TSG-SA4#42 meeting
Tdoc S4 (07)0205
29 January – 2 February, 2007, Sevilla, Spain

Source:

RealNetworks, Streamezzo, Nokia
Title:

UE Interaction with DIMS
Document for:

Discussion

Agenda Item:

13.7
Purpose

There are several areas where DIMS is dependent on the rich media engine’s interaction with the UE that have not yet been addressed in DIMS nor in OMA RME. The present document outlines potential change requests that may become necessary to add to the forthcoming DIMS specification (26.142-110) to ensure UE interactivity with DIMS scenes.
The changes presented below are illustrative and presented for discussion purposes. Final text and content of subsequent official CRs (if any) will depend on the maturation of the work split agreement between OMA RME and 3GPP-SA4.
Proposed Changes
The following changes are based on the current draft of the DIMS specification. Portions unaffected by these potential CRs have been omitted for clarity.

<BEGIN CHANGE>
8 Definitions, symbols and abbreviations
8.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

[ed: these are all supplied by the editor and not yet reviewed or agreed]

	 Rich Media Engine
	The component which receives and interprets DIMS scenes, and handles interaction with the device

	DIMS Applet
	A DIMS scene providing application functionality (e.g. mobile television selection and viewing, email client, UE shell/desktop, etc.)

	
	

	
	

<END CHANGE>
<BEGIN CHANGE>
5.4.2.8 Changes in Screen Orientation and Softkey Locations
Two events and two feature strings are defined that make it possible for scenes to adapt to the screen layout. The events are:

· ScreenOrientationPortrait

· ScreenOrientationLandscape

They are in the <<ed: TBD>> namespace. Whenever the terminal detects a change of orientation, angle, or screen size, one of these two events is dispatched. A portrait event is dispatched if the screen is taller than it is wide, and a landscape event is dispatched if the screen is wider than it is tall. It is the responsibility of the system below the scene to orient the screen buffer to user; the DIMS scene author does not do this.

Most mobile UE have two or more softkeys adjacent to the screen. Rotation of the screen changes their position relative to the DIMS scene and must be reported to the rich media engine. For this reason each time the screen is rotated, the new position of every softkey on the UE is sent with the ScreenOrientationPortrait or ScreenOrientationLandscape event.

The position of each softkey represents the center of each key in relation to the edge of the screen. Figure Y below shows a UE with two softkeys. In this example, in portrait mode, the primary softkey (which returns event ‘Softkey_0’ when pressed) is on the right and the secondary softkey (which returns event ‘Softkey_1’ when pressed) is on the left. In the example below, when in portrait mode, Softkey_0 is at position (112,200) and Softkey_1 at (38,200)

Rotating the phone 90 degrees to the right triggers the UE to go into landscape mode (either automatically or via user selection). The softkeys are now on the left edge with Softkey_1 on the top. The UE sends ScreenOrientationLandscape to the Rich Media Engine which includes the position of each softkey on the device. The positions for the softkeys returned are now (0,112) for Softkey_0 and (0,38) for Softkey_1. Similarly, rotating -90 degrees (or +270 degrees) puts us in landscape again but with the keys on the right side of the device. This again results in ScreenOrientationLandscape being sent from the UE, but this time the positions returned for the softkeys are now (200,38) for Softkey_0 and (200,112) for Softkey_1

[image: image1.png]200

Softkey_1

ScreenOrientationPortrait Details=

{

0 38 112 150

Height = 200
Width = 150
SoftkeyOrientation= [

('Softkey_0', 112, 200),
('Softkey_1', 38, 200)]

Softkey_ 1 0 200

| "
L

—150

Softkey_0 screencrientationLandscape Detils=
{
Height = 150
Width = 200
SoftkeyOrientation= [
(Softkey_0', 0, 112),
(Softkey 1 0. 38)]

Softkey_0

0_ |
38

112
150

ScreenOrientationLandscape.Details= Softkey_1
{
Height = 150
Width = 200
SoftkeyOrientation= [
('Softkey_0', 200, 38),
('Softkey_1', 200, 112)]

While this example shows a UE with only two softkeys, DIMS supports an unlimited number of softkeys. Since key positions are reported as absolute coordinates by the UE for each and every softkey, any number of softkeys can be accommodated as shown in Figure Z
[image: image2.png]0 500

0 I !
== =
=
== =
Softkey 9 | =
0,68) == =

4001
Softkey_1 Softkey_0

(0,400) (400,500)

Because of the unlimited number of softkeys, all changes to the SoftkeyOrientation are sent at the same time along with the portrait or landscape events. This allows DIMS scene authors to cope with the new key locations in a single repaint.

The angle between the long (primary) axis of the screen and vertical is reported in degrees in screenAngle, to the best of the terminal’s capability. This angle is measured clockwise from vertical (see diagram) and would normally be close to 0 or 180 in portrait events, and close to 90 or 270 in landscape events.

[image: image3.wmf]

scree

n

 pr

im

ar

y

a

x

i

s

v

er

t

i

ca

l

a

Figure 8‑1: Screen Orientation

These events have the following interface.

interface ScreenOrientationEvent : Event
{

readonly attribute unsigned long screenWidth;

readonly attribute unsigned long screenHeight;

readonly attribute unsigned long screenAngle;

readonly attribute string softKeys[];

readonly attribute unsigned short softKeysLocation[];
}
screenWidth - contains the new screen display or viewport width
screenHeight -contains the new screen display or viewport height

screenAngle – documents the angle between the primary axis of the screen, and vertical.
softKeys – indicates the names of the device soft keys whose positions appear in the next attribute
softKeysLocation - indicates the locations of the device soft keys in response to the orientation change.
The screen orientation events SHALL be supported in DIMS. If the UE has an orientation sensor, or other physical adaptation that causes the available screen drawing area to change (e.g. a partial cover), events shall be generated whenever the terminal detects a change in any of the parameters to these events. These events may be used in the following circumstances:

1) To register event listeners based on the screen orientation events so that the script can be invoked when the event occurs. This can be done either through the application using uDOM APIs or declaratively via the <ev:listener> element with <ev:event> attribute set to one of the screen orientation events and invoking the appropriate <handler> element.

2) Timed Elements that can be defined to begin or end based on screen orientation events.

The following feature strings must also be supported, in order to allow the use of the switch element:

· urn:<tbd>:orientLandscape for typical ‘landscape’ orientation

· urn:<tbd>:orientPortrait for typical ‘portrait’ orientation

If the most recent event generated was a portrait event, then the portrait feature tests as true; if the most recent event was a landscape event, the landscape feature tests as true. At any time, exactly one of these features must test as true.

An example use of these feature strings is as follows:

<switch>

<g requiredExtensions=” urn:<tbd>:orientPortrait”>

… layout for portrait …

</g>

<g requiredExtensions=” urn:<tbd>:orientLandscape”>

… layout for landscape…

</g>
</switch>
<END CHANGE>

:<BEGIN CHANGE>

9 Interaction and Scripting

9.1 Local interaction

The supported local events and their management in DIMS are built upon the DOM Level 3 events model.

They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) and general XML events Erreur ! Source du renvoi introuvable. (user events, timing, key, and pointer events) and system events and notifications, (battery level, signal strength, mail indicators)The DOM Level 3 events and their description can be obtained from the SVG Tiny 1.2 draft specification Erreur ! Source du renvoi introuvable..

9.1.1 UE Event Handling
Figure X below illustrates event handling in DIMS.
[image: image4.jpg]DIMS Scene
<INPUT

Softkey_Left="Play’ SVGT Engine
Events
Translated
Rich Media to DOML3 LUDOM
Engine e.g.‘Play’

Non DOM L3 Input Events
e.g. ‘Softkey_0’

DOM Level 3 Input Event
e.g. ‘Enter’, ‘3’, ‘Back’

Operating System

Device

Figure X: System Event Handling in DIMS

9.1.2 UE Event Reception

9.1.2.5 DOM Level 3 Event Reception

All DOM Level 3 events supported by μDOM shall be scriptable/actionable events in DIMS scenes . The DOM Level 3 events and their description can be obtained from the SVG Tiny 1.2 draft specification [ref].
All UE system events that have a corresponding DOM Level 3 Events are reported directly to SVG-T/ μDOM by the UE where they become actionable/scriptable events in SVG-T and hence, available to DIMS scenes for action.
9.1.2.6 Non-DOM Level 3 Events
It is anticipated that the Rich Media Engine and associated DIMS applets will run on devices such as mobile phones, personal computers, set top boxes, PDAs and other internetworking consumer electronics. With these devices come UE events from keyboards, joysticks and mice and dedicated hardware keys. While many of these events can be reported as DOM Level 3 events, several critical events are, to date, unsupported.

Events that are not returned directly from the UE to the uDOM/SVG-T subsystem shall be trapped and processed by the Rich Media Engine. Events that can be translated back to DOM Level 3 events shall be re
 This is illustrated in Figure X by the reception of ‘Softkey_0’ by the Rich Media Engine
9.1.2.7 Table of Additional UE events supported by the Rich Media Engine
The following additional events shall be supported by the Rich Media Engine:

	Key Identifier
	Namespace
	Description
	Event Type
	Default Translation to DOM Level 3 Event
	Bubble
	Cancelable

	‘Softkey_0’
	rich-media
	The primary softkey. Located on the left or right softkey in the Mobile Phone profile
	KeyboardEvent
	N/A
	Yes
	Yes

	‘Softkey_1’
	rich-media
	The secondary softkey. Located on the left or right softkey in the Mobile Phone profile
	KeyboardEvent
	N/A
	Yes
	Yes

	‘Softkey_2’
	rich-media
	Optional softkey. The middle softkey in the Mobile Phone profile
	KeyboardEvent
	N/A
	Yes
	Yes

	‘Softkey_n’
	rich-media
	Additional optional softkeys 3 and beyond where n indicates the number.
	KeyboardEvent
	N/A
	Yes
	Yes

	Joystick_Left
	rich-media
	Rocker/5-way switch support. Required for Mobile Phone profile.
	KeyboardEvent
	‘Left’
	Yes
	Yes

	Joystick_Right
	rich-media
	Rocker/5-way switch support. Required for Mobile Phone profile.
	KeyboardEvent
	‘Right’
	Yes
	Yes

	Joystick_Up
	rich-media
	Rocker/5-way switch support. Required for Mobile Phone profile.
	KeyboardEvent
	‘Up’
	Yes
	Yes

	Joystick_Down
	rich-media
	Rocker/5-way switch support. Required for Mobile Phone profile.
	KeyboardEvent
	‘Down’
	Yes
	Yes

	BatteryLevel
	rich-media
	Indicates the Battery has n % charge remaining, where n is passed in the Event Detail
	ProgressEvent
	N/A
	Yes
	Yes

	SignalLevel
	rich-media
	Indicates the quality of the UE signal strength as % n where n is passed in the Event Detail
	ProgressEvent
	N/A
	Yes
	Yes

	Fullscreen
	rich-media
	Indicates the UE wishes the application (rich media engine) to take focus of entire available screen.

the new height and width of the screen are sent In the event Details, followed by a subsequent ScreenOrientation portrait landscape event
	Event
	N/A
	Yes
	Yes

<END CHANGE>

:<BEGIN CHANGE>

10 Resource usage and device capabilities

10.1 Profile

10.1.1 Introduction

A profile indicator in a stream indicates which features (also known as tools) are required to be supported on a terminal.

Profile indications are 8-bit integers. Only one profile is defined by this specification; other profiles may be defined in future

10.1.2 Mobile profile

Mobile Profile : Profile Indicator Value 10.

Support for the following media types is also required in profile 10:

· Support for images

· Support for embedded audio in 3GP and AMR files

· Support for embedded video in 3GP files;

As required in the SVG specification, SVG fonts shall be supported. The lack of hinting in SVG fonts means that small text which is anti-aliased may become unreadable. This problem is even more evident when text is rotated or animated. Recommendation: SVG fonts should be used with care.

The Open Font Format Erreur ! Source du renvoi introuvable. should be supported at <<ed: TBD advanced>> simple text profile, level 2.

Note:
When OpenType fonts are supported, download of them may be initiated using the font-face-uri element from Erreur ! Source du renvoi introuvable..

Device-native fonts and fonts identified by generic family names may be used.
Uncompressed XML shall be supported. XML compressed with GZIP Erreur ! Source du renvoi introuvable. shall be supported.
Note:
Sub-systems may also require support for other media types (e.g. video) or codecs within those types (e.g. H.263) when support for DIMS is required.

A Rich Media Engine supporting the DIMS Mobile Profile shall report events to the DOM for system and key events common to mobile terminals:

· Dialpad keys 0-9, * and #

· Joystick/rocker navigation events: Left, Right, Up, Down, Select/Enter

· Softkeys:Softkey_1 (Primary) and Softkey_2 (Secondary) are mandatory. If a Mobile Phone has a middle softkey the Rich Media Engine shall support Softkey_3. Additional softkeys not having an explicit DOM 3 event should be enumerated as specified in section
· Device Status: Battery and Signal strength indicators shall be supported.
<END CHANGE>

3GPP

_1105635054.doc

vertical

screen primary axis

a

