3GPP TSG-SA4#45 meeting
Tdoc S4-070542
3 – 7 September 2007, Seattle, USA

Source:
Ericsson
Title:
eCall via CTM - Reference C-Code
Agenda item:
8 and 14.1

1. Introduction

This document describes the first release (P1) of the reference software for ‘eCall using Cellular Text Telephone Modem (CTM).
Both processes, PSAP and IVS, are realized by the same program ‘eCall’.
A example script (batch) calls both alternately.
The communication between IVS and PSAP is based on PCM audio files.
A channel-model could be called (not included) to simulate the voice path between IVS and PSAP.
This first release does not implement the full eCall Protocol functionality as described in S4-070538 “eCall via CTM - Detailed Protocol Specification”, but a simplified pre-version.

It is precise enough to see the principle and to evaluate the performance.

This reference SW will be updated in next future to the full functionality.

2. Assumptions for this Pre-release P1
· The code expects one example monolithic eCall data set of in total 140 bytes (MSD.Dat).
This data set is in this release P1 not structured and has no version, content list, etc.
Therefore:

· The code assumes eCall protocol version ‘0’.
Thus IVS and PSAP have very limited version handling.

· The code divides these 140 bytes automatically into 5 blocks of 28 bytes
and associated block numbers 1 – 5.

· The code generates automatically the IVS content list in block number 0,
with value 0x1F (five active blocks).

The example script is such that the PSAP automatically requests the complete eCall data set consisting of all 5 blocks.

3. Description
Files

The eCall reference software is delivered as zip file ‘eCall_refcode_ P1.zip’. It contains a collection of files of different kinds.

The following files are already part of the Cellular Text Telephone Modem (CTM) standard 3GPP TS 26.230:

conv_encoder.c

conv_encoder.h

conv_poly.c

conv_poly.h

ctm_defines.h

ctm_receiver.c

ctm_receiver.h

ctm_transmitter.c

ctm_transmitter.h

diag_deinterleaver.c

diag_deinterleaver.h

diag_interleaver.c

diag_interleaver.h

fifo.c

fifo.h

init_interleaver.c

init_interleaver.h

m_sequence.c

m_sequence.h

parse_arg.c

parse_arg.h

sin_fip.c

sin_fip.h

tonedemod.c

tonedemod.h

tonemod.c

tonemod.h

typedefs.h

ucs_functions.c

ucs_functions.h

viterbi.c

viterbi.h

wait_for_sync.c

wait_for_sync.h

For eCall the following C source files are provided in addition:

crclib.c
CRC functionality
crclib.h
interface to CRC functionality

eCall.c
main program

eCall_ARQ.c
ARQ protocol
eCall_ARQ.h
interface to ARQ protocol
fileio.c
file I/O routines
fileio.h
interface to file I/O routines
recode.c
7to8-recoding

recode.h
interface to 7to8-recoding

timer.c
timeout functionality

timer.h
interface to timeout functionality
Additional miscellaneous files provided in the zip file are:

bin/eCall
pre-compiled executable for Linux
bin/eCall.exe
pre-compiled executable for Windows
Makefile
Makefile for Linux

Makefile.cygwin
Makefile for Cygwin
tvbas_if.h
build system include file (empty but necessary for compilation)
tvsys_if.h
build system include file (empty but necessary for compilation)
tvsys_types.h
build system include file
msd.dat
MSD data file

zeros.dat
file containing binary zeros

test_eCall.sh
example test script (for Linux) demonstrating one complete MSD transmission

test_eCall.bat
example test script (for Windows) demonstrating one complete MSD transmission

test_output.log
reference output as it should be generated by the scripts
‘test_eCall.sh’ and ‘test_eCall.bat’
Compilation

After unpacking the zip file the C reference code can be compiled using the Gnu Compiler Collection (gcc). The makefiles work for Linux and for Cygwin respectively and provide the default target ‘eCall’ and the target ‘clean’ (for removing intermediate object files etc.).

In order to compile under Linux, execute the following commands:

 cd …/src_ref
 make –f Makefile clean eCall

In order to compile under Cygwin, execute the following commands:

 cd …/src_ref
 make –f Makefile.cygwin clean eCall

The Windows executable ‘eCall.exe’ also runs in a native Windows command prompt.
Usage

If invoked with the ‘-h’ option, the executable ‘eCall’ shows its usage:

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

use: eCall [options]

options:

 -v verbose output

 -h display this usage message

 -quiet disables real-time audio-I/O

 -mode [IVS|PSAP] specify IVS or PSAP behaviour

 -msd <msd_file> IVS: read MSD data from file <msd_file>

 -outfile <output_file> copy output signal into file

 -infile <input_file> read samples from signal file

 -state <state_file> read & write internal state from & to file

 -start start offline eCall sequence
The option ‘-quiet’ is mandatory for the eCall reference code because no real-time audio-I/O is supported in this reference code.

4. Test Scripts and Reference Output

The script files ‘test_eCall.sh’ and ‘test_eCall.bat’ contain a sequence of commands that simulate one complete MSD transmission. The script ‘test_eCall.sh’ is suitable for common command shells (e.g. sh, csh, tcsh, bash) while ‘test_eCall.bat’ can be run in the standard Windows command shell.
The file ‘test_output.log’ contains the reference output that both script files shall generate.

Executing the test scripts

The test scripts are executed by typing on the command line, causing the log messages to be written into file ‘log’:
	csh / tcsh
	test_eCall.sh >& log

	bash
	test_eCall.sh 2> log

	Windows Command Prompt
	.\test_eCall.bat 2> log

Description of process

In order to initiate an eCall data transfer, the eCall executable is called as PSAP in the following way:

eCall -quiet -mode PSAP -infile zeros.dat -outfile psap-0.pcm \

 -state psap.state -start
‘-mode PSAP‘ causes ‘eCall’ to act as PSAP. The options ‘-start’ tells ‘eCall’ to begin a new eCall sequence, i.e. its internal state is initialized appropriately from scratch and not from the state file ‘psap.state‘, which is required however to carry the newly created output state. Since there is no CTM input signal, a dummy file ‘zeros.dat’ is specified as input signal file for the ‘-infile’ option. The option ‘-outfile’ determines the filename of the output file ‘psap-0.pcm’ that will contain the CTM signal of the generated PSAP request. The option ‘-state’ implicitly specifies two filenames ‘psap.state’ and ‘psap.state.timer’ that contain the internal data structure that is necessary for the next invocation of the PSAP.

Then follows the first invocation of the IVS, which looks as follows:

eCall -quiet -mode IVS -infile psap-0.pcm -outfile ivs-0.pcm \

 -state ivs.state -start -msd msd.dat

The ‘eCall’ executable acts now as IVS, because of the option ‘-mode IVS’. The option ‘-start’ tells the IVS to begin a new eCall sequence and to read MSD data from a file that must be specified with the ‘-msd’ option. The output file of the previous PSAP run (‘psap-0.pcm’) is used as input pcm file for the ‘-infile’ option. The option ‘-outfile’ specifies the filename for the output CTM signal containing the first MSD data block. The option ‘-state’ tells the program to store the internal state to the file ‘ivs.state’ that is required for the next call of IVS.

Now the PSAP has to be called again (note: without option ‘-start’ here):

eCall -quiet -mode PSAP -infile ivs-0.pcm -outfile psap-1.pcm \

 -state psap.state

This tells ‘eCall’ to act as PSAP and to load the previously stored internal state from the files ‘psap.state’ and ‘psap.state.timer’. (At the end of the program these files are updated with the new actual state information) The file ‘ivs-0.pcm’, which was created by the previous IVS call, is used as input file. The output signal is stored to file ‘psap-1.pcm’.

The next IVS call is as follows (note: without option ‘-start’ here):

eCall -quiet -mode IVS -infile psap-1.pcm -outfile ivs-1.pcm \
 –state ivs.state
This tells ‘eCall’ to act as IVS and to load the previously stored internal state from the file ‘ivs.state’. (At the end of the program this file is updated with the new actual state). The file ‘psap-1.pcm’, which was created by the previous PSAP call, is used as input file. The output signal is stored to file ‘ivs-1.pcm’.

This process of alternating PSAP/IVS calls is iterated until the PSAP runs into the PSAP_FINISHED state and writes the file ‘msd.received’, which contains the complete received and decoded MSD message. The content of this file must be identical with the content of the input ‘msd.dat‘ file.

In case of a transmission error, the PSAP will go into the state PSAP_PAUSE if the maximum number of identical requests to the IVS does not lead to a successful response from the IVS. In this case the file ‘msd.error’ will be written.

The file ‘test_output.log’ contains the complete reference output log messages as it should be generated by the scripts ‘test_eCall.sh’ and ‘test_eCall.bat’ respectively.

Example log file

In the following example of the file ‘test_output.log’ the time measurement starts at 1.48 seconds because at this point the IVS has received the first PSAP request. The time measurement of the complete MSD transmission ends at 30.95 seconds because at this point the last MSD block is available at the PSAP and the file ‘msd.received’ is written. Thus the complete transmission time in this example is 29.47 seconds.

test_output.log:

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : PSAP

 Output pcm signal file : psap-0.pcm

 Input pcm signal file : zeros.dat

 eCall state file : psap.state

 eCall timer file : psap.state.timer

[0.000] eCall_ARQ_handleEvent(): state=PSAP_IDLE, event=EVENT_ECALL_REQUEST

sending request for block 1 (trial #1)

[0.000] eCall_ARQ_handleEvent(): new state=PSAP_WAIT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

Creating block 0 with payload 1 (7 gross bytes)

Creating block 1 with payload 32 (38 gross bytes)

Creating block 2 with payload 32 (38 gross bytes)

Creating block 3 with payload 32 (38 gross bytes)

Creating block 4 with payload 32 (38 gross bytes)

Creating block 5 with payload 32 (38 gross bytes)

 eCallMode : IVS

 Output pcm signal file : ivs-0.pcm

 Input pcm signal file : psap-0.pcm

 eCall state file : ivs.state

 eCall timer file : none

[0.305] CTM sync found

[1.480] CTM sync lost - 4 bytes received - max amplitude was 16376

[1.480] eCall_ARQ_handleEvent(): state=IVS_DEFAULT, event=EVENT_ECALL_DATA

request for block 1 received

sending MSD block #1

[1.480] eCall_ARQ_handleEvent(): new state=IVS_DEFAULT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : PSAP

 Output pcm signal file : psap-1.pcm

 Input pcm signal file : ivs-0.pcm

 eCall state file : psap.state

 eCall timer file : psap.state.timer

[1.785] CTM sync found

[6.190] CTM sync lost - 38 bytes received - max amplitude was 16376

[6.190] eCall_ARQ_handleEvent(): state=PSAP_WAIT, event=EVENT_ECALL_DATA

DATA OK (header=0x60 payload=32 seqNr=1)

sending request for block 2 (trial #1)

[6.190] eCall_ARQ_handleEvent(): new state=PSAP_WAIT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : IVS

 Output pcm signal file : ivs-1.pcm

 Input pcm signal file : psap-1.pcm

 eCall state file : ivs.state

 eCall timer file : none

[6.495] CTM sync found

[7.670] CTM sync lost - 4 bytes received - max amplitude was 16376

[7.670] eCall_ARQ_handleEvent(): state=IVS_DEFAULT, event=EVENT_ECALL_DATA

request for block 2 received

sending MSD block #2

[7.670] eCall_ARQ_handleEvent(): new state=IVS_DEFAULT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : PSAP

 Output pcm signal file : psap-2.pcm

 Input pcm signal file : ivs-1.pcm

 eCall state file : psap.state

 eCall timer file : psap.state.timer

[7.975] CTM sync found

[12.380] CTM sync lost - 38 bytes received - max amplitude was 16376

[12.380] eCall_ARQ_handleEvent(): state=PSAP_WAIT, event=EVENT_ECALL_DATA

DATA OK (header=0x60 payload=32 seqNr=2)

sending request for block 3 (trial #1)

[12.380] eCall_ARQ_handleEvent(): new state=PSAP_WAIT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : IVS

 Output pcm signal file : ivs-2.pcm

 Input pcm signal file : psap-2.pcm

 eCall state file : ivs.state

 eCall timer file : none

[12.685] CTM sync found

[13.860] CTM sync lost - 4 bytes received - max amplitude was 16376

[13.860] eCall_ARQ_handleEvent(): state=IVS_DEFAULT, event=EVENT_ECALL_DATA

request for block 3 received

sending MSD block #3

[13.860] eCall_ARQ_handleEvent(): new state=IVS_DEFAULT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : PSAP

 Output pcm signal file : psap-3.pcm

 Input pcm signal file : ivs-2.pcm

 eCall state file : psap.state

 eCall timer file : psap.state.timer

[14.165] CTM sync found

[18.570] CTM sync lost - 38 bytes received - max amplitude was 16376

[18.570] eCall_ARQ_handleEvent(): state=PSAP_WAIT, event=EVENT_ECALL_DATA

DATA OK (header=0x60 payload=32 seqNr=3)

sending request for block 4 (trial #1)

[18.570] eCall_ARQ_handleEvent(): new state=PSAP_WAIT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : IVS

 Output pcm signal file : ivs-3.pcm

 Input pcm signal file : psap-3.pcm

 eCall state file : ivs.state

 eCall timer file : none

[18.875] CTM sync found

[20.050] CTM sync lost - 4 bytes received - max amplitude was 16376

[20.050] eCall_ARQ_handleEvent(): state=IVS_DEFAULT, event=EVENT_ECALL_DATA

request for block 4 received

sending MSD block #4

[20.050] eCall_ARQ_handleEvent(): new state=IVS_DEFAULT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : PSAP

 Output pcm signal file : psap-4.pcm

 Input pcm signal file : ivs-3.pcm

 eCall state file : psap.state

 eCall timer file : psap.state.timer

[20.355] CTM sync found

[24.760] CTM sync lost - 38 bytes received - max amplitude was 16376

[24.760] eCall_ARQ_handleEvent(): state=PSAP_WAIT, event=EVENT_ECALL_DATA

DATA OK (header=0x60 payload=32 seqNr=4)

sending request for block 5 (trial #1)

[24.760] eCall_ARQ_handleEvent(): new state=PSAP_WAIT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : IVS

 Output pcm signal file : ivs-4.pcm

 Input pcm signal file : psap-4.pcm

 eCall state file : ivs.state

 eCall timer file : none

[25.065] CTM sync found

[26.240] CTM sync lost - 4 bytes received - max amplitude was 16376

[26.240] eCall_ARQ_handleEvent(): state=IVS_DEFAULT, event=EVENT_ECALL_DATA

request for block 5 received

sending MSD block #5

[26.240] eCall_ARQ_handleEvent(): new state=IVS_DEFAULT

**

 Emulation for eCall using Cellular Text Telephone Modem (CTM)

 Copyright (c) Teleca Systems GmbH, 2007

**

 eCallMode : PSAP

 Output pcm signal file : psap-5.pcm

 Input pcm signal file : ivs-4.pcm

 eCall state file : psap.state

 eCall timer file : psap.state.timer

[26.545] CTM sync found

[30.950] CTM sync lost - 38 bytes received - max amplitude was 16376

[30.950] eCall_ARQ_handleEvent(): state=PSAP_WAIT, event=EVENT_ECALL_DATA

DATA OK (header=0x60 payload=32 seqNr=5)

writing file 'msd.received'

[30.950] eCall_ARQ_handleEvent(): new state=PSAP_FINISHED
