3GPP TSG SA WG4 #42

Tdoc S4-070092
29 Jan - 2 Feb 2007, Sevilla, Spain

Source:
Ericsson, Nokia, Ikivo
Title:
DRAP in DIMS

Document for:
Discussion and Approval

Agenda Item:
6, 13.7
1. Introduction

The DRAP mechanism, presented at SA4#39, SA4#40 and SA4#41, is proposed for redundant tune-in points. DRAP and RRAP are the candidates for redundant tune-in, but this document will be focusing mainly on DRAP as at the time of writing not all the details of the RRAP proposal were known.

2. Discussion

The main difference between DRAP and RRAP is that a DRAP creates the tune-in point outside the uDOM whereas a RRAP uses the uDOM for this creation. In other words DRAP can be used to reduce the size of a generic document (e.g. SVG or LASeR ML) whereas RRAPs requires the placeholders to be part of the DOM. This difference may seem at first minor, but as shown below this is not the case.

2.1. The DOM tree

The DOM tree is left intact when tuning in to a DRAP. As the tune-in point is built outside the DOM, no errors are introduced to the DOM by a DRAP. Especially when, for example, scripts are used it is near impossible to see if an error in the DOM is acceptable, if it effects the decoding of the rest of the scene, or even propagates.
This is also of significance to a content creator. A content creator can make sure that, for example, a known state is kept after each update is applied. If an RRAP is created at a later stage (e.g. by a streaming server), this state knowledge is lost. After recreation DRAP results in the same scene or update applied in the same way as if DRAP wasn’t used. In the case of RRAP, scenes and updates are, when applied to the DOM, NOT unchanged. An example of where this is undesirable is when tune-in is not completed. A content creator can know how to “clean up” when disconnecting a stream – but only if the updates are applied unchanged and in their entity.
2.2. Efficient content creation
A single DRAP shell can be used for all rate/latency calculations. It is not necessary to reverse updates when moving a DRAP temporally.
Also, the same model is used for primary and secondary streams. Content encoded as a primary stream can be easily converted to a secondary stream while being able to reuse DRAPs. This is efficient if one would want to put a small shell around an existing primary stream (e.g. operators logo), i.e. turning it into a secondary stream.
2.3. Efficiency
In DRAP one takes exactly what one wants from an update and ignores the rest. There is no need to, for example, add dummy nodes which can take a large amount of space. When for example scripts are used, it is near impossible to see which nodes may be made into dummy nodes and which may not. It is not enough to see that a node is soon to be deleted.
Example:

In the (X)RAP interval there is an element (E) which is deleted. After the beginning of the (X)RAP interval, but before its deletion modifications are made to E using a script.

E (root)

Child 1

Child 2

…

Child n

E is not part of a DRAP therefore the cost of E is reduced to zero.

In an RRAP, dummy nodes (at least) are needed to represent E and its children to give correct addressing. Assuming the script may insert or remove any part of E, both the root and n children must be sent as dummy elements. In this example this amounts to n+1 * the SVG <g> element (for example). If the script may even insert/delete and modify attributes dummy nodes may not necessarily possible. For example, the insertion of a single attribute to a <g> element may put the tree into an error state. At worst, the script may make calculations based upon arbitrary attributes in arbitrary elements. This would require the complete tree, making the RRAP here very inefficient. This problem is not present in DRAP as such updates are not decoded and the DOM tree is always complete, i.e. never contains dummy elements.
In many cases the cost of a dummy node is a substantial percentage of the cost of the actual element. In such cases it is the tree structure which is costing a lot to encode making the efficiency of RRAPs in such cases much less than DRAPs.

Example:

<circle r="5" xml:id="object1"/>

to

<g xml:id="object1"/>

Gives a reduction of 34%

and

<rect x="1" y="1" width="10" height="20" xml:id="object2"/>

to

<g xml:id="object2"/>
Gives a reduction of 64%.
Although this reduction is substantial it must be kept in mind that these elements are not needed at all and do not exist in DRAP.
2.4. Arbitrary positioning in the stream

A DRAP can be efficiently placed in an arbitrary position of a stream. There is no need to make sure that the updates it use are compatible with its context – remember the update was encoded for a different context, i.e. the complete scene.
Think of the extremely simple example of where a scene consists of two parts which are continually updated/replaced.
A) A script

B) An SVG Image

There are no secondary streams, and a part of the stream may look like this:

[image: image1]
A DRAP could simply consist of a simple shell with placeholders for the script and the image. These two objects are placed into their placeholders and the scene is complete and can be used.

The RRAP model appears to be able to be used in a similar way. One could intuitively think that the RRAP could contain two dummy nodes, one for the script and one for the image. These dummy nodes would successively be replaced as the updates arrived. This may work if the updates were the only dynamic part of DIMS. But what if the script is one which sends the SVG image to the server? It would send a dummy image to the server unknowingly.

It is very dangerous to have a system which has a running but incomplete scene, especially one which is built on dummy nodes where there is no way of knowing which nodes are dummy and which are not.
3. Proposed text

The following text is proposed for section 8.2, Tune-in and resynchronization.
8.2 Tune-in and resynchronization

During a rich media service, it is important for the clients to be able to connect and access the current streamed content with minimal latency and data inaccuracy.
In a primary stream a tune-in point is a complete scene (or a mechanism to build a complete scene) and in a secondary stream a tune-in point is an update (or a mechanism to build a complete update). This is defined in sections 5.4.1.1 and 5.4.2.1.

Tune-in points may be either essential or redundant and this is signaled by the R bit of the RTP payload header. Essential tune-in points are even used by decoders not tuning in. Redundant tune-in points can and should be ignored by clients not needing to tune in.

Redundant tune-in points are defined using the DRAP mechanism. See section ‎8.2.1
Packets of data received by the client are associated with timestamps relative to the overall presentation time container. Further, the sequence numbers associated with the packets determine their ordering, and can be used to detect the occurrence of data loss and the potential need for re-synchronization.
8.2.1 Distributed Random Access Points (DRAP)

A Distributed Random Access Point (DRAP) is a redundant DIMS tune-in point that can, instead of explicitly defining all elements itself, reference elements in scene updates. The commands in the update are not executed, elements are simply copied according to references in the DRAP. These references can be used to reduce redundancy (i.e. not defining an element both in a RAP and a SU) or to simply spread the size of the RAP over a period of time.

[image: image2]
Figure xx: Illustration of the DRAP concept.

8.2.1.1 DRAP syntax
The rootmost element in a DRAP document shall be a <drap> element.

Attribute definitions:

updatesrequired="updates-required"
Indicates the number of coming scene updates required. Note: These scene updates are NOT to be applied when tuning in using the DRAP.
SVGTime=”SVG-Time”

Indicates the SVG time the scene created by the random access point should have. Only used when the DRAP is a scene.

The namespace for DRAP is the DIMS namespace http://www.3gpp.org/dims
The drap element may contain one or more getfromupdate child elements. The drap element shall have an SVG child element or an Update child element. No other child elements shall be present.

The getfromupdate element references an element in a scene update and an element in the current document. The element referred to in the update shall replace the element in the DRAP in its entirety.

Attribute definitions:

source="elementid"
Specifies an xml id appearing in a scene update. If the same xml id appears in different scene updates, it shall not make a difference which one the client chooses.

target="elementid"
Specifies an xml id appearing in the DRAP.
8.2.1.2 DRAP Example

An example DRAP is given below. The elements “Element1” to “ElementN” are to be taken from the two scene updates following the random access point.

<?xml version="1.0"?>

<drap xmlns:dims=”www.3gpp.org/dims” updatesrequired=”2” SVGTime=”99”>

 <getfromupdate source=”Element1” target=”Old_Element1”>

 ...

 <getfromupdate source=”ElementN” target=”Old_ElementN”>

 <svg xmlns=”http://www.w3.org/2000/svg”

 version="1.2" baseProfile="tiny"

 viewBox="0 0 30 30">

 <desc>Random access example</desc>

 <g xml:id="Old_Element1"/>

 ...

 <g xml:id="Old_ElementN"/>

 </svg>

</drap>
SU

SU

SU

SU

time

x

x+1

x+2

x+3

Element myelement1 is copied from SU(x+1)

Element myelement2 is copied from SU(x+2)

The DRAP is sent between SU(x) and SU(x+1)

The DRAP can then be used at t=x+2, ie replacing SU(x+2).

DRAP

The update SU(x+3) is applied in the same way irrespective of if the DRAP was used or not

SU: Update

DRAP: Distributed Random Access Point

...

Replace script

Replace image

...

...

...

Time

