3GPP TR ab.cde V0.2.0 (2006-09)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group SA WG4;

Video Codec Performance Requirements

 (Release 7)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<Video codec, H.263, H.264, MPEG-2 Part 2> need to check against specs database (where to find it???
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

3Contents

Foreword
5
Introduction
5
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4
Document Organization
6
5
Service Scenarios and Metrics
7
5.1
Service scenarios
7
5.2
Performance Metrics
7
5.2.1
M1: Average-PSNR
Error! Bookmark not defined.
5.2.2
M2: Example-Metric
Error! Bookmark not defined.
6
Test case definition and Performance Figures
11
6.1
Service scenario A (MMS-like)
11
6.1.1
Test cases
11
6.1.2
Performance Figures
11
6.2
Service Scenario B1 (Encoder for PSC-like)
12
6.2.1
Test cases
12
6.2.2
Performance Figures
12
6.3
Service Scenario B2 (Decoder for PSC-like)
13
6.3.1
Test cases
13
6.3.2
Performance Figures
14
7
Performance Requirements Generation
14
7.1
Overview
14
7.2
Video Sequences
16
7.3
Compressed Video Data
Error! Bookmark not defined.
7.3.1
Compressed Video Data format
Error! Bookmark not defined.
7.3.2
Compressed Video Data filename
Error! Bookmark not defined.
7.4
Exposure of Error free compressed video data to erasures
Error! Bookmark not defined.
7.5
Performance Requirements Generation for Different Scenarios
18
7.5.1
Service Scenario A (MMS-like)
18
7.5.2
Service Scenario B1 (PSC-like Encoder)
19
7.5.3
Service Scenario B2 (PSC-like Decoder)
19
A Annex A: Performance assessment of a Codec Implementation (Informative)
21
A.1 Performance Assessment when reference software is available
22
A.1.1
Decoder Performance Assessment
22
A.1.2 Encoder Performance Assessment
23
A.2 Performance Assessment when reference software is not available
23
A.2.1
Decoder Performance Assessment
23
A.2.2 Encoder Performance Assessment
23
A.2.3 Combined Encoder and Decoder Performance Assessment
24
B Annex B: H.263 decoder description
24
B.1 Normative decoding process
24
B.2 Informative decoding process
24
B.2.1 Packet loss detection
24
B.2.2 Error concealment
24
C Annex C: H.263 encoder description (informative)
24
C.1 Motion estimation
24
C.2
Forward DCT
24
C.3
Quantization
24
C.4
VLC module
24
A.1
Heading levels in an annex
25
8
Annex <X>: Change history
27

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This clause is optional. If it exists, it is always the second unnumbered clause.

1 Scope

The present document comprises a technical report on Video Codec Performance Requirements, for packet switched video-capable multimedia services standardized by 3GPP.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1]
ITU-T Rec. H.263: ""

[2]

ITU-T Rec. H.264: ""

[3]
RFC 2429

[4]
RFC 3984

3 Definitions, symbols and abbreviations

Delete from the above heading those words which are not applicable.

Subclause numbering depends on applicability and should be renumbered accordingly.

3.1 Definitions

For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply.

Definition format

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

Symbol format

<symbol>
<Explanation>

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

Abbreviation format

<ACRONYM>
<Explanation>

4 Document Organization

This document is organized as discussed below.

Section 5 introduces the service scenarios, including their relationship with 3GPP services. Furthermore, it discusses the performance measurement metrics used in this report.

Section 6 (performance figures) defines representative test cases and contains a listing, in the form of tables, the minimum performance requirements of video codecs for each of the test cases.

Section 7 (supplementary information on figure generation) contains pointers to accompanying files containing video sequences, anchor bit streams, and error prone test bit streams. It also describes the mechanisms used to generate the anchor compressed video data, compressed video data exposed to typical error patterns, and descriptions on the creation of error patterns.

Annex A sketches one possible environment that could be used by interested parties as a starting point for defining a process to assess the performances of a particular video codec against the performance requirements.

5 Service Scenarios and Metrics

A video transmission in a 3GPP packet switched environment conceptually consists of an Encoder, one or more Channels, and a Decoder. The Encoder, as defined here, comprises the steps of the source coding and, when required by the service, the packetization into RTP packets, according to the relevant 3GPP TS for the service and media codec in question. The Channel, as defined here comprises all steps of conveying the information created by the Encoder to the Decoder. Note that the Channel, in some environments, may be prone to packet erasures, and in others it may be error free. In an erasure prone environment, it is not guarantied that all information created by the Encoder can be processed by the Decoder; implying that the Decoder needs to cope to some extent with compressed video data not compliant with the video codec standard. The Decoder, finally, de-packetizes and reconstructs the – potentially erasure prone and perhaps non-compliant – packet stream to a reconstructed video sequence. The only type of error considered at the depacketizer/decoder is RTP packet erasures.

5.1 Service scenarios

This report lists the minimum performance requirements for two service scenarios.

Service scenario B (PSC-like) relates to conversational services involving compressed video data (an erasure prone transport, low latency requirements, application layer transport quality feedback, etc.). In this scenario, UE-based video encoding and decoding are assumed. The foremost example for this service scenario is PSC / MTSI. To simplify the requirements definition, service scenario B is split into two sub-scenarios. Service scenario B1 (PSC-like Encoding) relates to the minimum performance requirements of an encoder to generate a compressed video data to provide sufficient quality in this scenario. Service scenario B2 (PSC-like Decoding) relates to the minimum performance requirements of a decoder to consume non-compliant compressed video data generated by an encoder that fulfils the provision of sufficient quality in this scenario.

5.2 Performance Metrics

Editor’s Note: Metrics are tentative. Pruning will be done during further editing.
This section defines performance metrics as discussed in section 6, to numerically and objectively express a Decoder’s reaction to compressed video data which is possibly modified due to erasures.

The following section provides a general description of the quality metrics. Each of the following metrics generates a single value when run for a complete video sequence.

The following acronyms are utilized throughout the remainder of this section:

Source-Seq: The original video sequence that has been used as input for the video encoder.

Recon-Seq: The reconstructed video sequence, the output of a standard compliant decoder which operates on the output of the video encoder without channel simulation, i.e. without any errors.

Error-Seq: The video sequence that has been reconstructed and error-concealed by an error-tolerant video decoder, after a) the video encoder operated on the Source-Seq and produced an error free packet file as output, b) the channel simulator used the error free packet file and applied errors to it so to produce an error prone packet file which is used as the input of the error-tolerant video decoder.

5.2.1 Average Encoding PSNR (AEP)

The average PSNR calculated between all pictures of the Source-Seq and the Recon-Seq. First, the PSNR of each picture is calculated with a precision sufficient to prevent rounding errors in the future steps. Thereafter, the PSNR values of all pictures are averaged. The result is reported with a precision of two digits. Note: This is the traditional metric referred to as PSNR in the academic literature and in the context of video compression research.
5.2.2 Average Decoding PSNR (ADP)

The average PSNR between the original preprocessed sequence (file 2) and the decoded sequence (file 6).
5.2.3 Standard Deviation of Encoding PSNR (SDEP)

The standard deviation for PSNR between the original preprocessed sequence (file 2) and the reconstructed sequence (file 4).
5.2.4 Standard Deviation of Decoding PSNR (SDDP)

The standard deviation for PSNR between the original preprocessed sequence (file 2) and the decoded sequence (file 6).
5.2.5 Percentage Degraded Video Duration (PDVD)

The percentage of degraded video frames compared between the reconstructed sequence (file 4) and the decoded sequence (file 6).
5.2.6 Standard Deviation of Percentage Degraded Video Duration (SDPDVD)

The standard deviation of the percentage of degraded video frames compared between the reconstructed sequence (file 4) and the decoded sequence (file 6).

5.2.7 PSNR of Encoding Average Normalized Square Difference (PEANSD)
The PSNR of the average squared difference between the original preprocessed sequence (file 2) and the reconstructed sequence (file 4).
5.2.8 PSNR of Decoding Average Normalized Square Difference (PDANSD)
The PSNR of the average squared difference between the original preprocessed sequence (file 2) and the decoded sequence (file 6).
5.2.9 Average Frame Rate (AFR)

The average frame rate of the decoded sequence (file 6).
5.2.10 Standard Deviation of Instantaneous Frame Rate (STIDR)

The standard deviation of the instantaneous frame rate of the decoded sequence (file 6).

5.3 Derivation of Metric for Multiple Runs

For statistical significance, in general multiple runs need to be carried out. This is accomplished by applying different Random seeds in the channel simulator software from 1, …, N. If the individual metrics as discussed above, which involve file 6, are available for each run i=1,…,N, then to obtain a single metric, the following equations need to be applied.
5.3.1 Average Decoding PSNR (ADP)

The average decoding PSNR for N runs is defined as:

[image: image3.wmf]1

1

N

i

i

ADPADP

N

=

=

å

5.3.2 Standard Deviation of Decoding PSNR (SDDP)

The standard deviation of the decoding PSNR for N runs is defined as:
5.3.3
[image: image4.wmf](

)

(

)

2

22

11

11

NN

iii

ii

SDDPSDDPADPADP

NN

==

=+-

åå

5.3.4 Percentage Degraded Video Duration (PDVD)

The percentage of degraded video frames for N runs is defined as:

[image: image5.wmf]1

1

N

i

i

PDVDPDVD

N

=

=

å

5.3.5 Standard Deviation of Percentage Degraded Video Duration (SDPDVD)

The standard deviation of the percentage of degraded video frames for N runs is defined as:

[image: image6.wmf](

)

2

2

2

2

11

11

100

100

NN

ii

i

ii

PDVDPDVD

SDPDVDSDPDVD

NN

==

æö

÷

ç

=+-

÷

ç

÷

÷

ç

èø

åå

5.3.6 PSNR of Decoding Average Normalized Square Difference (PDANSD)
The PSNR of the average squared difference for N runs is defined as:

[image: image7.wmf]10

0.1

1

10log

10

i

N

PANSD

i

N

PANSD

-

=

æö

÷

ç

÷

ç

÷

=

ç

÷

ç

÷

ç

÷

ç

èø

å

5.3.7 Average Frame Rate (AFR)

5.3.8
[image: image8.wmf]1

1

N

i

i

AFRAFR

N

=

=

å

5.3.9 Standard Deviation of Instantaneous Frame Rate (STIDR)

The standard deviation of the instantaneous frame rate of the decoded sequence (file 6).

[image: image9.wmf](

)

(

)

2

22

11

11

NN

iii

ii

SDIFRSDIFRAFRAFR

NN

==

=+-

åå

6 Test case definition and Performance Figures

Editor’s Note:

· Comfort Factors to be mentioned.

6.1
6.1.1

·
·
·
·
·
·

·
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

6.1.2

	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

6.2 Service Scenario B1 (Encoder for PSC-like)

6.2.1 Test cases

The definition of each test case consists of

· Test: Test case number

· Sequence (see section xxx for the details of the parameters of the source sequence)

· Bitrate: <tbd>

· Framerate: <tbd>

· maxSkip: <tbd>

· <tbd>

	Test
	Sequence
	Bitrate
	Framerate/fps

	B1-1
	
	
	

	B1-2
	
	
	

	B1-3
	
	
	

	B1-4
	
	
	

	B1-5
	
	
	

	B1-6
	
	
	

H.263

	Test
	Sequence
	Bitrate
	Framerate/fps
	maxSkip

	B1-7
	
	
	
	

	B1-8
	
	
	
	

	B1-9
	
	
	
	

	B1-10
	
	
	
	

	B1-11
	
	
	
	

	B1-12
	
	
	
	

H.264

6.2.2 Performance Figures

Performance requirements are reported as the response of a performance metric to a sequence of pictures reconstructed by a decoder. For each test case, results generated by one or metrics are reported. Empty cells in the table indicate that the corresponding test case/metric combination has not been considered.

	Test
	Performance requirements for metric

	
	M1: Average-PSNR
	M2: Example-Metric
	
	

	A1
	
	
	
	

	A2
	
	
	
	

	…
	…
	…
	
	

H.263
	Test
	Performance requirements for metric

	
	M1: Average-PSNR
	M2: Example-Metric
	
	

	A1
	
	
	
	

	A2
	
	
	
	

	…
	…
	…
	
	

H.264

6.3 Service Scenario B2 (Decoder for PSC-like)

6.3.1 Test cases

The definition of each test case consists of

· Test: Test case number

· Sequence (see section xxx for the details of the parameters of the source sequence)

· Bitrate: <tbd>

· Framerate: <tbd>

· maxSkip: <tbd>

· <tbd>

	Test
	Sequence
	Bitrate
	Framerate/fps

	B1-1
	
	
	

	B1-2
	
	
	

	B1-3
	
	
	

	B1-4
	
	
	

	B1-5
	
	
	

	B1-6
	
	
	

H.263

	Test
	Sequence
	Bitrate
	Framerate/fps
	maxSkip

	B1-7
	
	
	
	

	B1-8
	
	
	
	

	B1-9
	
	
	
	

	B1-10
	
	
	
	

	B1-11
	
	
	
	

	B1-12
	
	
	
	

H.264

6.3.2 Performance Figures

Performance requirements are reported as the response of a performance metric to a sequence of pictures reconstructed by a decoder. For each test case, results generated by one or metrics are reported. Empty cells in the table indicate that the corresponding test case/metric combination has not been considered.

	Test
	Performance requirements for metric

	
	M1: Average-PSNR
	M2: Example-Metric
	
	

	A1
	
	
	
	

	A2
	
	
	
	

	…
	…
	…
	
	

H.263

	Test
	Performance requirements for metric

	
	M1: Average-PSNR
	M2: Example-Metric
	
	

	A1
	
	
	
	

	A2
	
	
	
	

	…
	…
	…
	
	

H.264

7 Performance Requirements Generation

The performance figures in this TR have been generated according to the rationale discussed below. A file-based approach has been employed. In the following drawings, files are indicated by using cylinder shapes, and functional modules operating on files (encoder, decoder, transport simulator, quality assessment) are depicted using rounded rectangles.

7.1

Service Scenario B1
The workflow of the generation of the Minimal Video Performance Requirements for Service Scenario B1 is outlined in Figure 2. As already mentioned, the performance figures here denote the minimum quality of an error resilient video packet stream, when not exposed to errors.

The Video Source in .3GP file format is processed by a Video Encoder (H.263 baseline or H.264 baseline), controlled by an configuration file containing Encoder Parameters in textual format. The result of this process is a Compressed Video packet stream file, conforming to the respective video compression standard, H.263 baseline or H.264 constrained baseline, the relevant RTP packetization, and the RTPdump file format as discussed in section xxx. Furthermore, the bitstream obeys additional constraints:

Edt. note: here would be the place to discuss buffer sizes, frame rate and bit rate definitions etc. etc..
The Compressed Video bit stream is input to a standard-compliant video decoder, which produces Reconstructed Video in the .3GP file format. Its should be noted that the same file is also used to generate the minimum performance requirements of Service Scenario B2.
Both the video source and the Reconstructed Video are employed by the quality assessment module to generate the Minimum Video Performance Requirements.

[image: image11.emf]t

Video Source

in .3GP Format

t

Encoder

Parameters

in .txt Format

Video Encoder

t

Compressed

Video

RTP Format

(used in Service

Scenario B2)

Standard-

compliant

Video Decoder

operating on

error-free RTP

packet stream

Reconstructed Video

in .3GP Format

Quality

Assessment

(Metrics)

Run after

Reconstruction

Minimal Video

Performance

Requirements

Service Scenario B1

Figure 2: Test environment for Service Scenario B1

7.2 Video Encoder

The encoder converts the Video Source into a compressed video packet stream file. It is constrained mainly by the complexity reasonably possible in an UE, as well as the need for error resilience, as the resulted packet stream has to be robust enough to be transported over an error prone link. Therefore, the configuration settings of the encoders used to generate the Minimum Performance Requirements were set as follows:

H.263

a) the bitstream produced is compliant with <tbd>., 26.235 (PSC)

b) the encoder complexity is comparatively low. This was achieved by <tbd>.

c) The encoder was set to generate compressed video data such that <tbd>.

H.264

d) the bitstream produced is compliant with <tbd>., 26.235 (PSC)

e) the encoder complexity is comparatively low. This was achieved by <tbd>.

f) The encoder was set to generate compressed video data such that <tbd>.

Service Scenario B2
The service scenario B2 relates to the minimum performance of an error-tolerant decoder, when processing video data that has been exposed to erasures stemming from the use of the 3GPP Transport Simulator. As depicted in Figure 3, the Compressed Video in RTP format, as generated in Service Scenario B1, is exposed to RTP packet erasures by the 3GPP Transport Simulator. The latter is being controlled by command line configuration information, configuration files, and error pattern files, all summarized as Error Patters in the Figure below. The result of this process is Erasure-prone compressed video in RTP format. This file is being reconstructed by an error-tolerant video decoder to generate Reconstructed error-prone video in the 3GP file format.

[image: image12.emf]t

Video Source

in .3GP Format

t

Error

Patterns

3GPP

Transport

Simulator

Error-tolerant

Video decoder

Reconstructed error-

prone Video

in .3GP Format

Quality

Assessment

(Metrics)

Run after

Reconstruction

Minimal Video

Performance

Requirements

Service Scenario B2

Compressed

Video

RTP Format

(generated in

Service

Scenario B1)

Erasure prone

Video

RTP Format

Reconstructed error-free

Video

in .3GP Format

produced in Service

Scenario B1

Note: none of our metric

currently use the above file

(question is whether this is

by design or by chance).

Commonly, at least for

subjective assessment,

the reconstructed error

prone sequences is played

side-by-side with the

reconstructed error free

sequence.

Figure 3: Test environment for Service Scenario B2
The quality assessment uses the original video source (in .3GP format) as well as the reconstructed error-prone video (also in .3GP format). In addition, it has been helpful to subjectively quality-assess the reconstructed error-free video in conjunction with the other two video sequences; however, none of the quality metrics employ the latter.
7.3 3GPP Transport Simulator Settings
The command line parameters to the 3GPP Transport Simulator are, the filenames of the Compressed Video in RTP format and the Erasure Prone Video in RTP format, the Bearer ID (an integer), and the initialization of the Random Number Generator (Random Seed).
The Bearer configuration has been set as follows:

This file contains some bearer configuration. The bearers can be indexed by the number.

The specific columns are explained in the following

Number: Number of the bearer used as index (integer)

File:
 File name of the error masks, can be bit errors or packet errors

Format: Gives the format of the file (binary for bit errors, ascii for packet errors)

TTI:
 Transmission Time Interval in ms

RFS:
 Radio Frame Size in bytes describes the RLC-PDU size

note that 8*RFS/TTI results in the bit rate in kbit/s

Mode:
 Transmission Mode: UACK is unacknowledged bearer, ACKP is acknowledged bearer with persistent mode, ACKN non-persistent, FECK is unacknowledged and FEC

System: CDMA2000, UMTS, GPRS, EGPRS, main difference is in sizes of fields added for headers

CRUIH: Compressed RTP/IP/UDP header size assuming header compression

RDel:
 (only for ACK mode) The retransmission delay before it is available at the encoder in multiples of the TTI

NoRet: (only non-persistent ACK mode ACKN) Number of Retransmission for ACK mode

N:
 (only for FECK mode) expresses the maximum number of encoding symbols

del: (only for FECD mode) expresses the maximum delay in ms

K:
 (only for FECK mode) expresses the maximum number of source symbols

overhead: (only for FECD mode) expresses the overhead in %

T:
 (only for FEC mode) expresses the symbol length of the code

G:
 (only for FEC mode) expresses the number of symbols per packet

MFS: (only for FEC mode) expresses the maximum fragment size

#

The following bearers are defined

Number
File

Format
TTI
RFS
Mode System CRUIH
RDel/N/del
Amod/K/Overhead T G MFS

PSC Bearers

64 kbit/s

1 PSC__64kbps_20ms_BLER_0_5.txt ascii 20 160 UACK UMTS 5
2 PSC__64kbps_20ms_BLER_1_0.txt ascii 20 160 UACK UMTS 5
128 kbit/s

3 PSC__128kbps_20ms_BLER_0_5.txt ascii 20 320 UACK UMTS 5
4 PSC__128kbps_20ms_BLER_1_0.txt ascii 20 320 UACK UMTS 5
The following configuration for the channel simulator has been used:
RTPinfile

= filename of input file

RTPoutfile

= filename of output file
LogFile

= filename of logfile
StatFile

 = filename of statistics file
Bearer

= see below

RandomSeed

= 1-64

ErrorFreeRTP
= 4

TSModeSender = 0 # 0 use TS

MaxSendingDelay= 0 # 0 ignore TS

MaxE2EDelay = 500 # 0 ignore TS, > 0 drop packet at receiver if delayed
With this configuration all packets arriving later than 500 ms compared to the time they were generated, are being removed from the Erasure Prone Video RTP file. Similarly, all packets containing bit errors are being removed. The first four RTP packets are excluded from the error simulation, so to ensure that the parameter sets and the first intra slice are available for processing at the H.264 decoder.

Note: this optimization is justified as H.264 parameter sets, in a real-world environment, are made available to the decoder through the session negotiation process.
Usage of simulator:

sa4sim –f psc.cfg –p RTPinfile=<user defined> -p Bearer=<1-10> -p RandomSeed=<1-64>
Error-tolerant Video Decoder
The error tolerant Video Decoders are compliant with the respective video coding standards (H.263 or H.264) when receiving and handling compliant input streams. However, when non-compliant input data is received, they implement additional mechanisms for error tolerance and error concealment. In summary, the error-tolerant video decoders utilized to generate the minimum video codec performance requirements

· do not crash when receiving non-compliant streams

· employ the so-called “last picture copy” error concealment technique, when the loss of pictures or picture parts is detected. That is, missing macroblocks are copied from the spatially co-located macroblocks in the previous reconstructed picture.
· are capable of gracefully handling lost pictures in that they generate timing information in the Reconstructed Error Prone video file that indicates the lost picture.

More details can be found in Annex xxx (for the H.263 decoder) and Annex xxx (for the H.264 decoder) respectively.
Edt. note: I think the above constraints constitute something like a working assumption. Please advise if that’s not the case, and I will happily throw them out.

·
·

7.4 Video Sources
For each video sequence, identified by its file name, the following characteristics are reported:

· Source format, spatial.
· Frame rate in frames per second in the file. This frame rate has to be taken into account when matching reconstructed pictures with the source sequences, and when encoding the source sequence.

· Original source format. It is reported with what type of equipment and with what parameters the sequence was originally captured. At present, this information is not used by any metric; however, it may be used in subjective assessments to explain certain coding artefacts.

· Contributor. The organization that contributed the sequence to 3GPP. Note that many sequences contain parts that have been spliced together; therefore, those sequences have more than one contributor.

·
·
Test Sequence 1: bar-30s.3gp
Source format: QCIF (176x144), YUV 4:2:0, 12 fps (subsampled from movie content 24 Hz), 360 frames corresponding to 30 seconds
Original source: professional movie material (Edt. note: insert file title)
Contributor: Dave Signer, Apple, Ett. note: add whatever else is needed here.
Test Sequence 2: bugs_QCIF.3gp
Source format: QCIF (176x144), YUV 4:2:0, 12.5 fps (subsampled from 25 fps), need to add #frames and seconds
Original source is a consumer level DV Camcorder operating in PAL.

Contributor: Stephan Wenger, Nokia

Test Sequence 3: stunt_QCIF.3gp
Source format: QCIF (176x144), YUV 4:2:0, 12.5 fps (subsampled from 25 fps), need to add #frames and seconds
Original source is a camera in a mobile phone. Special software was used to record uncompressed video.

Contributor: Stephan Wenger, Nokia

·
·

7.5
·
P1.

·
7.6

·
·
·

7.7

7.8

7.9

7.9.1

7.9.2

·
·
·
·

7.9.3
7.9.4

7.9.5

7.10

7.10.1

g)
h)
i)
j)

·

7.10.2

k)
l)
m)

n)
o)
p)

·

7.10.3

·
·

·
·

·

·

Annexes are only to be used where appropriate:

A Annex A: Performance assessment of a Codec Implementation (Informative)

One possible procedure to assess the performance of a video encoder and/or decoder is described below. Figure depicts the software setup in principle when reference encoder and decoder are available. Figure 3 depicts the software setup in principle when only the reference decoder is available

Editor’s note:

· Do we need to discuss comfort factors in Annex A?

[image: image13]
Figure 2 Setup to check performance requirements when reference software is available

· Path 0: The path used to generate performance requirement numbers

· Path 1: The required path for decoder testing; channel may be error free or error prone

· Path 2: The required path for encoder testing; channel may be error free or error prone

Editor’s Note:

With the assumption of the availability of a reference software, but the availability of a channel software, tests for the following scenarios can be carried out as follows:

· Scenario A: Can be tested using path 1

· Scenario B2: Can be tested using path 1

· Scenario B1: Can be tested using path 2
In case of no channel software available

· Scenario A: Can be tested using path 1
· Scenario B2: Can be tested using path 1 and error-prone encoded video streams
· Scenario B1: Cannot be tested unless we have a very simplified channel model.

[image: image14]
Figure 3 Setup to check performance requirements when reference software is not available

Editors Note: Open Issues:

· The figure needs to be cleaned and might even be split in 2 figures.

· 0: compression method to reproduce the quality of the error free anchors as a comparison point against the error prone anchors. It is NOT truly a test that any one would reasonably perform to check a decoder according to the logic of this report. The test may be necessary if we decide on a metric that compares two reconstructed video sequences.

· 1 The ONLY truly required path for decoder testing; channel may be error free or error prone

· 2 The ONLY truly required path for encoder testing

Editor’s Note:

With the working assumption of the non-availability of a reference software (except for a decoder accepting compliant bitstreams), but the availability of a channel software, tests for the following scenarios can be carried out as follows:

· Scenario A: Can be tested using path 2

· Scenario B2: Can be tested using path 1 and error-free anchor streams

· Scenario B1: Can be tested using path 3, but not necessary appropriate.

In case of no channel software available

· Scenario A: Can be tested using path 2

· Scenario B2: Can be tested using path 1 and error-prone encoded video streams

· Scenario B1: Cannot be tested unless we have a very simplified channel model.
A.1 Performance Assessment when reference software is available

A.1.1
Decoder Performance Assessment

The performance of an implemented video decoder with respect to the performance requirements can be assessed. The assessed decoder decodes the encoded video packets after being exposed to a channel. Reference encoder and assessed decoder are shown in Figure 2, and the data path employed is labeled as “1”.
Each test case corresponds to the output of a reference encoder when stimulated by an encoding test case, and the resulting stream being exposed to a channel stimulated by an encoding test case.

In order to assess a decoder, all decoding test cases shall be applied, after being exposed to the channel conditions under all applicable channel error conditions. It should be verified that the performance of implemented decoder is the same or better than the specified minimum requirement for each decoding test case.
A.1.2 Encoder Performance Assessment
This test intends checking the performance of an implemented video encoder against the performance requirements. A reference decoder reconstructs the output of implemented encoder. Implemented encoder and reference decoder are shown in Figure 2, and the data path employed is labeled as “2”. The following procedure may be followed.
For each encoding test case and decoding test case a test stream is generated by the application of a implemented encoder. A test stream corresponds to the output of an implemented encoder when stimulated by an encoding test case.

To all generated test streams the corresponding decoding test case shall be applied, i.e. the test stream is transmitted over a channel. It should be verified that with the application of the reference decoder the obtained performance is the same or better than the specified minimum requirement for each decoding test case.

A.2 Performance Assessment when reference software is not available

A.2.1
Decoder Performance Assessment
The performance of an implemented video decoder with respect to the performance requirements can be assessed. The assessed decoder decodes the anchors as available in this report (i.e. after being exposed to a channel). Anchors and assessed decoder are shown in Figure 3, and the data path employed is labeled as “1”.
For each test case, one Anchor compressed video data file is available. This Anchor corresponds to the output of a reference encoder when stimulated by an encoding test case, and the resulting stream being exposed to a channel stimulated by an encoding test case.

In order to assess a decoder, all decoding test cases shall be applied based for all anchor bit streams, after being exposed to the channel conditions under all applicable channel error conditions. It should be verified that the performance of implemented decoder is the same or better than the specified minimum requirement for each decoding test case.
Editor’s Note:

· It is suggested removing the “reference encoder” as an option to generate the anchors by the user, as we need bit-exactness here. Instead, I suggest to refering to the generation process for the anchors here in SA4. That way, the info HOW the anchors are generated is not lost, but on the other hand there is no need to include software etc. etc.

A.2.2 Encoder Performance Assessment
This test intends checking the performance of an implemented video encoder against the performance requirements. A reference decoder reconstructs the output of implemented encoder. Implemented encoder and reference decoder are shown in Figure 3, and the data path employed is labeled as “2”. The following procedure may be followed.
For each encoding test case and decoding test case a test stream is generated by the application of a implemented encoder. A test stream corresponds to the output of an implemented encoder when stimulated by an encoding test case.

To all generated test streams the corresponding decoding test case shall be applied, i.e. the test stream is transmitted over a channel. It should be verified that with the application of the <tbd> decoder the obtained performance is the same or better than the specified minimum requirement for each decoding test case.

A.2.3 Combined Encoder and Decoder Performance Assessment

Editor’s Note:

Only if evidence is brought to SA4 that combined encoder and decoder performance assessment is useful, this section will be maintained.

B Annex B: H.263 decoder description

B.1 Normative decoding process

Refer to ITU-T Recommendation H.263 (01/05), "Video coding for low bit rate communication".
B.2 Informative decoding process

B.2.1 Packet loss detection

Include text to detect errors based on RTP headers
B.2.2 Error concealment

Include text to perform error concealment (copy from collocated MBs)
C Annex C: H.263 encoder description (informative)

C.1 Motion estimation

Describe motion estimation
C.2
Forward DCT

Describe DCT module
C.3
Quantization

Describe quantization
C.4
VLC module

Describe VLC module
C.5
Packetization

Describe packetization
8 Annex D: .3GP file format extension used for simulation work

Raw video is stored as samples in a video track in ISO Base Media Format family files (such as MP4, 3GP and so on). That is, it uses the same video handler, video media header etc. as a video track containing, for example, H.263. Raw video can take various formats – based on choice of color model, sub-sampling, and so on. As is usual in ISO files, the format of the video (the ‘decoder’ needed) is declared by the sample entry 4-character-code. For YUV 4:2:0 video the 4-character code is ‘j420’ (jay four two zero) (this happens to match QuickTime’s current 4CC for 4:2:0).

Many video formats add boxes to the sample entry to parameterize the video (e.g. an AVC configuration box for AVC video); this format adds no boxes.

Note that the sample size table can use the compact form (constant sample size), storing only one value. Similarly the time-to-sample table can run-length compress to a single value for the input files (which have a constant frame rate).

For the use in 3GPP testing, the timescale of the media should match the movie timescale. A value of 600 is used. Likewise, the sample entry dimensions must record the image size (dimensions of the Y array), and these dimensions should be reflected in the track and movie dimensions.

Reference code for the 3GPP file format (indeed, all ISO file formats) can be obtained on request from the ‘MP4’ registration authority at www.mp4ra.org. The source code below shows a sample program which converts a YUV file at a constant frame rate into a 3GPP file. It can also make a QuickTime movie file; in this case, QuickTime can be used to play the file, which may be advantageous. (QuickTime does not currently support opening 3GP files containing raw video.)

The example code from the registration authority contains a sample program for reading files, also.

A complete specification for the structure of 3GPP files may be obtained as a freely available standard from ISO (www.iso.ch); the standard is ISO/IEC 14496-12:2005.
/*

sample program to build raw YUV 4:2:0 QuickTime (or 3GP) files using the file

format reference software

Dave Singer, May 2006

*/

#include "ISOMovies.h"

#define infile "foreman_QCIF.yuv"

#define outfile "foreman_QCIF.mov"

#define x_width 176

#define y_height 144

#define bytes_per_frame ((x_width * y_height * 3)/2)

#define timescale 600

#define
frameduration 20

MP4Err createMyMovie(char *filename);

MP4Err addMySamples(MP4Track theTrack, MP4Media theMedia, MP4Movie moov, char* fromfile);

int main(int argc, char **argv)

{

MP4Err err;

err = createMyMovie(outfile);

fprintf(stderr, "createMyMovie returns %d\n", err);

return err;

}

MP4Err createMyMovie(char *filename)

{

MP4Err err;

MP4Movie moov;

MP4Track trak;

MP4Media media;

u64 mediaDuration;

err = MP4NoErr;

//
err = New3GPPMovie(&moov, 6); if (err) goto bail;

err = QTNewMovie(&moov); if (err) goto bail;

err = MP4NewMovieTrack(moov, MP4NewTrackIsVisual, &trak); if (err) goto bail;

err = MJ2SetTrackDimensions(
trak, x_width<<16, y_height<<16);

err = MP4NewTrackMedia(trak, &media, MP4VisualHandlerType, timescale, NULL);

if (err) goto bail;

err = MP4BeginMediaEdits(media); if (err) goto bail;

err = addMySamples(trak, media, moov, infile); if (err) goto bail;

err = MP4EndMediaEdits(media); if (err) goto bail;

err = MP4GetMediaDuration(media, &mediaDuration); if (err) goto bail;

err = MP4InsertMediaIntoTrack(trak, 0, 0, mediaDuration, 1); if (err) goto bail;

err = ISOWriteMovieToFile(moov, filename); if (err) goto bail;

err = MP4DisposeMovie(moov); if (err) goto bail;

bail:

return err;

}

MP4Err addMySamples(MP4Track trak, MP4Media media, MP4Movie moov, char* the_file)

{

MP4Err err;

MP4Handle sampleEntryH;

MP4Handle sampleDataH;

MP4Handle sampleDurationH;

MP4Handle sampleSizeH;

u32 first_sample;

FILE* fd;

fd = fopen(the_file, "r");

err = MP4NoErr;

err = MP4SetMediaLanguage(media, "und"); if (err) goto bail;

err = MP4NewHandle(0, &sampleEntryH); if (err) goto bail;

err = MP4NewSampleDescription(trak, sampleEntryH,

1,

0,

0,

0,

0,

0,

NULL); if (err) goto bail;

err = ISOSetSampleDescriptionDimensions(sampleEntryH, x_width, y_height);

if (err) goto bail;

err = ISOSetSampleDescriptionType(sampleEntryH,

MP4_FOUR_CHAR_CODE('j', '4', '2', '0')); if (err) goto bail;

err = MP4NewHandle(sizeof(u32), &sampleDurationH); if (err) goto bail;

((u32) *sampleDurationH) = frameduration;

err = MP4NewHandle(bytes_per_frame, &sampleDataH); if (err) goto bail;

err = MP4NewHandle(sizeof(u32), &sampleSizeH); if (err) goto bail;

* ((u32 *) (*sampleSizeH)) = bytes_per_frame;

first_sample = 1;

for (;;)

{

int read_count;

read_count = fread(*sampleDataH, 1, bytes_per_frame, fd);

if (read_count < bytes_per_frame) break;

err = MP4AddMediaSamples(media, sampleDataH, 1,

sampleDurationH, sampleSizeH,

(first_sample ? sampleEntryH : NULL), NULL, NULL);

if (err) goto bail;

first_sample = 0;

}

if (sampleEntryH)

{

err = MP4DisposeHandle(sampleEntryH); if (err) goto bail;

sampleEntryH = NULL;

}

fclose(fd);

bail:

return err;

}

9 Annex E: RTPDUMP file format used in scenario B simulation work

The rtpdump file format has been originally proposed by Henning Schulzrinne, see http://www.cs.columbia.edu/IRT/software/rtptools/. Within the scope of this report, only the binary version of the file format is of relevance. The file is constructed as follows:

The file starts with one line of ASCII coded text, indicating
#!rtpplay1.0 address/port\n

wherein “address” stands for an IP address (e.g. 192.168.1.2) and port stands for a port number, e.g. 1234. Neither value is used by the toolchain employed in this report. “\n” stands for carriage return/linefeed.
The ASCII header is followed by one binary header (RD_hdr_t) and one RD_packet_t structure for each received packet. All fields are in network byte order. The RTP and RTCP packets are recorded as-is.

typedef struct {

 struct timeval start; /* start of recording (GMT) */

 u_int32 source; /* network source (multicast address) */

 u_int16 port; /* UDP port */

} RD_hdr_t;

typedef struct {

 u_int16 length; /* length of packet, including this header (may

 be smaller than plen if not whole packet recorded) */

 u_int16 plen; /* actual header+payload length for RTP, 0 for RTCP */

 u_int32 offset; /* milliseconds since the start of recording */

} RD_packet_t;

Annexes are labeled A, B, C, etc. and are "informative"(3G TRs are informative documents by nature).

A.1
Heading levels in an annex

Heading levels within an annex are used as in the main document, but for Heading level selection, the "A.", "B.", etc. are ignored. e.g. A.1.2 is formatted using Heading 2 style.

Bibliography

The Bibliography is optional. If it exists, it shall follow the last annex in the document.

The following material, though not specifically referenced in the body of the present document (or not publicly available), gives supporting information.

Bibliography format

-
<Publication>: "<Title>".

OR

<Publication>: "<Title>".

10 Annex <X>:
Change history

It is usual to include an annex (usually the final annex of the document) for reports under TSG change control which details the change history of the report using a table as follows:

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2006-02
	
	
	
	
	Document Creation
	
	0.0.0

	2006-02-15
	
	
	
	
	Edit per SA4#38
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Minor change history at SA4#39 (to be deleted)

v-perf-req-04-00: started from QC doc 234, removed Scenario C (MBMS), removed QC Annex D (H.263 source)

 0

2

Channel

1

2

Anchor Comressed Video Data

Implemented Encoder

Decoder�non-normative extension in textual description in TR

Implemented Decoder

Channel

Channel (textual description in TR

Anchor Compressed Video Data Exposed to channel

Exposed

Implemented Decoder

Reference Decoder

Implemented Encoder

Reference Encoder

2,3

1

3

2

0, 1

0

�SS-A removed as per SA4#41 agreement. No contributions justifying this SS have been received by the video ad-hoc call, and no one during the call argued to keep it.

_1208612272.unknown

_1208612492.unknown

_1208780827.unknown

_1219316492.vsd
 Encoder Parameters in .txt Format

t

t

Video Source in .3GP Format

Video Encoder

 Compressed Video RTP Format (used in Service Scenario B2)

t

Standard-compliant Video Decoder operating on error-free RTP packet stream

Reconstructed Video in .3GP Format

Quality Assessment
(Metrics)

Run after Reconstruction

Minimal Video Performance Requirements  Service Scenario B1

_1219317089.vsd
Video Source in .3GP Format

t

Error Patterns

t

3GPP Transport Simulator

  Compressed Video RTP Format (generated in Service Scenario B1)

Error-tolerant Video decoder

  Erasure prone Video RTP Format 

Reconstructed error-prone Video in .3GP Format

Quality Assessment
(Metrics)

Run after Reconstruction

Minimal Video Performance Requirements  Service Scenario B2

Reconstructed error-free Video in .3GP Format produced in Service Scenario B1

Note: none of our metric currently use the above file (question is whether this is by design or by chance). Commonly, at least for subjective assessment, the reconstructed error prone sequences is played side-by-side with the reconstructed error free sequence.

_1208612896.unknown

_1208612457.unknown

_1208611695.unknown

_1208612060.unknown

_953458302.unknown

_1208262757.ppt

Video

Source

Encoder

3GPP

Transport

Video

Sink

Modified

Decoder

Quality

Assessment

Standard

Decoder

1

3

6

5

4

Pre-

Processing

2

PP

Parameter

Encoder

Parameter

Transport

Parameter

Source

Parameter

