and a selective, arbitrary transmission of individual blocks as often as wanted and at any time.

It is proposed to follow the second, sophisticated approach.
Note: the value ranges given in this Annex A refer to the eCall version with “CTM as is”.
If the proposals in S4-070539 for a slightly modified CTM are followed, then these ranges will increase.
A.1 Assumptions on eCall data Specification

The eCall data should be specified as follows (proposal):

The eCall data are structured into indexed (sub-)blocks.

Each block has an associated length in the range of [1 ; 32] bytes.

Each block has an associated index  in the range of [0 ; 127] = [0x00 ; 0x7F].


Note: Not all blocks need to be transmitted. Each block can be requested individually. Therefore the total size of the eCall data might be quite large, while the transmission time in each specific call stays in reasonable limits.
The eCall data are specified in Versions.

The Version number is in the range of [0 ; 63]. 

The first Version has number 0.
The Version number shall be incremented by 1, when a next Version is specified.

Each Version has an exactly defined number of blocks.

The IVS discloses its IVS Content list

The IVS Content list discloses, which of the specified blocks are valid or not valid for the specific IVS and a specific Version. One bit is reserved per block as “valid” (bit = 1) or “not valid” (bit = 0) flag. The LSB of the first byte (notation: byte.bit = 0.0) corresponds with block(0), 
the next higher bit (0.1) corresponds with block (1), etc.
Block(0), the block with index 0,  is per definition the IVS Content list. It must exist always.
A.2 Specification of eCall Version Handling

Each subsequent version shall include all blocks defined in all earlier versions.

The definition of a block shall not change from version to version.

A new block with new index, contents and length shall be added in a new Version.

The number of blocks does grow from version to version.

The IVS Content list of a given Version includes (automatically) all IVS Content lists of all previous Versions. The IVS Content list does grow from version to version.


The total length of all blocks of a given Version is (in a wide range) unlimited.

Each IVS or PSAP that is able to handle a given Version of the eCall data shall be able to handle also all previous Versions. They shall exactly know  the lengths of all IVS Content lists of earlier Versions.

A.3 Data Exchange between IVS-Data-Part and eCall-Protocol-Handler

The IVS-Data-Part, responsible for the preparation of the eCall data, specific for the given vehicle, transfers the complete set of its eCall data to the eCall-Protocol-Handler in the following form 
(one of many possible proposals):

Byte 1: 
Highest Version N of eCall data the IVS provides; N € [0 ; 63]

Byte 2+0: 
Number K of blocks in Version N; K € [1 ; 127]
Byte 2+1:
Number     of blocks in Version N-1

…

Byte 2+N:
Number     of blocks in Version 0


Note: these numbers of specified blocks in each Version are a priori defined,

but the eCall-Protocol-Handler is agnostic to that and needs to get them.
Similar considerations hold for all length parameters for these K blocks.

Bytes N+3:4: 16-bit Pointer to eCall block 0            (IVS Content list for Version N)

Byte   N+5:
 Length          of eCall block 0 in byte (redundant, because the number of bits = K)

Bytes N+6:7: Pointer to eCall block 1.

Byte   N+8:
Length of eCall block 1.

…

Bytes N+3:4+3K: Pointer to eCall block K.

Byte   N+5   +3K: Length of eCall block K.

After that follow the eCall blocks 0 to K in arbitrary order, as indicated by the above pointers.

These 16-bit pointers are defined relative to byte 1.

Each pointer uses 2 bytes, e.g. N+3 and N+4, the MSByte is given first (here in N+3).
Only eCall blocks that are flagged as valid in the IVS Content list for Version N need to be provided. In this way the specific set of data for a specific vehicle may remain minimal, even in later Versions with many additional, optional blocks.

Based on this one-time transmitted set of information by the IVS-data-part the eCall-Protocol-handler can determine all parameters for the transmission on its own.
A similar Data Exchange is necessary between the PSAP-Application its eCall-Protocol Handler.

















































































































































_1249487940.doc


PSAP-Version







Index n







byte #1







byte #2











byte #3











5 MSB of CRC







7 LSB of CRC







byte #4












_1249479615.doc


IVS-Version







Index n







byte #1







byte #2







IVS-data block of Index n with (predefined) length k







byte #2+1







byte #2+k







28-bit CRC







byte #2+k+1







byte #2+k+4












