3GPP TSG-SA4#39

S4-060214
Dallas, TX

May 15-19, 2006

Agenda item:
13.6.1 [Optimized Jitter Buffer Management]

Source:
STM, Lucent Technologies, Polytechnic of Turin

Title:
Demonstration of Virtual Jitter Buffer for AMR-WB
Document for:

Discuss and Adopt

Contact:
andrea.vitali@st.com, dhuo@lucent.com, servetti@polito.it

1. Introduction

For the work item “Performance Characterization of the Optimized Jitter Buffer Management over VoIP Service”, an algorithm of managing the virtual jitter buffer is presented [06-060816] in Rennes. The following provide an demonstration of the pseudo code implemented for AMR-WB.

2. Overview of the Operation

VAD (voice activity detection) on current frame and on previous frame to discriminate SPEECH frames and SILENCE frames. At the beginning of a talk spurt, frames are extended, the stretch factor is VAD_F_EXTEND. Frames are extended until the virtual buffer reaches the desired level: BUFFER_THRESHOLD. At the end of a talk spurt, frames are compressed, the shrink factor is VAD_F_COMPRESS.

The rules applied at the transition point between the speech and silence are summarized as following:

· silence to speech: if the accumulated delay less than the target delay, then

stretch, using the max allowed stretching factor

· silence to silence: if accumulated delay is zero, stretching factor is reset to 1.0 (buffer emptied, no more shrink required)

· speech to speech: if the accumulated delay greater than the target delay, then reset the stretching factor to 1.0 (enough buffering, no more stretch required)

· speech to silence: if accumulated delay greater than 0 then shrink, using max allowed shrink factor.

Implementation of the rules in C code is given in the following:

Reference code developed by Antonio Servetti c/o Polytechnic of Turin.

switch (vad_prev) {

case VAD_SILENCE:

 switch (vad) {

 case VAD_SPEECH:
// silence to speech transition

 if (MIN(AccTimeOfs,TargetTimeOfs) <= TIME2TSTAMP(BUFFER_THRESHOLD)) f=VAD_F_EXTEND; // stretch
 break;

 case VAD_SILENCE:
// silence and silence
 if (MIN(AccTimeOffset,TargetTimeOfs) <=
 TIME2TSTAMP(VAD_FRAMELEN)) f=1.0; // no stretch/shrink
 break;

 }

 break;

 case VAD_SPEECH:

 switch (vad) {

 case VAD_SPEECH: // speech and speech
 if (MAX(AccTimeOfs,TargetTimeOfs) >= TIME2TSTAMP(BUFFER_THRESHOLD)) f=1.0;
// enough buffering
 break;

 case VAD_SILENCE:
 // speech to silence transition
 if (MAX(AccTimeOfs,TargetTimeOfs) >= TIME2TSTAMP(VAD_FRAMELENGTH)) f=VAD_F_COMPRESS; // shrink
 break;

 }

 break;

}

3. Demonstration on AMR-WB

Audio demos are included in the attached presentation. Audio frames have been encoded at 16 kbit/s using AMR-WB. The algorithm has been applied to decoded audio frames.

Voice activity detection has been done using the VAD included in AMR-WB.

Virtual buffer parameters: the buffer threshold has been set to 250 msec.; the extend factor was set to 2 (200% of original size); the compress factor was set to 0.5 (50% of original size).

Three audio files have been tested.

[image: image1.png]
[image: image2.png]
[image: image3.png]
4. Conclusion

The results demonstrate the feasibility of the principle for the given parameters. There is still room for further optimization and improvement (see list in the power point presentation). Nevertheless, the result can be included in [2], serving as a benchmark.

5. Reference

[1] S4-060816 “Pseudo-Code of VJBM”, Lucent.

[2] S4-060209 “Draft TR for JBM”

