3GPP TSG SA WG4 #42

Tdoc S4 (07)0028

Jan 2007, Seville, ES

Source:
Apple Computer

Title:
On random access and error recovery in DIMS

Document for:
Approval

Agenda Item:
PSS/DIMS 6/13.7

1 Introduction

This document explores the subjects of random access, error recovery, and tune-in in DIMS. These subjects are related, of course, in that in each case we attempt to re-establish ‘correct’ state when the terminal either has no preceding state (tune-in, random access) or an errored previous state (error recovery).

2 Tools and Circumstances

There are two ‘models of operation’ of DIMS: single-stream and multi-stream.

In the single stream case, each scene is followed by its scene updates in the same stream.

In the multi-stream case, a scene may ‘call in’ updates from logically distinct streams, and they in turn may call-in update streams, of course. This is still, however, a single ‘scene’; this is not the same as embedding a scene in another scene (a structure which has both advantages and disadvantages, not explored here).

In these two models we have various techniques that have been proposed by us, and others:

a) refresh: it provides a ‘snapshot’ of the state the terminal should have at a point in the timeline of a stream.

b) rolling refresh (RRAP): in rolling refresh, the refreshed state is not ‘complete’ until some (indicated) number of updates later. This allows the RRAP data to be smaller, as it can omit material that those updates will replace or delete.

c) dynamic refresh (DRAP): in dynamic refresh, the initial state is held and not applied for some distance; instead, indicated data from succeeding updates is collected and inserted into the DRAP data, which is then used.

d) continuous refresh (no acronym): an orthogonal technique, in which the base state that would be supplied by another RAP is supplied in pieces, such that by accumulating an indicated number of consecutive pieces, the entire RAP is collected.

The challenge has been to form coherent processing rules that give us good system behavior, the best user experience, and predictable encoder-client interoperability.

3 Problems and Questions

3.1 RRAP tune-in

At the last meeting a problem was identified in RRAP. In the single-stream model, both RRAP and DRAP can ‘mute the display’ until the end of the update period. However, in multi-streams, RRAP works by applying the (incomplete) update to the scene, which is then fixed by the updates, whereas DRAP does not apply the update until it is correct. If the terminal was not previously in error (e.g. this is a secondary tune-in to a live stream), then during the update period RRAP appears to be presenting incomplete scenes to the user – not the best user experience.

3.2 Multi-stream Repair

Consider a case where the main scene is the ‘frame’ provided by the network operator (stream M(ain)). One of the options in the frame is for the user is to click on the icon of various programming providers. When the user does so, a secondary stream (stream P(rovider)) is opened which inserts a ‘sub-menu’ for that provider. In that sub-menu, the user chooses some content; let’s say that the content chosen is also a stream, and is also interactive (e.g. some kind of game), stream G(ame).

Now, what happens if there is a data loss in Stream M? We start to look for a ‘refresh’ in that stream, of course, in order to correct the state. When we find it, we replace the current scene with the corrected scene from the refresh. But this refresh cannot know which provider stream was interactively pulled-in, and so has lost all the user context: the user is back now at ‘main screen’ without his provider sub-menu or game.

We could argue that an error in a stream automatically puts the sub-streams it has called in into error state also. That would at least return the user to the game, though his local state in the game would be lost. But what if stream P has done its work and been closed? We now only have the traces of it – the changes it made; we don’t have a stream to set into error state and then recover. It seems rather heavy to require all streams stay open indefinitely, just in case repair is needed. And indeed, saying “an error in a stream automatically puts the sub-streams it has called in into error state also” is rather mis-leading. It implies that we can decide what is a sub-stream of what. Actually, interactivity might ‘activate’ the reception of a sub-stream; what sub-stream put those elements into the scene (or later modified them) is information that is probably long gone.

The whole combination of stream update, interactive update, and error recovery seems problematic, and made much more so by the multi-stream model. The root is that we are managing something stateful, unlike audio or video – any update from any stream, or any interaction, can have a persistent effect, even long after the stream is closed or the interaction is over.

Even in the single-stream case, a refresh scene would over-write any results of local interaction (e.g. through javascript local updates of the DOM). However, there are use cases where the local interaction effects are not persistent, or may not exist at all (e.g. an animated cartoon). By definition, the multi-stream model does not have those cases – the whole purpose of the secondary streams is to do additional DOM manipulation over and above what the primary stream is doing.

4 Decoding Model

First, let’s re-iterate that we have two ways of getting the ‘initial state’ of the repair: either in one instance in the repair sub-stream (refresh, RRAP, DRAP), or spread out over time (continuous repair).

Then, RRAP and DRAP take that state and ‘fix it’ using subsequent material from the normal sub-stream.

Let’s consider the case where we tune-in at X, in the following. We find the next ‘repair’ information, and decode it, and then the subsequent ‘normal’ updates indicated, so that repair (tune-in) is complete by Z and we carry on. The decoded data is shown in black, and the interval of required updates is shown by U.

[image: image1.wmf]

Let’s do the same diagram for the continuous repair case, for completeness. Here, we have an interval of required continuous assembly shown by C, in which we decode both sub-streams, and then an interval of update-repair U. We have formed the equivalent data to a ‘refresh’ at Y, and then ‘fixed’ it with data from the normal scene by Z.

[image: image2.wmf]

5 Solutions

5.1 RRAP tune-in

Looking at this, the solution to the first problem – RRAP tune-in of secondary streams – becomes clear. In the continuous RAP case, we decode both the repair sub-stream and the normal update stream, applying the updates to both the normal updates and the incremental build to the ‘in progress’ RAP.

This tells us what the rule is for RRAP. During an RRAP period the terminal may choose one of two processing models:

a) the simple but user-experience-degraded model above; the RRAP is applied to the scene, which is marked as ‘not yet recovered’, and the updates are applied; the mark is removed at the indicated distance;

b) the update is buffered, with all the subsequent updates of that stream for the RRAP period. At the indicated distance, the set of updates is then ‘instantaneously’ applied in sequence.

Other streams, if any, of course, continue their normal processing and updating, and indeed so does user interactivity.

For both DRAP and RRAP we need to warn content authors that the state that the update works on is the expected state as of the end of the RAP period, not the time of arrival of the RAP (but since that time is typically indeterminate, it doesn’t seem very material).

Consider an example of the second case. There is a graphic element that is frequently moved on the screen, by update, and is somewhat less frequently replaced. The RRAP is sent knowing it will soon be replaced, and as usual, to conserve bandwidth, a ‘nonce’ is sent in the RRAP bearing the right ID, so that an update will soon replace it. During the time we are holding this RRAP, the updates moving the graphic element stack up. At the end of the RRAP period, we apply the RRAP and the pending moves and graphic element changes all at once; the element is now the right graphic in the right place.

This clearly works for tune-in and random access, where we were effectively not previously decoding the stream at all – we merely delay processing a few access units. For error recovery, we were previously in error state anyway; we can choose to apply the RRAP inline, and drop the ‘in error’ indicator at the recovery distance, or we could buffer the update interval – and drop the ‘in error’ indicator at the recovery distance. The judgment call is whether we are better using the RRAP immediately and start fixing the errors in stream – but insert some ‘nonce’ errors for a short while; or to buffer the RRAP interval, and leave the existing errors but not introduce the ‘nonce’ ones. It’s hard to see how we can even give guidance, let alone rules, for this case.

The interesting point to note is that DRAP not only introduces a second, different processing model, and new structures (the forward pointers), but effectively also mandates terminal behavior (b). In contrast in RRAP, we can retain a single processing model, no new structures, and leave the choice of implementation – simple or complex – to the terminal.

5.2 Multi-stream, persistence, and errors

We need either to solve this – probably with a major re-think of error resilience, such as using a journaling model. Or we need to document the problem and recommend not using unreliable transport for scenes where this problem would arise.

6 Encoding and Decoding Rules

6.1 (Single) Refresh

6.1.1 Single-stream

The encoder must keep track of all updates since the last new scene or refresh, and encode the scene that has those updates applied.

The decoder decodes this repair-stream ‘refresh’ complete scene and continues decoding the updates in the normal stream.

6.1.2 Multi-stream

In the multi-stream case, a random access point ‘sets’ the ‘sub-scene’ that the secondary stream is managing to a known state, without any dependence on prior data in the secondary stream.

The encoder must keep track of all updates since the last random access point or refresh, and encode an update that sets that state of the sub-scene, without any dependence on prior data in the secondary stream.

The decoder decodes this repair-stream ‘refresh’ sub-scene (actually, an update that establishes it) and continues decoding the updates in the secondary stream.

[Note that these rules actually cover the single-stream case also.]

6.2 Rolling Refresh

6.2.1 Single-stream

The encoder must keep track of all updates since the last new scene or refresh, and encode the scene that has those updates applied. It may then ‘look ahead’ in the updates, and simplify parts of the tree that will soon be replaced or deleted, by inserting suitable ‘nonces’.

The logical difference between the two models in the single-stream case is academic; in one case the RRAP data is made into a scene, which is updated as it is held off-line, and then shown. In the other case, no scene is constructed while the RRAP data is held off-line and buffered with its update, and then that buffered data makes the scene which is then displayed.
6.2.2 Multi-stream

The encoder must keep track of all updates since the last random access point or refresh, and encode an update that sets that state of the sub-scene, without any dependence on prior data in the secondary stream. It may then ‘look ahead’ in the updates, and simplify parts of the refresh that will soon be replaced or deleted, by inserting suitable ‘nonces’.

The decoder chooses one of two courses:

a) apply the RRAP update to the scene, and then keep a ‘scene is not complete’ indicator, applying the updates for the indicated distance and then taking down the indicator;

b) keep the RRAP interval on one side, and apply the entire set of updates at the indicated distance.

[Note that these rules actually cover the single-stream case also.]

6.3 Continuous Refresh

6.3.1 Single-stream

The encoder must keep track of the logical scene tree. Each node in the tree must keep an ‘age’ value. At each update moment, the ages are incremented, and those nodes whose ages reach the announced threshold are included in the current slice, along with any other nodes ‘refreshed early’ for bandwidth smoothing. Nodes get an age of their parent when inserted, of the node they are replacing when replaced, and an age of 0 when refreshed. For every node that must be refreshed, its parents up to the root of the tree are also refreshed (so that each refresh portion can be instantiated directly, even if it is the first one decoded).

The decoder decodes both the repair stream and the update stream. The updates are applied to the recovery-in-progress but inapplicable updates are ignored. The repair data for the indicated threshold distance is accumulated, with the updates available over that interval applied to it, and then the scene is presented.

6.3.2 Multi-stream

It’s not clear that continuous refresh of secondary streams works; we’re not assembling a tree by coding from the root, we are collecting updates that build a sub-scene. Without rules on how to merge fragments of updates together, which may be hard (inserts are fairly easy, replaces and deletes are not), this is tricky. We have to believe that complex secondary streams with continuous repair needs are rare (which they probably are in the initial deployments of this sub-system).
6.4 Continuous and Rolling Refresh

I believe that the rules of the preceding sections ‘stack’ and it would be tedious to repeat the text. I also think it unlikely that we will soon see scenes that have secondary stream constructing sub-scenes (a) so complex that the bandwidth-spreading of continuous tune-in is needed and (b) so rapidly changing that the bandwidth-saving of RRAP (or DRAP) is also needed.

7 Normal and Repair sub-streams

In the definition of the media-type, we need to make clear whether

a) in the abstract definition of the media-type, a DIMS ‘access unit’ contains both normal and refresh/repair information, and transport systems carry them as a unit or

b) the normal and repair streams are separately specified, and the transport systems may encapsulate them together or carry them separately.

I tend to prefer (b) myself. For example, (b) allows the repair information to be on a separate multicast group, and the SDP file would then present two synchronized streams on separate multicasts. The terminal could tune-in both initially, and drop the repair stream (and thus the bandwidth it uses) when tune-in is complete. Similarly, in file playback, the repair stream is only needed for random access (sometimes); it need not even be read from the file otherwise. This is analogous to ‘SI’ frames in AVC. ‘Sx’ frames are ‘switch’ frames that predict from one stream into another, allowing a stream to be entered at other than an I-frame. SI frames ‘predict’ from nowhere, i.e. they are optional ‘refresh’ entries to the main stream. In MP4, they are carried in a separate track, linked to the main track.

In addition, once a stream is identified as a repair stream, we can re-use many other labels; a ‘new scene’ command in a repair stream is a ‘refresh’, for example.

8 Conclusion

The problem raised about RRAP is resolved, but a major issue with multi-stream, repair, and user interaction is highlighted.

The encoding and decoding models for RAP (refresh), RRAP (rolling refresh) and continuous refresh are offered.

Apple
1/1
DIMS

_1103959512.doc

X

Z

Normal sub-stream

Repair sub-stream

U

_1103959453.doc

X

Y

Normal sub-stream

Repair sub-stream

Z

C

U

