3GPP TSG SA4#40 meeting
 Tdoc S4-060403
August 28-September 01, 2006

Sophia Antipolis, France

Source:
Streamezzo
Title:
Consideration on DRAP
Agenda:
13.4
Document for:
Discussion
1. Introduction

This contribution gives our analysis on the DRAP mechanism when apply to various use cases. We are going to give a maximum for the savings that DRAP can bring, discounting for the moment the latency penalty. We will compare the maximum saving to the size of the complete stream of [D]RAP in useful situations.
2. General Principles

In the discussion below, we assume that [D]RAPs need to be sent at a roughly regular interval determined by the type of application. Let P be the average period of [D]RAPs.

The latency L is roughly equal to P when there are only RAPs and no DRAPs. L should not be over nP because of DRAPs, with n=2. Larger values of L or n would defeat the purpose of DRAPs and RAPs. However, the computations shown below are still valid for any value of n.

In order to provide a reference, we compute the size of the RAP overhead for a period/latency of P. We then compare the DRAP overhead with that reference, and then we compute the RAP overhead for a RAP stream with latency equal to that of the DRAP.

3. DRAP Principle
The basic principle of a DRAP is: if there is an update which adds an object to the scene, and a reference RAP which should follow it, replacing the reference RAP with a DRAP before the update has two consequences:
1) the DRAP is smaller than the reference RAP by the size of the update

2) the tune-in latency is increased by the distance between the DRAP and the RAP

4. Limitations of the DRAP Principle

1) Only the last DRAP sent before a particular update can get the size saving of that update. Later DRAPs are not able to refer backward in time. Earlier DRAPs cannot refer so far in the future, or they would break the latency limit. So for each update, it can be used in at most one DRAP. Note: for higher values of n, each update can be used by at most n-1 DRAPs.
2) Among the existing types of updates, only insertions and replacements of an element by another are useful to decrease the size of DRAPs. The accumulated size of the insertions and element replacements is less than the size of the complete update stream.

3) The initial scene cannot be used to decrease the size of DRAPs. The initial scene is typically the size of a RAP.
5. Problem with “0-latency” DRAPs
It has been claimed that DRAPs can be used in a manner that introduces no additional latency, by placing the DRAP immediately before an insert update which is referenced by the DRAP for size saving.
We think there is a problem with this strategy as describe below:
Consider on the next figure the normal, regular spacing of RAPs, which corresponds to the max-tune-in-time constraint MTIT. We assume that RAPs or DRAPs shall not cause a tune-in time larger than this MTIT limit, so the maximum distance between to [D]RAPs shall be MTIT.

Consider the a priori random position of the insert updates which would help DRAP size reduction. We assume the strict respect of the max-tune-in-time constraint, so we have to move, statistically by half of the mean insert period AIF, the intended RAP to before the insert.

First case: MTIT > AIF (frequent inserts)

This case is representative of cartoons and in general, fast-moving content.

[image: image1.emf]RAP spacing from max tune in time constraint MTIT

insert updates (random with average AIF smaller than MTIT)

DRAP constructed for so-called 0 additional latency

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

choice 1: do not try to use all inserts

choice 2: use all inserts

In this figure, the blue inserts are used by choice 1 DRAPs, and the turquoise inserts are not used by choice 1 DRAPs. All inserts are used by choice 2 DRAPs.

There are 8 RAPs and 9 DRAPs with choice 1, 13 DRAPs with choice 2. Obviously, the claimed size saving in choice 1 is smaller than in choice 2: the additional size saving in choice 2 is the sum of the sizes of I1, I2, I9 and I12 which are used in choice 2 but not in choice 1.
However, what is not taken into account is the increase in the number of DRAPs, together with the fact that DRAPs cannot be 100% efficient, i.e. their size cannot be reduced to 0, because they need to represent the scene as it stands “now” which includes a majority of elements sent before the previous [D]RAP.
In order to provide any real saving, DRAPs need to provide more than 11% saving (1/9) in choice 1, and more than 39% saving (5/13) in choice 2, in order to offset the increase in the number of DRAPs.
This is one place where statistics of real-life services is needed: no amount of hand waving can prove that the DRAP size improvement offsets the above described penalty. The statistical behavior of video does not apply to scene.
Second case: MTIT < AIF (sparse inserts)

This case is more representative of when the content does not change too fast in order to let the viewer do some reading, such as Bloomberg TV.

[image: image2.emf]RAP spacing from max tune in time constraint MTIT

insert updates (random with average AIF larger than MTIT)

DRAP constructed for so-called 0 additional latency

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

In this figure, there are 22 RAPs and 27 DRAPs. In order to provide any real saving, DRAPs need to achieve a 23% saving (5/22). Again, statistics of real-life services are required to decide whether this is the case of not.
6. Maximum DRAP Saving

As a consequence of the DRAP principle, the maximum size saving brought by the DRAP principle is equal to the sum of the insertions and element replacements, which is smaller than the total size of the scene stream including updates.

To get a rough idea of proportions, let us study an example. This example is created from an average of existing services which could be ported to a broadcast situation. The numbers are given for a typical LASeR scene. Numbers for an equivalent SVG service can be derived by multiplying all sizes by 6 or 7.
The scene is 20mn or 1200s long.

The scene contains one initial scene of 30Kb, of which 20Kb are mostly constant background and 10Kb is foreground specific to the first “shot”. There is a shot on average every 2 mn or 120s, and each shot is 10Kb.

The total size of the update stream is 90Kb.
The total size of the scene is 120Kb.

The reference RAP size is 30Kb.

There are [D]RAPs every 10s, so there will be 118 [D]RAPs.
The total size of RAPs is 118 x 30Kb = 3540Kb

Maximum saving by DRAPs is 90Kb, i.e. 2.5% in this realistic case. This is a maximum: we doubt that it is attainable in practice. To achieve this, a doubling of the average latency is necessary.
Note: in case of n > 2, the saving is (n - 1) x 2.5%, with a latency nL.

In comparison, if we want to create a RAP stream with 20s latency (instead of the reference RAP stream with period/latency 10s), we just need one RAP every 20s. With the above numbers, we get a total RAP stream size of 58 x 30Kb = 1740Kb, thus achieving a saving of 50.8% with respect to the reference RAP overhead, and 49.5% with respect to the DRAP overhead.
Note: to achieve a latency nL, we just decimate the reference RAP stream accordingly, achieving a saving of (n-1)/n (66% for 3, 75% for 4, …)

7. 2D Cartoons

Transmission of 2D vector graphics cartoons is a use case on which the DRAP benefits should be maximal.
We will model cartoons as a pure update stream, of roughly constant bitrate. We will assume that updates not usable by DRAP are negligible compared to the updates usable by DRAPs, so that the DRAP saving is the size U of the update stream.

The scene is 3mn or 180s long. The size of the scene is 540Kb or 180Kb per mn, and 45Kb per RAP on average. We assume a low reuse factor for “older” content, i.e. only 50% of the content is older than P.
There are [D]RAPs every 10s, so there will be 17 [D]RAPs.

The total size of RAPs is 17 x 45Kb = 765Kb

Maximum saving by DRAPs is 540Kb. With 50% non-reuse factor, it means the efficiency of DRAPs is only 50%, so 270Kb. To achieve this, a doubling of the average latency is necessary.

The DRAP stream size is then: 490Kb

The RAP stream size with equivalent latency is: 382Kb (for one RAP every 20s)
So even in this best case, DRAP does not show any improvement.
8. Conditions of DRAP Usefulness

In order to be useful, the size of the DRAP stream must be smaller than the size of the RAP stream for the same effective latency.

A DRAP stream of frequency P has a latency of nP.

A RAP stream of frequency nP has a latency nP.

So the DRAP stream of frequency P must be smaller than a RAP stream of frequency nP.

Let S be the size of a RAP stream of frequency P.

Let U be the size of the updates stream.

A RAP stream of frequency nP and latency nP has a size of S/n.

A DRAP stream of frequency P and latency nP has a size between S – U and S.

For S - U to be less than S/n, U must be greater than S(n-1)/n.

This means that the update stream size must be within one order of magnitude from the RAP stream size, which means few RAPs comparatively, or very short broadcasts, or as for cartoons, continuous updating.

Few RAPs is not a relevant case, nor is the case for very short broadcasts.

There is only a case for continuous updating. Note: continuous updating (of the kind useful to DRAPs) is not a feature present in any mobile service deployed today.

For the minimal case of n=2, DRAP must achieve at least a 50% improvement, which is difficult to achieve in real cases:

· if the reuse factor realistically grows above 50%

· static background

· shots longer than the RAP period

· if the average (useful) update frequency drops by 10-20%
· pan over a landscape / still picture (very frequent in mangas)

· pause in the cartoon (such as with a fade to black)

Then the DRAP “advantage” is gone.

9. Conclusion

The above computations and examples show clearly that the benefits of the DRAP principle are either non-existent, or close to negligible.

We would be glad to have more evidence of usefulness and more explanations before considering DRAP for inclusion into the DIMS draft specification.
_1217404027.ppt

RAP spacing from max tune in time constraint MTIT

insert updates (random with average AIF smaller than MTIT)

DRAP constructed for so-called 0 additional latency

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

choice 1: do not try to use all inserts

choice 2: use all inserts

_1217405941.ppt

RAP spacing from max tune in time constraint MTIT

insert updates (random with average AIF larger than MTIT)

DRAP constructed for so-called 0 additional latency

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

