TSG-SA4#41 meeting
Tdoc S4 (06)0564
6-10 November, 2006, Athens, Greece

Source:
Nokia

Title:
FEC-subseqences

Document for:
Discussion and Decision

Agenda Item:
9, 13.8

1 Introduction

After showing the benefits a number of times, Nokia proposed the FEC/subsequences technology as an optional mechanism for the MTSI spec at the San Diego ad hoc. The proposal consisted of two parts: first enabling RFC 2733 (or a comparable technology such as the ULP draft) for MTSI as optional, and second an informative description of FEC-subsequences in an appendix.

Concerns were raised not so much around the technical features of the solution, but on its performance. In particular, it was questioned whether the additional cost and complexity – in particular with respect to RFC 2733/ULP – is warranted by the performance. It was also questioned whether the user experience resulting from the waiting time of the repair period does not suffer too much – we admit not having presented video that faithfully reproduces this period. And finally, the need for specification of any technology along these lines was questions. At the end, a couple of requests for information were noted in the meeting report. This document attempts to respond to these requests.

2 Our comments on the tests requested

Tests were requested by two companies, Qualcomm and Ericsson. We think that many, but not all of these tests are indeed helpful to understand the properties and efficiency of FEC/subsequences in relation with other tools. Therefore, we tried to run many (though not all) requested tests for this meeting. Due to software implementation problems we ran out of time, and therefore the results are somewhat incomplete. However, we believe that even those incomplete results provide a good picture of the performance.

2.1 QC1: Provide traces of picture and packet sizes over time.

Provided in the attachments for the simulations run. The format should be self-explanatory for those willing to study. It’s a lot of data, though.

2.2 QC2: Compare against good quality (Nokia encoder?) intra refresh. Both delay aspects and coding efficiency.

2.2.1 Coding Efficiency

Ericsson requested tests with fixed QP. While we have our doubts that fixed QP tests are realistic in bandwidth-limited, low delay scenarios like MTSI, we agree that these tests are helpful in understanding the properties of FEC-subsequences – at least from a coding efficiency viewpoint. It disallows tricks implemented/hidden in the rate control. Therefore, this time we focussed our coding efficiency tests on fixed QP.

When running coding efficiency tests within a bandwidth budget, one has to “tune” the QP to stay within the available bandwidth limit. We did so for the 3GPP sequences stunt, bugs, and party. We used the Nokia encoder, public version but enhanced with file format support, 200 byte slices, adaptive Intra refresh tuned for a loss rate of 6%. The bitrate limits were experimentally determined to fit into an envelope of 54 kbit/s and 108 kbit/s for the 64/128 kbit/s bearers, respectively (due to a miscommunication, in the first set of simulations (in sections up to 3.4) a slightly higher value was used. These bitrates allow to accommodate for speech and lower layer overhead and has been used in the video ad hoc.The results are as follows:

	Bandwidth limit
	Sequence
	Coding
	QP
	QP-nonref
	video bitrate
	total bitrate
	PSNR

	128k
	stunt
	PppFec
	35
	37
	93543
	112624
	29.57

	
	stunt
	Ppp
	33
	35
	110118
	same
	30.83

	
	stunt
	PPP
	34
	n.a.
	106288
	same
	30.92

	128k
	party
	PppFec
	35
	37
	92424
	114322
	29.26

	
	party
	Ppp
	33
	35
	109674
	same
	30.51

	
	party
	PPP
	34
	n.a.
	110824
	same
	30.44

	128k
	bugs
	PppFec
	35
	37
	94357
	112439
	29.99

	
	bugs
	Ppp
	33
	35
	112578
	same
	31.27

	
	bugs
	PPP
	35
	n.a.
	112640
	same
	30.47

	64k
	stunt
	PppFec
	41
	43
	45124
	54440
	25.75

	
	stunt
	Ppp
	39
	41
	55667
	same
	27.02

	
	stunt
	PPP
	40
	n.a.
	56488
	same
	26.94

	64k
	party
	PppFec
	41
	43
	44756
	54396
	25.60

	
	party
	Ppp
	39
	41
	53442
	same
	26.76

	
	party
	PPP
	40
	n.a.
	55676
	same
	26.59

	64k
	bugs
	PppFec
	40
	42
	45800
	55568
	26.85

	
	bugs
	Ppp
	38
	40
	56868
	same
	27.97

	
	bugs
	PPP
	40
	n.a.
	56549
	same
	27.22

2.2.2 Delay

There is little point in discussing delay aspects without an in-depth discussion of the rate control. Rate control is an implementation feature, and we do not see a need to fully specify it in the MTSI spec. Therefore, our remarks here necessarily need to be of theoretical nature. The discussion below assumes a bandwidth limit link used exclusively for packetized video. This is for simplification. In a real-world system, the end-to-end delay will be considerably higher not only due to implementation features (camera capture delay, pre/postfilters, display/UI delay and such), but also on the network due to the interleaving with speech/audio and control traffic.

Within the scope of the discussion here, delay stems from two sources: video related delay, mostly resulting from non-uniform picture sizes, and transport delay, i.e. due to packetization effects and channel protection/FEC (in case of FEC-subsequences).

the following discussion is based (for simplicity) on a target frame rate of 10 fps; therefore, each picture is displayed 100ms. Furthermore, let’s assume a 100 kbit/s link. As a result, the average coded picture size is 10000 bits.

In order to avoid unnecessary video delay, a rate control in a PPP system will try to keep the coded picture size close to the 10000 bits mentioned. In PPP coding, rate control can achieve this with fair accuracy, though at some cost in quality (how much quality loss is to be anticipated depends on the content).

With FEC-subsequences, the situation changes because of two factors: a) the temporal distance of the source pictures in the base sequence increases (and hence the correlation between these pictures decreases, yielding more bits at a given quality level). And b) to keep the coding efficiency gains of subsequences, it is necessary to code the base sequence at a higher fidelity, yielding even more bits for the base sequence pictures.

The impact of factor a) is mostly independent from the rate control strategy, though highly sequence dependent. It can easily be obtained by coding a source sequence with lower frame rates, i.e. frame skips. The main operation point for subsequences in MTSI appears to be a Ppp structure, and therefore we need to compare a skip of 0 with a skip of 2 (assuming already down-sampled sequences, as stunt, bugs, and party are). While both factors could be investigated separately, we believe it is more meaningful to consider them in the context and jointly. Therefore, we looked at the average and extreme picture sizes for the P and p in the Ppp sequences, and compared them to the average and extreme picture sizes in the PPP sequence – at the QPs identified before. As it turns out, the extreme picture sizes are not very useful – they are just too big for drawing any conclusions. They are listed here primarily to show the challenging nature of the sequences and the inappropriateness of fixed QP.

The results are as follows:

	Bandwidth limit
	Sequence
	QP
	SKIP, due to picture structure
	Avg. size P (bits)
	max size P (bit)
	Avg. size p (bits)
	max size p (bits)

	128k
	stunt
	35
	3 PppFec
	11081
	23320
	4723
	14424

	
	stunt
	33
	3 Ppp
	13861
	28864
	5962
	15408

	
	stunt
	34
	1 PPP
	8439
	19584
	n.a.
	n.a.

	128k
	party
	35
	3 PppFec
	11531
	17400
	4641
	7992

	
	party
	33
	3 Ppp
	14510
	22344
	5704
	10624

	
	party
	34
	1 PPP
	8695
	13600
	n.a.
	n.a.

	128k
	bugs
	35
	3 PppFec
	12485
	43720
	4958
	15568

	
	bugs
	33
	3 Ppp
	16180
	54920
	6497
	20168

	
	bugs
	35
	1 PPP
	8930
	40416
	n.a.
	n.a.

	64k
	stunt
	41
	3 PppFec
	5472
	2500
	11480
	5584

	
	stunt
	39
	3 Ppp
	7080
	15888
	2941
	8104

	
	stunt
	40
	1 PPP
	4226
	9240
	n.a.
	n.a.

	64k
	party
	41
	3 PppFec
	5509
	8824
	2381
	4048

	
	party
	39
	3 Ppp
	7158
	11384
	2867
	5296

	
	party
	40
	1 PPP
	4252
	6984
	n.a.
	n.a.

	64k
	bugs
	40
	3 PppFec
	6104
	21224
	2321
	6456

	
	bugs
	38
	3 Ppp
	8160
	29976
	3093
	9288

	
	bugs
	40
	1 PPP
	4442
	19208
	n.a.
	n.a.

Observations:

The results are roughly as anticipated. Subsequence-pictures are about 1/3rd the size of main sequence pictures, regardless of the amount of FEC employed. The amount of FEC data also fits what is predicted from the coding scheme. What is problematic, and will lead to considerably lower coding efficiency once rate control is employed, is the extreme ununiformness of the picture sizes in bugs.

2.2.3 Channel coding delay

In addition to this video delay, there is the delay for the channel coding. We refrain from simulating anything here, as the theoretical upper bound can be easily determined, and turns out to be negligible compared to the video-related delay.

One slice is coded at 200 bytes maximum, and therefore the packet size is slightly larger (assuming RoHC). The repair packet size is somewhat larger as the uncompressible RFC 2733/ULP header needs to be carried, but also fits into 220 bytes maximum. RoHC related inefficiencies are not further covered here. We assume that the use of FEC does not break RoHC (which can be achieved, for example, by placing the FEC data in an independent RoHC context). At 220 bytes, the transmission time of a packet over a 64 kbit/s link is 27.5 ms; the corresponding number at 128 kbit/s is 13.8 ms.

When using FEC in a straightforward fashion, i.e. without protecting only main sequence data, the delay is directly dependent on the packet size and the number of packets protected. When protecting 2 packets with one repair packet (as proposed), the induced delay (worst repair case) is 3 packet duration maximum, i.e. the time it takes to convey some 620 bytes over the link. At 64 kbit/s, we are talking about 80ms or less; at 128 kbit/s, the corresponding number is 40 ms.

When FEC is employed to protect the main sequence in a subsequence scenario, the delay induced on the encoding side is the time it takes to transmit the repair packet, i.e. 27.5 respective 13.8 ms. On the decoding side, the delay depends on whether the FEC packet protects data from one picture or from two pictures. If it protects data from a single picture, the delay is similar to what was stated above – 80ms or 40 ms, for 64 kbit/s and 128 kbit/s respectively.

When the FEC packet protects data belonging to more than one base sequence picture, the delay is somewhat difficult to define and to calculate. First, it’s obvious that the repair packet is being calculated over the last data packet in the older video frame, and the first data packet in the new frame. For a worst case assumption, it is therefore sufficient to consider either frame of fitting into a single packet. the added delay is identical to what has been discussed before. However, the user experience requires remarks.

When discussing the user experience, we first note that we are not talking about delay. the delay of all reproduced pictures is within the bounds already discussed; influenced primarily by the varying picture resulting from using suibsequences. What needs to be discussed is what happens during the period of time in which the error has been identified, but not yet corrected. We distinguish here the two extreme cornercases, the first being a naïve implementation where the decoding is stopped as soon as an error occurs and the FEC repair is waited for, and second our advanced mechanism in which decoding continues, and cycles pre-reserved for sub-sequence decoding are spent towards main sequence decoding and repair. Mixing forms are also possible, but not discussed any further. It should be noted that here we are deep in implementation territory, where optimizations may be possible beyond what is stated.

A naïve implementation, as defined above, stops reproduction once the error is detected, and restarts it once the error is corrected and the decoding process has caught up. With a PppPFpp sequence, the resulting freeze time is determined solely by the picture timing (unrelated to the different picture sizes in the subsequences), and is a duration of 6 pictures – less than 500 ms at 12.5 fps, and 400 ms at 15 fps.

When implementing smartly, one needs to store the state of the decoder after every known-as-correctly decoded mains sequence picture. This requires obviously memory and memory bandwidth, which is the main cost factor (and the main product differentiation opportunity) for this case. The user experience is such that during the aforementioned period of 400 or 500 ms (at the frame rates given), the user will observe an error-concealed but disorted picture. After the half a second, the picture quality goes back to normal.

To summarize: When using FEC-subsequences, the additional delay is in the order of magnitude of 80ms at 64 kbit/s and 40ms at 128 kbit/s. Whenever a repair process is necessary that spans more than one picture, in addition there is a drop in perceived image quality, or a frame freeze, for a duration of half a second.

2.3 QC3: Compare against feedback based, 200 ms round trip delay, no reference picture selection (intra as repair?)

With respect to this test, we note first that, to the best of our knowledge, 200 ms RTT is practically unachievable today for reasons that should be known even to the most video centric SA4 delegate. We still consider this test helpful, although we would rather argue that 500 ms round trip delay is more realistic (on the protocol level – end-to-end video delay is more in the order of 1 second). From a video compression viewpoint, there is likely very little difference (the erroneous area determined by error tracking increases over time, requiring more intra repair blocks), but from a user experience viewpoint there is.

SA4 does not have any agreed infrastructure to simulate feedback based video. Nokia has its own infrastructure under development (ns2 based), which we tried to use for these tests, but that infrastructure is currently not available to the public as it is not sufficiently stable – the integration of a 3GPP channel model into ns2 is not a trivial task. Therefore, we need to spend most of the space here with theoretical thoughts that can actually be followed without having access to our simulation environment. They are augmented with the limited results we were able to generate.

Naïve persons would consider full intra picture refresh as the repair mechanism, but it is obvious that such a mechanism is not competitive. Not only that intra pictures are (for the sequences and bitrates considered) around 5 times as big as inter pictures, with all the negative impact on delay and/or quality – depending on how your rate control is tuned – but also the intra pictures are much more vulnerable to errors due to their larger size. More reasonable appears to repair only the affected area of the picture, as determined during encoding time. The encoder knows what spatial area is covered by a packet with a certain sequence number, and is further able to track the erroneous area over time. therefore, when the decoder learns (through a generic NACK or SLI message) about lost data, it knows what macroblocks to re-send. Our software had problems with this error tracking technology – which is a non-trivial task in H.264’s multi-reference frame environment. Therefore, we tried two operation points:

1. Instantaneous, reliable feedback (zero delay), which is unrealistic but avoids error tracking problems. Basically, whenever a slice is lost, the same spatial area is repaired in the next coded picture through intra MBs. This gives an impression of the theoretical maximum in feedback-base quality.

2. Reliable feedback with 3 pictures delay (corresponding to 200 ms), where the full intra picture is repaired. This is something like a “worst case” scenario for a naïve implementation. We did not include the impact of an unreliable feedback channel (which is considerable, but difficult to simulate); instead the feedback channel was once more considered reliable.

The simulations required a lot of unautomatized hand-operation, and therefore was conducted only for one sequence/bitrate/error scenario, namely the lt_party sequence at 128 kbit/s and the worse of the two error patterns (1% PDU loss). The video bitrate was limited once more to 108 kbit/s. Intra refresh was turned off. Accordingly, the PSNR for the unprotected sequence is comparatively high when using without errors, but drops dramatically in the presence of errors. A single reference frame was used the QP was fixed to 32, which can just be accommodated by the channel bitrate. The simulation results can be summarized as follows:

PSNR (error free)

33.74

PSNR (channel, no protection)

21.44

PSNR (channel, instantaneous slice intra)

30.22

PSNR (channel, 200 ms picture intra)

24.78

What can be observed here is a moderate, but still significant drop in PSNR when the “best possible” feedback based intra scenario is in use. The PSNR of each repaired picture is (within statistical limits) the same as the unrepaired picture, as constant PSNR values have been used. Therefore, the PSNR drop is exclusively the result of skipped pictures, that could not be transmitted because the available bandwidth had been occupied by repair data.

The huge loss when using a200ms channel delay and a full intra picture freeze is the result of a freeze of much more than half a second for each requested intra picture tobe transmitted. Furthermore, if this intra picture contains lost data slices, those slices were displayed as “pink blocks” as we did not enable sophisticated error concealment mechanisms. These pink blocks propagated over time to other regions, yielding atruly unpleasant experience. Also, when data in the intra picture got lost, that triggered yet another intra picture, invalidating the expensively acquired synchronization immediately – and contributing to an even longer frame freeze with the associated PSNR drop. To make a long story short, with channel #8, even at moderate delays and reliable feedback, full intra request is useless.

2.4 QC4: Compare against feedback based RPS, 200 ms round trip delay.

In this case, the unrealistic 200 ms actually do have a significant impact, because Reference Picture Selection (RPS) efficiency and RPS coded picture sizes highly depend on the RTT. Also the memory demands at the decoder. Assuming 15 fps target frame rate, 200 ms RTT requires 3 reference picture buffers (when assuming straightforward FIFO storage), whereas more realistic 500 ms require more than 5 (beyond level 1b – not an issue when using MMCO-based storage policies, but those have their own error resilience problems.

We did not simulate this scenario. the main reason is that RPS with 200 ms delay obviously outperforms FEC-subsequences. the reason is simple: an RPS frame, at that unrealistic RTT, has the same temporal distance as the main sequence frames have, and therefore a comparable size. An on-demand repair mechanism with similar per picture overhead as a statistical repair is necessarily advantageous.

However, as already stated in San Diego, we urge not to forget the two main constraints of RPS are the increased memory demands and the need for a feedback channel. while it seems that consensus is forming towards the feedback channel (which we appreciate), the memory demands need to be kept a close eye on.

It would be an interesting academic exercise to see at which operation point (in terms of RTT) RPS becomes less efficient than forward-only tools such as FEC-subsequences. We have not investigated this matter yet.

2.5 E1: Code with FEC to a certain bitrate B with the PppPpp subsequence cycle and fixed QP per picture (possibly varying picture-per-picture). Slice should be used, 200 byte slices?

2.6 E2: Compute the number of bytes you use for FEC. Since fixed QP may be a disadvantage using sum(P)/2 may be used instead.
All these roughly done according to your instructions, see section 3.2.1. In fact, we are a bit closer to reality with respect to E2, as the fixed slice size allows for a much more precise FEC amount calculation.

2.7 E3: Code without FEC, using the same PppPpp structure, same slice size and the exact same QPs for each individual picture but use standard H.264 robustness tools (on the P pictures only) to fill up the bitrate (intelligent macroblock refresh placement and possibly a FMO structure, both only on P pictures). Consider using only one reference frame to help decoder consealment.

We refrained from using FMO, as this tool works well only when the error concealment copes. We would have to employ a rather sophisticated concealment algorithm. We also ran into unexpected software problems that didn’t leave us any time. Undoubtly, the FMO results would be better than the normal intra refresh results, especially for a sequence like stunt. However, we note that all coding technologies would benefit from FMO.

For intra placement, we (once more) used a relatively intelligent intra algorithm.

All tests run with only a single reference frame.

We note that the average PSNR is in the same ballpark, but by no means identical. In H.264, the old paradigm of identical QP leading to identical PSNR, regardless of coding mode, does not hold; certainly not when intra and constant slice sizes (in bytes) are in the picture, as slice sizes/layouts and thereby loop filter boundaries change.

2.8 E.4: Also code without FEC using a PPPPPP structure, using the error tools described in E.3 so that the average PSNR for error free decoding is the same as E.2.

We note that the average PSNR is not the same, for the reasons stated above. For PppPpp with FEC, we re-used the sequences from above (6% forced intra, 200 byte slices). The reported intra rate is often higher than that, because of the cost-function controlled node selection process. For the Ppp without FEC and PPP tests, the intra rate was increased so to use the same bandwidth (instead of dropping the PSNR). Here are the results (error free):

	Bandwidth limit
	Sequence
	Coding
	QP
	QP-nonref
	forced intra MBs
	video bitrate
	PSNR

	128k
	stunt
	PppFec
	35
	37
	6
	86613
	29.57

	
	stunt
	Ppp
	35
	37
	11
	110016
	29.43

	
	stunt
	PPP
	35
	n.a.
	10
	109889
	30.09

	128k
	party
	PppFec
	35
	37
	6
	84051
	29.26

	
	party
	Ppp
	35
	37
	10
	107031
	29.13

	
	party
	PPP
	35
	n.a.
	9
	108305
	29.66

	128k
	bugs
	PppFec
	35
	37
	6
	94476
	29.99

	
	bugs
	Ppp
	35
	37
	11
	107254
	29.92

	
	bugs
	PPP
	35
	n.a.
	10
	108273
	30.47

	64k
	stunt
	PppFec
	41
	43
	6
	44484
	25.75

	
	stunt
	Ppp
	41
	43
	9
	55155
	25.53

	
	stunt
	PPP
	41
	n.a.
	8
	54908
	26.12

	64k
	party
	PppFec
	41
	43
	6
	42004
	25.60

	
	party
	Ppp
	41
	43
	9
	53696
	25.41

	
	party
	PPP
	41
	n.a.
	8
	53971
	25.87

	64k
	bugs
	PppFec
	40
	42
	6
	44743
	26.87

	
	bugs
	Ppp
	40
	42
	9
	54868
	26.76

	
	bugs
	PPP
	40
	n.a.
	8
	53158
	27.23

2.9 E5: Run all bitstreams through SA4 error simulator, 3,2,7,8 should be fine to use.

Done. Here are the results.

	Bandwidth limit
	Sequence
	Coding
	QP
	QP-nonref
	PSNR error free
	PSNR, pattern 2 or 7
	PSNR, pattern 3 or 8

	128k
	stunt
	PppFec
	35
	37
	29.57
	27.08
	24.97

	
	stunt
	Ppp
	35
	37
	29.43
	28.00
	27.50

	
	stunt
	PPP
	35
	n.a.
	30.09
	29.16
	27.44

	128k
	party
	PppFec
	35
	37
	29.26
	26.84
	26.62

	
	party
	Ppp
	35
	37
	29.13
	28.21
	28.00

	
	party
	PPP
	35
	n.a.
	29.66
	28.87
	28.15

	128k
	bugs
	PppFec
	35
	37
	29.99
	24.42
	24.19

	
	bugs
	Ppp
	35
	37
	29.92
	25.10
	26.16

	
	bugs
	PPP
	35
	n.a.
	30.47
	25.41
	25.24

	64k
	stunt
	PppFec
	41
	43
	25.75
	24.09
	24.10

	
	stunt
	Ppp
	41
	43
	25.53
	25.02
	24.47

	
	stunt
	PPP
	41
	n.a.
	26.12
	25.23
	24.15

	64k
	party
	PppFec
	41
	43
	25.60
	23.54
	23.11

	
	party
	Ppp
	41
	43
	25.41
	24.89
	24.66

	
	party
	PPP
	41
	n.a.
	25.87
	25.54
	24.80

	64k
	bugs
	PppFec
	40
	42
	26.87
	23.70
	23.57

	
	bugs
	Ppp
	40
	42
	26.76
	23.78
	23.67

	
	bugs
	PPP
	40
	n.a.
	27.23
	24.02
	23.81

When interpreting the results, please keep in mind that the Fec-subsequence decoding mechanism freezes the picture for the duration until the successful repair (the naïve option discussed earlier). this gets heavily penalized by the modified PSNR mechanism used in the video ad hoc. If the “smarter” option of storing the decoding state and continue decoding (and revert back to the stored state as soon as the repair has been performed) would have been used, the results would have been much better. We cannot report these results, though, as we didn’t get the software sufficiently stable by the document deadline.

2.10 E6: When decoding the FEC stream, the picture freezes that is a result of FEC run on a real-time decoder shall be seen in the decoding sequence (not be shown as additional delay as in the sequence attached to the 060474 contribution).

It’s not additional delay; it’s a frame freeze (when implementing FEC-subsequences naively) or a picture degradation over a comparatively short time (10 frames or so) when knowing what you are doing. But we agree that there is a value in factoring this in. We used a non-naïve technique and modified PSNR measurement as used in JVT to capture the results. Subjective viewing of a few sequences can also be arranged.

2.11 E7: It is not clear how to compute PSNR when you skip pictures, therefore quality should be evaluated by subjective viewing. (A problem is to know to what degree naive viewers will like freeze or consealment).

Indeed. Examples are provided.

�	Contact: Stephan Wenger, � HYPERLINK "mailto:stephan.wenger@nokia.com" ��stephan.wenger@nokia.com� and Umesh Chandra, � HYPERLINK "mailto:umesh.chandra@nokia.com" ��umesh.chandra@nokia.com�

Page: 1/8

Page: 2/8

