3GPP TSG-SA-WG4 #39 Meeting
Tdoc S4-060287
May 15-19, 2006, Dallas, Texas
Source

3
Title

RTSP Extensions to Enhance Media Player Interactivity
Document for

Approval and discussion
Agenda Item
 7
1 Introduction

Today, most standards-based mobile streaming clients do not allow much interactivity with the user, partly due to the limited user interface and feedback from the handset to the server. Most users simply select an RTSP link in the browser, watch the stream and then close the player. The majority of clients provide only basic viewing controls such as Play, Pause, Stop, Forward and Rewind.

A small number of streaming clients do provide additional features such as ‘TV channel’ (encoding source) selection, ability to skip to the next item in a play list or browse an EPG. With the growing interest in mobile TV (and current boom in unicast streaming of TV-type content), 3GPP players should offer more capabilities to encourage interactivity, and there should be an agreed method to send interactive commands to the streaming server which can be mapped to particular behaviour (a type of packet-switched DTMF in a way). For example, the Up and Down arrow keys could be used to browse channels or change the encoding source, and the numeric keys (0-9) could help navigate within a video portal’s interactive menu. Streaming players, TV applications and video portals would greatly benefit from a simple mechanism to exchange user key press commands.

2 Proposal

For unicast streaming applications, RTSP is a suitable choice to return the key press commands to the streaming server, using the SET_PARAMETER method.

A new field can be used to indicate which key has been selected by the user, simply labeled Keypress, defined in BNF notation [RFC 2234] as follows:

Keypress-command = “Keypress” 1ALPHA

(i.e. exactly one alpha-numeric character to represent the selected key)

Each physical key press on the device should generate the expected command (i.e. pressing ‘1’ on the keypad sends Keypress: 1 to the server, or the hex equivalent which should also be readable by the server)

In this case, ‘1’ on the keypad causes this sequence to be sent to the server:

C->S

SET_PARAMETER rtsp://example.com/example.3gp RTSP/1.0

Cseq: 5

Content-length: 0
Keypress: 1

The server is expected to respond appropriately i.e. return a 200 OK or 451 message (if the parameter is not recognised).

It is assumed that most clients will implement all the keys on a standard mobile keypad i.e. 0-9, in addition to the asterisk (*) and hash (#) keys.

There are a few special cases where the name of the selected key should be explicitly agreed to avoid confusion, as suggested below:

Up arrow key

->

Keypress: arrow-up

Down arrow key
->

Keypress: arrow-down

Left arrow key
->

Keypress: arrow-left

Right arrow key
->

Keypress: arrow-right

Left soft key

->

Keypress: soft-left

Right soft key
->

Keypress: soft-right

In most cases, these keys are already used by the client, for functions such as Forward and Rewind – in which case only the primary meaning should be signalled.

3 Conclusion

By allowing key press commands to be transmitted within RTSP, it should be easier to develop standards-based applications with greater interactivity, on a par with proprietary players.

In particular, it is highly desirable to be able to signal to the server to change encoding sources within a stream, as this allows the user to quickly select alternative content without leaving the player and returning to the browser, especially relevant for pseudo ‘TV’ streaming services.

