Technical Specification

MPEG-4 part 20 based specification for DIMS:
Dynamic Interactive Multimedia Scene

Contents

5Introduction

2
References
6
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
Overview
8
5
DIMS scene format, graphical format
10
5.1
Rich media scene description
10
5.2
Scene Description Elements from SVGT1.2
10
5.3
Scene Extensions from SVG Full
10
5.3.1
LASeR cursorManager
10
5.3.2
Text decoration
11
5.4
Extensions from SMIL
11
5.5
Extensions defined in MPEG
11
5.5.1
Full Screen Video
11
5.5.2
Deactivation attribute in SVGT1.2 elements
11
5.5.3
New elements
12
5.5.3.1
LASeR conditional
12
5.5.3.1.1
Semantics
12
5.5.3.1.2
Attributes
12
5.5.3.2
LASeR rectClip
12
5.5.3.2.1
Semantics
12
5.5.3.2.2
Attributes
12
5.5.3.3
LASeR selector
12
5.5.3.3.1
Semantics
12
5.5.3.3.2
Attributes
12
5.5.3.4
LASeR simpleLayout
13
5.5.3.4.1
Semantics
13
5.5.3.4.2
Attributes
13
5.5.3.5
LASeR animateScroll
13
5.5.3.5.1
Semantics
13
5.5.3.5.2
Attributes
15
5.5.3.6
LASeR scrollStop
15
5.5.3.6.1
Semantics
15
5.5.3.6.2
Attributes
15
5.5.3.7
LASeR streamSource
15
5.5.3.7.1
Semantics
15
5.5.3.7.2
Attributes
16
5.6
Components of the DIMS client.
17
6
Scene update mechanism
18
6.1
Using the LASeR command
18
6.1.1
General commands
18
6.1.2
Commands specified for streaming and broadcast
18
6.1.3
Commands defined in LASeR for additional requirements
19
6.2
Extensibility and genericity
19
6.3
Timing model of the LASeR command
20
6.4
Processing Model and Well-formedness
20
6.5
Updates through Scripting
20
6.6
Usage of LASeR Commands
20
6.7
Append mode
21
6.8
Restrictions
21
7
Overall Timing Model
22
7.1
Synchronization Module
22
7.2
Frame Based Scenes
22
8
Local user Interaction, scripting
23
8.1
Local User Interaction
23
8.1.1
Events and Event Management
23
8.1.2
Additional event
23
8.2
Scripting
23
8.2.1
Using LASeR Commands as Scripts
23
8.2.2
Using Traditional Scripting Languages
23
8.2.3
uDOM Extensions
24
9
Remote Interaction
24
9.1
Feedback Format Transport
24
9.1.1
Browsing DIMS
24
9.1.2
Streaming DIMS
24
9.1.2.1
Using RTSP
24
9.1.3
Combine Browsing/Streaming DIMS
25
10
Data formats
26
10.1
XML
26
10.2
Gzipped and Deflated XML
26
10.3
LASeR Binary Format
26
10.4
Signalling the encoding
26
11
Codecs
27
11.1
Media Types
27
11.2
Referencing Media
27
11.3
Fonts
28
11.3.1
Font Representation Format
28
11.3.2
Font Transmission
28
11.3.3
Font Encoding
28
12
Container/Delivery format/ Packaging Format
29
12.1
Storage Format
29
4.1.1
LASeR Track Structure
29
4.1.2
Resources
29
12.1.1
Composition
30
4.1.3
LASeR Stream Definition
30
12.1.1.1
LASeR Sample Entry
30
12.1.1.2
Sample Format
33
12.2
SAF: Simple Aggregation Format
33
12.2.1
Overview
33
12.2.2
Time and terminal model specification
34
12.2.3
SAF Payload
34
13
Error Resilience
35
13.1
RTP retransmission
35
13.1.1
RTCP retransmission request
35
13.1.2
Congestion control and usage with rate adaptation
35
13.2
FEC Mechanism
35
14
Resynchronization and Tune-In
36
15
Data Management
36
16
Transport
37
16.1
Download
37
16.2
Streaming
37
16.2.1
Overview
37
16.2.2
RTP Payload Syntax
37
16.2.2.1
RTP Header Usage
38
16.2.2.2
Common Packet Header
38
16.2.2.3
TYPE1 Unit – Sample Descriptions
39
16.2.2.4
TYPE2 Unit – Single Access Unit
39
16.2.2.5
TYPE 3 Unit - Aggregation Packets
39
16.2.2.6
TYPE4 Unit - Fragmentation Packets
40
16.2.2.7
Access units Duplication
41
16.2.3
MIME Parameters
41
16.2.4
SDP Parameters
42
16.2.5
Transmission of discrete referenced media
42
17
Resource usage and Device capabilities
43
17.1
MIME Type
43
17.1.1
LASeR+XML
43
17.1.2
LASeR
43
17.1.3
SAF
43
17.2
UAPROF
43
18
Carriage of DIMS in existing sub-systems
44
18.1
MBMS
44
18.2
PSS
44
18.3
MMS
44
19
Annex A: DOM Level 3 event (normative)
44

Introduction
In DIMS, a Rich Media service is a dynamic, interactive collection of multimedia data such as audio, video, graphics, images and text. It ranges from a movie enriched with vector graphics overlays and interactivity (possibly enhanced with closed captions), to complex multi-step services with fluid interaction/interactivity and different media types at each step. The demand for such Rich Media service is increasing at a high pace, spurred by the development of the next generation mobile infrastructure and the generalization of TV content to new mobile environments.

As a consequence the scope of DIMS focuses on dynamic rich-media media type, where end-user experiences are enhanced by the cooperative linkage between media (e.g.: synchronisation between events and media, real-time delivery of content…) combined with interactivity mechanisms and/or end-user interaction and on the packaging and carriage of DIMS data over MBMS, PSS and MMS specification

The DIMS media type can be use as a generic media type, allowing creating dynamic interactive rich-media services and can also benefit, or be used in association with other media type (e.g.: audio codecs, video codecs, xhtml browser)

DIMS functionalities shall not be restricted to or by the usage of a particular bearer, but it shall be usable over any bearer and in particular the relevant adaptation or specification for DIMS data packaging and carriage over MBMS, PSS and MMS are defined in this specification.
1 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1]
ISO/IEC 14496-20:2006: "Information technology – Coding of audio-visual objects – Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)"
[2]
ISO/IEC 14496-20:2006/AMD1: "Information technology – Coding of audio-visual objects – Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF) – Amendment 1: SVGT1.2 Support"
[3]
Scalable Vector Graphics (SVG) Tiny 1.2 Specification [third Last Call], http://www.w3.org/TR/2005/WD-SVGMobile12-20051207/
[4]
OpenType specification, http://www.microsoft.com/OpenType/OTSpec/
[5]
3GPP TS 26.234: "Transparent end-to-end packet switched streaming service (PSS); Protocols and codecs".

[6]
3GPP TS 26.140: "Multimedia Messaging Service (MMS); Media formats and codecs".

[7]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".
[8]
ISO/IEC 14496-12:2005 | 15444-12:2005: "Information technology – Coding of audio-visual objects – Part 12: ISO base media file format" | "Information technology – JPEG 2000 image coding system – Part 12: ISO base media file format".

[9]
3GPP TS 26.244: "Transparent End-to-End Packet-switched Streaming Service; 3GPP File Format(3GP)".

[10]
ISO/IEC 14496-14:2003: "Information technology -- Coding of audio-visual objects -- Part 14: MP4 File Format".

[11]
ISO/IEC 14496-15:2004: "Information technology -- Coding of audio-visual objects -- Part 15: Advanced Video Coding (AVC) File Format".
[12]
Synchronized Multimedia Integration Language (SMIL 2.0) - [Second Edition], J. Ayars, D. Bulterman et. al., 07 January 2005. http://www.w3.org/TR/2005/REC-SMIL2-20050107/
[14]
Standard ECMA-327: "ECMAScript 3rd Edition Compact Profile", June 2001.

[15]
IETF RFC 2616: "Hypertext Transfer Protocol – HTTP/1.1", Fielding R. et al., June 1999.

[16]
IETF RFC 2326: "Real Time Streaming Protocol (RTSP)", Schulzrinne H., Rao A. and Lanphier R., April 1998.

[17]
IETF RFC 2234: "Augmented BNF for Syntax Specifications: ABNF", Crocker D. and Overell P., November 1997.

[18]
Document Object Model (DOM) Level 3 Events Specification, http://www.w3.org/TR/DOM-Level-3-Events/
[19]
IETF Internet Draft: "RTP Retransmission Payload Format", Rey J. et al, September 2005 http://www.ietf.cnri.reston.va.us/internet-drafts/draft-ietf-avt-rtp-retransmission-12.txt
[20]
IETF Internet Draft: "Extended RTP Profile for RTCP-based Feedback (RTP/AVPF)", Ott J. et al, August 2004. http://www.ietf.org/internet-drafts/draft-ietf-avt-rtcp-feedback-11.txt
[21]
IETF RFC 2965: "HTTP State Management Mechanism", D. Kristol and L. Montulli, October 2000.

[22]
IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications", Schulzrinne H. et al., July 2003.

[23]
IETF Internet Draft: “SDP Description for FLUTE", R. Walsh et al., January 2006. http://www.ietf.org/internet-drafts/draft-mehta-rmt-flute-sdp-05.txt
[25]
Scalable Vector Graphics (SVG) 1.1 Specification [Recommendation], http://www.w3.org/TR/2003/REC-SVG11-20030114/
[26]
ISO/IEC 14496-18:2004: "Information technology -- Coding of audio-visual objects -- Part 18: Font Compression and Streaming ".
[27]
IETF RFC 1952: "GZIP File Format Specification version 4.3", P. Deutsch, May 1996.
[28]
IETF RFC 1951: “DEFLATE Compressed Data Format Specification version 1.3”, P. Deutsch, May 1996.
[29]
MORE proposal 3GPP SA4 Tdoc number S4-AHP255
2 Definitions and abbreviations

2.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

continuous media: media with an inherent notion of time. In the present document speech, audio, video and timed text

discrete media: media that itself does not contain an element of time. In the present document all media not defined as continuous media

2.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [7] and the following apply.

3GP
3GPP file format

AAC
Advanced Audio Coding

AMR-WB+
Extended Adaptive Multi-Rate Wideband Codec

AVC
Advanced Video Coding

BIFS
Binary Format for Scenes

Enhanced aacPlus
MPEG-4 High Efficiency AAC plus MPEG-4 Parametric Stereo

ITU-T
International Telecommunications Union – Telecommunications

LASeR
Lightweight Application Scene Representation

MBMS
Multimedia Broadcast/Multicast Service
MIME
Multipurpose Internet Mail Extensions

MMS
Multimedia Messaging Service

MP4
MPEG-4 file format

PSS
Packet-switched Streaming Service

RTP
Real-time Transport Protocol

RTSP
Real-Time Streaming Protocol

SAF
Simple Aggregation Format
SDP
Session Description Protocol

SMIL
Synchronized Multimedia Integration Language, a W3C standard.

SRTP
Secure Real-time Transport Protocol
SVG
Scalable Vector Graphics, a W3C standard.
UAPROF

User Agent PROFile
3 Overview

[image: image1.emf]Rich Media Server

Rich Media

Content (LASeR /

SVG scenes and

scene updates,

discrete and

continuous

media)

Container

Format

Transport Mechanisms

Remote Interaction Mechanisms

Forward Transmission

(Unicast and Multicast/Broadcast

Download and Streaming Protocols)

Rich Media Client

LASeR / SVG

Based Local

Interaction

Mechanisms

Rich MediaPlayer

Is the player’s request

remote in nature?

Send request

No

Yes

Figure 1: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM
The rich media system can be perceived as client-server architecture, comprising 3 main components: The rich media server, transport mechanisms and the rich media client. Figure 1 illustrates the general architecture. The server takes as input, rich media content comprised of scene description, discrete (e.g. images) and continuous (e.g. audio, video) media. Scene description can be dynamically updated through scene updates. The rich media content can be encapsulated into a container format, containing additional information such as media synchronization, metadata, and hint tracks for packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download, progressive download and streaming scenarios as described in Section 9. The content is played on the client, allowing for local and remote interactivity of feedback and data requests.
One of the motivations for rich media services is the ability to receive rich media content with minimal latency. In order to do so, the content or ‘scene’ on the client must be able to be dynamically updated with small changes rather than a completely new document being re-sent every time.
Rich Media Client Architecture

The rich media client is a lightweight entity present on the mobile terminal (Figure 2). This is substantiated due to the fact that components such as rendering libraries, media decoders are re-used.
The client reassembles data packet received from a Point-to-Point (PTP) or Point-to-Multipoint (PTM) access to obtain the different media that constitute the scene and scene updates.
The Scene Management module helps synchronize the frame rate and timing of continuous media with that of the LASeR content in order to compose the dynamically rich multimedia presentation. The client is also responsible for transmitting any feedback occurring during interaction.

[image: image2.wmf]

Scene Transfer

Decoding

Delivery Format

PTP

PTM

Feedback

Scene Update

Transfer Decoding

Incremental

Delivery Format

server

server

Media

decode

Reassembly

Scene Management including timing

Rendering

User Interaction

Figure 2: Rich Media Client Architecture

5 DIMS scene format, graphical format
5.1 Rich media scene description
Lightweight Application Scene Representation (LASeR) [2] is the rich media scene description for DIMS. LASeR is a scalable vector graphic format which includes SVG Tiny 1.2 [3].
The LASeR standard specifies the coded representation of multimedia presentations for rich media services. In the LASeR specification, a multimedia presentation is a collection of a scene description and media (zero, one or more). A media is an individual audiovisual content of the following type: image (still picture), video (moving pictures), audio and by extension, font data. A scene description is composed of text, graphics, animation, interactivity and spatial and temporal layout.

A LASeR scene description specifies four aspects of a presentation:
· how the scene elements (media or graphics) are organized spatially, e.g. the spatial layout of the visual elements;

· how the scene elements (media or graphics) are organized temporally, i.e. if and how they are synchronized, when they start or end;

· how to interact with the elements in the scene (media or graphics), e.g. when a user clicks on an image;

· and if the scene is changing, how these changes happen.
A LASeR scene description may change by means of animations. The different states of the scene during the whole animation may be deterministic (i.e. known when the animation starts) or not, e.g. when a server sends modifications to the scene. The sequence of a scene description and its timed modifications is called a LASeR stream. This notion of LASeR AU is the key to streaming LASeR content while guaranteeing tight synchronization between the scene and the media assets composing the rich media presentation.
LASeR specification [1] [2] defines a LASeR engine as the viewer for LASeR presentations. Such an engine has rich media composition capabilities on top of those of a classic multimedia player with audio, video, images and text capabilities. These composition capabilities are, as a result of the technology selection process, based on SVG Tiny 1.2 [3]. The composition capabilities rely on the usage of an SVG scene tree.
5.2 Scene Description Elements from SVGT1.2
A LASeRML scene is a SVG scene with LASeR extensions that are compatible with the SVG specification [3].
LASeR Amendment 1 includes all the SVGT1.2 scene description: all elements, same semantic.
The LASeR ML schema is a superset of the SVGT1.2 XML schema.
All SVGT1.2 elements are present in the scene description for DIMS [2]
5.3 Scene Extensions from SVG Full

Scene extensions defined in LASeR follow the W3C SVG conformance criterias for scene extensions in section 19 of [3].
5.3.1 LASeR cursorManager

The LASeR cursorManager element extends the syntax and semantics of the SVG cursor element from [25]. The LASeR cursorManager element may point to any LASeR element to confer it the semantics of virtual pointer. The virtual pointer may be moved through LASeR Commands or other interaction by moving the object associated with the virtual pointer. When moved in and out of mouse-sensitive elements, the same events shall be generated as if a pointing device such as a mouse had been moved in its stead. For example:

· when the virtual pointer is moved in a mouse-sensitive region, a mouseover is generated,

· when the virtual pointer is moved out of a mouse-sensitive region, a mouseout is generated,

· when the virtual pointer is moved, a mousemove is generated,

· when the virtual pointer is located on a mouse-sensitive region and a activate event is received by the virtual pointer, the activate event is translated to a click event sent to the region.

LASeR elements implementing the interaction moving the object associated with the virtual pointer shall be placed as children of the cursor element.

5.3.2 Text decoration

LASeR [1] adds the attribute to the SVG Text element defined in clause 10.4 of the SVG Specification [25] with the SVG text-decoration attribute from sub-clause 10.12 of SVG 1.1 Full [25] to the SVG text element, in order to allow underlined text (not possible with SVGT1.2 [3]). Additional values for the text-decoration attributes are defined, taken from [26]:
· “LASeR_OUTLINE”,
· “LASeR_EMBOSS”,
· “LASeR_ENGRAVE”,
· “LASeR_LEFTDROPSHADOW”,

· “LASeR_RIGHTDROPSHADOW”.
5.4 Extensions from SMIL

LASeR [1] [2] includes the SMIL MediaClipping module. Two new attributes are added to SVG elements audio, video and animation. These new attributes are ‘clipBegin’ and ‘clipEnd’ defined in clause 7.5.1 of [12]. The value represents a normal play time. The play time of some streams cannot be controlled, and under these circumstances, these attributes have no effect. These attributes is not animatable and not inheritable. The default value of clipBegin is ‘0’ for the normal beginning of the media, and the default value of clipEnd is ‘media’ for the normal end of the media.
5.5 Extensions defined in MPEG

5.5.1 Full Screen Video
The SVG video element has an ‘overlay’ attribute defined in 12.3.2 of [3]. A new overlay value is defined: “LASeR_fullscreen”. The semantic of this value is that the video is rendered alone in the rendering area, possibly filling the whole rendering area.

5.5.2 Deactivation attribute in SVGT1.2 elements
LASeR defines a new attribute ‘enabled’ for some elements in order to offer the capability of deactivating these elements. The default value of ‘enabled’ is true. The ‘enabled’ attribute is defined on the following elements:
· SVG animate
· SVG animateColor

· SVG animateMotion

· SVG animateTransform

· XML Events listener
· SVG set
5.5.3 New elements
5.5.3.1 LASeR conditional
5.5.3.1.1 Semantics

The LASeR conditional element allows sets of LASeR commands to be inserted in the scene, for later execution upon activation by time or through the XML Events listener element.

5.5.3.1.2 Attributes

· begin: this attribute specifies the time at which the conditional element is triggered. This attribute is not animatable and not inheritable. The default value is indefinite.

· enabled: this Boolean attribute specifies whether the element is activatable or not. This attribute is not animatable and not inheritable. The default value is true.

5.5.3.2 LASeR rectClip

5.5.3.2.1 Semantics

The semantics of the LASeR rectClip element is to act as a clipping element, limiting the rendering of its children to a rectangle (whose borders are parallel to the screen borders), in addition to the semantics of the SVG g element.
5.5.3.2.2 Attributes

· size: a pair of coordinates defining the width and height of the clipping rectangle. All children are clipped by this axis-aligned rectangle centered on the origin of the local coordinate system and of size (size.x, size.y). The rectangle is not sensitive to rotation or scale of the local coordinate system. This attribute is animatable but not inheritable.
5.5.3.3 LASeR selector

5.5.3.3.1 Semantics

The semantics of the LASeR selector element is to act as a selection element, rendering zero or one or all of its children, in addition to the semantics of the SVG g element.
In the following, N is the number of children of the selector element. The choice attribute determines the actual rendering mode:

1. choice >= 0 & choice < N: only the child of index choice is displayed, i.e. is “on” while the other children are “off”. The “off” children are neither composed nor rendered. animate* elements and conditionals in the tree below “off” children are inactive.

2. choice == none | choice >= N: nothing is displayed. All children are “off”, i.e. neither composed nor rendered. animate* elements and conditionals in the tree below “off” children are inactive.

3. in all other cases: all the children are displayed at (0,0) of the local coordinate system.

In case 1 and 2, when a child changes from “off” to “on”, its children with begin attributes get activated; when a child changes from “on” to “off”, its children with end attributes get stopped.
5.5.3.3.2 Attributes
· choice: the rendering mode selector. It is either one of the value ‘none’ or ‘all’ or an integer representing the 0-based index of the child to be displayed. The default value is ‘all’. This attribute is animatable but not inheritable.
5.5.3.4 LASeR simpleLayout

5.5.3.4.1 Semantics

The semantics of the LASeR simpleLayout element is to act as a simple layout tool, by spacing its children by a specified amount, thus creating rows or columns of children, in addition to the semantics of the SVG g element.
5.5.3.4.2 Attributes
· size: a pair of coordinates defining the spacing between children. The first child is displayed at (0,0) of the local coordinate system, and the n-th child is displayed at ((n-1)*size.x,(n-1)*size.y) of the local coordinate system. One of the two coordinates shall be 0. This creates a row or column of objects.This attribute is animatable but not inheritable.

NOTE – If a child is hidden, the effect will be that a gap is visible between the previous and following child.

5.5.3.5 LASeR animateScroll

5.5.3.5.1 Semantics
The purpose of this element is to allow to:

· scroll a piece of text of unknown size, inside a clipping rectangle.

· define the speed of the scrolling in terms of clip size, not in terms of the text size (the speed would vary depending on the screen size)

· define the bounds of scrolling precisely, according to the actual size of the text

· define the beginning and ending conditions (screen full or empty of text)

· define automatic and manual scrolling (continuous scrolling, page advance on action…), and allow a combination of automatic and manual

· define scroll stops (for manual scrolling) by page (size of viewport) or by text markers

The animateScroll element is designed in a manner similar to SMIL/SVG animate* elements. It works in combination with a clipping region (lsr:rectClip element). Scrolling can be automatic or manual (e.g. triggered by key events). Multiple scrolling instructions can be combined with the sub-element scrollStop.

Each frame where it is active, animateScroll does:

· if the element or one of its attributes has changed, recompute the element size

· depending on the parameters, compute the new offset of the element inside its textArea (this is an extension from the plain textArea in the sense that the initial text position can be driven by the animateScroll)

animateScroll shall not be rotated, nor the element which it points to.

Example 1: Plain vanilla
<lsr :rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.</text>

</lsr:rectClip>

<animateScroll xlink:href="#t1" direction="left" speed="2"

 delayAtStart="1" delayAtEnd="1" begin="3"

 repeatDur="indefinite"/>

[image: image3.emf]Que j’aime àfaire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Startingviewport Endingviewport

Figure 3: Start and end states of Example 1
Example 2: Start and end conditions

<lsr:rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.</text>

</lsr:rectClip>

<animateScroll xlink:href="#t1" direction="left" speed="2"

 delayAtStart="1" delayAtEnd="1" begin="3"

 repeatDur="indefinite" from="100 0" to="100 0"/>

[image: image4.emf]Que j’aime àfaire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Startingviewport Endingviewport

Figure 4: Start and end states of Example 2
The units of the from and to attributes are percents of the clip size. from=”100 0” means that the text is initially 100% of clip with to the right of the clip, which means right outside of the clip. to=”100 0” means that the text is, at the end of the animation, one clip width further to the left than the default top left of the clipping zone.

Example 3: Manual mode

<lsr:rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. <tspan id="t2"/>Immortel Archimède, toi de qui Syracuse garde encore la mémoire.</text>

</lsr:rectClip>

<animateScroll xlink:href="#t1">

 <scrollStop by="100 0" mode="manual">

 <ev:listener event="accessKey(RIGHT)"/>

 </scrollStop>

 <scrollStop by="-100 0" mode="manual">

 <ev:listener event="accessKey(LEFT)"/>

 </scrollStop>

 <scrollStop to="#t2" direction=”left” mode="manual">

 <ev:listener event="accessKey(2)"/>

 </scrollStop>

</animateScroll>

[image: image5.emf]Que j’aime àfaire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport After clicking 2

After clicking RIGHT

Figure 5: Start, interactive and end states of Example 3
Example 4: Mixed mode

<lsr:rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. <tspan id="t2">Immortel Archimède,</tspan> toi de qui Syracuse garde encore la mémoire.</text>

</lsr:rectClip>

<animateScroll xlink:href="#t1">

 <scrollStop begin="0" repeatDur="indefinite"

 direction="left" speed="3" delayAtStart="1"

 delayAtEnd="1">

 <ev:listener event="accessKey(RIGHT)" attribute=”end”/>

 <ev:listener event="accessKey(LEFT)" attribute=”end”/>

 <ev:listener event="accessKey(2)" attribute=”end”/>

 <ev:listener event="accessKey(0)"/>

 </scrollStop>

 <scrollStop by="100 0" mode="manual">

 <ev:listener event="accessKey(RIGHT)"/>

 </scrollStop>

 <scrollStop by="-100 0" mode="manual">

 <ev:listener event="accessKey(LEFT)"/>

 </scrollStop>

 <scrollStop to="#t2" direction=”left” mode="manual">

 <ev:listener event="accessKey(2)"/>

 </scrollStop>

</animateScroll>

The above sample has one scrolling to the left in 3 seconds per clip width with 1s waiting at each end, and looping indefinitely, unless the user presses a key. Pressing RIGHT or LEFT move the text by one page (one clip width) left or right. Pressing 2 goes to “Immortel”. Pressing 0 resumes the automatic scrolling.

5.5.3.5.2 Attributes
The LASeR animateScroll attributes are defined in [2].
5.5.3.6 LASeR scrollStop

5.5.3.6.1 Semantics
The scrollStop element is a child of animateScroll. The scrollStop element allows the combination of multiple scrolls on the same text. The contribution of each active scrollStop is added in the document order.

5.5.3.6.2 Attributes
The LASeR scrollStop attributes are defined in [2].
5.5.3.7 LASeR streamSource
5.5.3.7.1 Semantics
The purpose of StreamSource is to first make available at the scene level information about the state of media chains (e.g. buffering, availaibility fir rendering …) and secondly to give hints for potential resource optimization like, for instance, usage of a single hardware decoder, smooth transition during rendering without silence or black screens, ads display during channel switching.

The ‘streamSource’ element manages a set of streams, it does not actually have any display/rendering functionality. Instead, it keeps available an up-to-date pixel or audio buffer that can be used, and thus displayed by one or more video elements. As such, streamSource makes a pixel/audio buffer available to video/audio elements.

If any of the elements (in the source attribute) in the streamSource element is an audiovisual element containing both audio and video, two buffers (for audio and video respectively) shall be made available for all elements referring to the streamSource.

In such case,

· the pixel buffer associated to the streamSource when an audio only stream is active will represent a black buffer, the size of which will be defined by the width and height elements. Children of the streamSource element may define the default buffer in that case.

· the audio buffer associated to the streamSource when an video only stream is active will render as silence. Children of the streamSource element may define a default audio clip in that case.

The 'streamSource' element is able to trigger events such as the availability of the desired stream.

5.5.3.7.2 Attributes

· id : as per svg:id

· sources : is an array of references to stream sources

· sourceIndex : is the current active video source. On loading of the scene or when changing the sourceIndex, the LASeR engine shall connect to the session defined by the url corresponding to sourceIndex, this is source[i]

· width, height : default pixel buffer size

· mode : is one of "replace", "useOld", "keepOld", "playList".

· The value "replace" indicates that the composition buffer associated to the stream should be immediately replaced when sourceIndex is changed.

· The value "useOld" means that the previous stream will be decoded till the stream pointed by sourceIndex is ready which means that data will start to be available for composition for the stream pointed by sourceIndex. This implies that decoding and rendering of the previous stream will occur up to the moment at which the first composition buffer is made available.

· With "keepOld"
 the same behaviour as from "useOld" is expected, furthermore the previous video stream source is kept open.

· The value "playList" indicates that the different sources will be played in sequence. In this case, it is possible to append a "repeat" and/or "shuffle" modes such as "playList, repeat, shuffle". This modes repeat and shuffle allow respectively to cycle through sources and to shuffle the sources.

5.6 Components of the DIMS client.

[image: image6]
6 Scene update mechanism

Dynamic updates are a key to efficient representation of server-driven or user-triggered scene changes over time. This feature is necessary to enable:

· The dynamic creation of answers to a user request, and their integration in the current scene,

· Or the dynamic push of content into an existing scene
· The partitioning of scenes into small packets that fit in size-limited delivery mechanisms (such as cell broadcast),

· The efficient representation of streamable cartoons.
The usage of the LASeR command can be complemented by using a using a scripting mechanism.

6.1 Using the LASeR command
The LASeR Commands are a declarative way (as opposed to programmatic as in a script) of specifying changes to the scene.
LASeR Commands can be encoded in both textual and binary data format and can be applied to a scene that has been transmitted either in textual or binary data format.
The following commands are defined.
6.1.1 General commands

· Insert: to insert any element in a group, a point in a sequence. This command is defined clause 6.7.5 of [1].
· Delete: to delete any element by id or from a group by index, a point in a sequence. This command is defined clause 6.7.4 of [1].
· Replace: to replace an element by another element (by id or from a group by index), or to replace the value of any attribute of any element. This command is defined clause 6.7.8 of [1].
6.1.2 Commands specified for streaming and broadcast
· NewScene: to create a new scene in the browser. Any currently playing scene is stopped, its resources reclaimed and it is replaced by the scene contained in the NewScene command. The scene time is reset to 0. This command is defined clause 6.7.6 of [1].
· RefreshScene :The RefreshScene command provides a functionally identical copy of the current scene, to a LASeR engine that may have lost some information since the previous NewScene or RefreshScene command, or which has not yet seen a NewScene or RefreshScene command. For LASeR engines in other states (i.e. those that have a scene for which they have received all information) this command shall be ignored. For LASeR engines that interpret this command, it is functionally identical to NewScene except that the scene time is reset to the given value instead of 0. After this command has passed, it should not be possible to differentiate the state of a LASeR engine that did not need to interpret it, and skipped it, from one that did interpret it; the scene graph and scene time in the two LASeR engines should identical.A LASeR Access Unit carrying a RefreshScene command shall be indicated as a random access point at the transport protocol level. A terminal may skip such an access unit. This command is defined clause 6.7.7 of [1].
6.1.3 Commands defined in LASeR for additional requirements

· Add: similar to Replace defined in clause 6.1.1, while adding to the designated value instead of replacing it. It thus adds a new value to a specific attribute of an element. This command is defined clause 6.7.2 of [1].
· Save: the Save command stores in memory a selection of attributes from elements contained in the current scene graph. The saved value is the decoded (or DOM) value. This command is defined clause 6.7.10 of [1].
· Restore: The Restore command restores attributes that have been stored by the Save command. The retrieved values will replace the current attributes in the scene graph. If any saved and restored attribute type does not match, the whole restore command is ignored. This command is defined clause 6.7.9 of [1].
· Clean: The Clean command erases a specific storing area. The element information stored in the corresponding memory area is not available anymore. This command is defined clause 6.7.3 of [1].
· SendEvent: to send an event to any element in the scene. This command is defined clause 6.7.11 of [1].
6.2 Extensibility and genericity

LASeR commands is a generic mechanism that apply to: LASeR ML, SVGT1.2 and LASeR (in binary) and to any XML content.

LASeR Commands can be encoded in both textual and binary data format and can be applied to a scene that has been transmitted either in textual or binary data format.
Quote from 6.7.1 of [1] :
LASeR Commands modify a scene tree regardless of their representation, transport or encoding and regardless of the origin of the scene tree on which they apply. Commands and initial scene may be represented separately in different documents, encoded and delivered in different streams.

LASeR includes a mechanism to extend the LASeR Commands to add other functionality. In [1] clause 12.2.1 class updates, the following construct provides for forward-compatible extensibility of LASeR Commands in future versions:
class updates {

 bit(4) ch4;

 switch(ch4){

 case 0:

 update_Add Add;

 break;

 […]

 case 9:

 update_SendEvent SendEvent;

 break;

 case 10:

 element_any ext;

 break;

 case 11:

 attr_custom_byteAlignedString textContent;

 break;

 }

}

class element_any {

 uint(extensionIDBits) reserved;

 vluimsbf5 len; //length in bits

 bit[len] toSkip;

}
LASeR Commands are not specific to LASeR, but can be used on any XML document:

· Insert can insert any XML content into any XML element with an ID

· Delete can apply to any XML element by ID or to the indexed child of any XML element

· Replace can apply to any XML element by ID or to any attribute of any XML element; the only difference with LASeR elements is that in LASeR, attribute types are known, and attribute values are thus encoded in optimal form, whereas attributes of non-LASeR and non-SVG elements use the generic type string.

· Add, Save, Restore and Clean can apply to any XML element with the above caveat about non-LASeR and non-SVG attributes using the generic type string.

· NewScene, RefreshScene and SendEvent work identically.
One possible application of LASeR Commands to XML document update is to Compound Document Format (CDF), and more specifically to Web Interactive Compound Documents (WICD) which are based on a mix of xHTML and SVG Tiny 1.2.

The LASeR specification defines a XML syntax (LAseRML) for use in authoring or other applications of XML versions of the LASeR scenes. LASeRML is a superset of the SVG Tiny (XML) syntax. LASeR Commands, as part of the LASeR specification, also have an equivalent XML syntax, which is applicable to SVG Tiny 1.2 documents.

6.3 Timing model of the LASeR command
A timing model is associated to the LASeR commands, allowing the player to provide a very tight synchronization, with an accuracy specified by the content creator wishes (frame accurate synchronization, synchronization on a user interaction, on a time basis, etc…). This timing model defines the link between the time stamps used by transport layers and the scene time or composition time and is the key to any streaming and/or synchronization of scene information with other media (clause 6.3 of [1]).
6.4 Processing Model and Well-formedness
LASeR scenes and updates are defined as complete and well-formed packets. The first LASeR packet contains a complete, well-formed SVG Tiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands (with end tag) to build the next states of the content. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVG scene.

LASeR extends the feature set of SVG Tiny 1.2, and as such, reuses DOM Level 3 Events, also known as the XML Events specification in order to provide a generic extensible mechanism.
6.5 Updates through Scripting

In addition or in parallel to the LASeR command, the use of scripting and Connection API and an ad-hoc protocol to communicate scene modification from the server to the client can be used, in AJAX style.
Note: the extra cost incurred by defining an alternate protocol in script and the requirement of an ad-hoc server makes this solution only worthwhile in very specific services.

6.6 Usage of LASeR Commands

LASeR Commands are used in two contexts:

· in a timed context

· in an interactive context

LASeR Commands are used in a timed context when they are part of a LASeR Access Unit. The LASeR Access Unit has a presentation time which is the time at which the LASeR Commands in it shall be executed. LASeR Commands from a LASeR Access Unit are executed in step 3 of the LASeR execution model (see clause 6.4 of [1]). Such LASeR Commands can never interfere with scripts with another scriptContentType, since these are executed as part of step 4.

LASeR Commands are also used in a non-timed, interactive context when they are contained in a script element. Upon activation of the script element, e.g. through an event channelled to the script element by a listener element, the LASeR Commands are executed as if their presentation time was the current scene time. LASeR Commands from a script element are executed in step 4 of the LASeR execution model (see clause 6.4 of [1]). Interaction between the execution of LASeR Commands in a script and the execution of DOM calls by a script with another scriptContentType is resolved by the processing order of the events which trigger the scripts’ execution.

Since the execution of the two flavours of LASeR Commands are clearly specified to happen in different steps of the LASeR execution model, there can be no unforeseen interference between the two. The author can precisely predict what will happen. For two script executions happening within the same rendering cycle, the same rule shall be applied to order any mix of LASeR Command script and script with other scriptContentType.
6.7 Append mode

Many Rich Media services rely on the possibility to create a DIMS stream containing not an independent scene, but an addition to another existing scene.

There are two typical use cases of incremental scenes:

· Streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change the current frame into the next frame. Bandwidth usage is varying but never drops to 0. The incremental scenes of this kind are usually best transported over streaming protocols like RTP. A typical use case is a cartoon-like animation.

· Interactive style: the scene is interactive and user requests are processed by the server. The response to user request is a change to the existing scene, not a new scene. Such scenario also requires continuous updates to the scene, but the statistics of the transmission are totally different from the previous style: bandwidth is heavily used for a short time after a user request, and then drops to 0 until the next user request. Given the variety of usages of mobiles, the next user request could come a few seconds or a few hours later.

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a DIMS viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different append components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.

6.8 Restrictions

The following restrictions apply to all commands:

· Commands shall refer to existing elements and attributes.
· Indexed commands can only be applied to attributes with multiple values or lists of children

· The following attributes cannot be updated: id, type, xml:space, preserveAspectRatio, the x and y attributes of the text element and the following attributes of the animation elements: by, from, to, values and fill. This constraint can be worked around by updating the whole element.

Commands not following these restrictions shall be ignored.
7 Overall Timing Model
A timing model is associated to the rich media architecture, allowing the player to provide a very tight synchronization, with an accuracy specified by the content creator wishes (frame accurate synchronization, synchronization on a user interaction, on a time basis, etc…). This timing model defines the link between the time stamps used by transport layers and the scene time or composition time and is the key to any streaming and/or synchronization of scene information with other media. The timing model is defined in the LASeR specification in clause 6.3 of [1] and applies to the initial scene as well as to the scene updates.

7.1 Synchronization Module

At the application level, LASeR utilizes the run-time synchronization syntax that SVG Mobile 1.2 inherits from SMIL 2.0 [12].These attributes are syncBehavior, syncTolerance and syncMaster attributes, specified on the 'audio', 'video' and 'animation' elements, and syncBehaviorDefault and syncToleranceDefault attributes specified on the SVG element.
In addition, LASeR extends the SVG/SMIL timing model, to make it compatible with the MPEG timing model and thus optimize its interfaces with MPEG media decoders. The timing model is detailed in 6.3 and 7.2 of [1]
7.2 Frame Based Scenes
LASeR provides tools to manage time-based services and frame-based services. In the LASeR scene format the rendering time is controllable in conformance with content creator wishes. If content is designed for 15 frames per second and the devices support 10 frames per second display, the choice of the rendering policy belongs to the content provider: either to have a longer experience with all frames displayed, or a ‘timed’ experience, and frame are dropped. In the context of scenes, frames cannot be dropped entirely, they have to be decoded and executed, but if there is no time, the rendering can be skipped. Synchronisation between any kind of media, whether static, time-based or frame-based, is possible.

LASeR allows the creation of frame-based content, and provides means to establish interactive links from/to any frame, based on a timed logic.

8 Local user Interaction, scripting
8.1 Local User Interaction

LASeR provides local interaction through declarative animation and scripting.
8.1.1 Events and Event Management

The supported local events and their management in LASeR are derived from SVG Mobile 1.2 and DOM Level 3 events model. They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) and general XML events (user events, timing, key, and pointer events).
8.1.2 Additional event

The LASeR specifications [1] [2] define new events listed in Table 1.

	Event name
	Description
	Bubble
	Canc.

	accessKey(keyCode)
	The key keyCode has been pressed, as defined in section 10.3.1 of [12]
	No
	No

	longAccessKey(keyCode)
	Similar to accessKey but for the fact that the event is only triggered if the key has been pressed for a longer time, the definition of “longer” being left to the appreciation of the LASeR engine implementation.
	No
	No

	pause
	Freezes the clock of the timed object they are sent to, and have no effect on non timed objects.
	No
	No

	resume
	Restarts the clock of the timed object they are sent to, and have no effect on non timed objects.
	No
	No

	LASeRConnecting
	This indicates that the request for the media has been made.

In a unicast scenario this means that the request for content has been made.

Otherwise this means that the terminal is tuning in into the media.
	No
	No

	LASeRBuffering
	This indicates that media data is being received. The decoding buffer is being filled.

This indicates that composition for this media is not happening.
	No
	No

	LASeREndStream
	This indicates that the stream is finished.

No new data will be received in the decoding buffer
	No
	No

	LASeRPlayable
	This indicates that the composition of media data is possible.

In a progressive download case, this event indicates that play out could start.

Not defined/generated in other cases.
	No
	No

Table 1 — LASeR Events
8.2 Scripting
LASeR provides multiple options for scripting.

8.2.1 Using LASeR Commands as Scripts
LASeR Commands can be used as a very simple form of scripting, through the use of <conditional> elements. LASeR conditional elements are containers for a set of LASeR commands that will be executed interactively. By reusing this technology which is already present in the LASeR engine, compelling services can be created without the extra cost of a full-blown scripting engine e.g. ECMA-Script.

8.2.2 Using Traditional Scripting Languages
ECMAScript [14] and Java can be used in conjunction with the script and handler elements and SVG uDOM API (Appendix A of [3]) in order to provide more complex scripting.

8.2.3 uDOM Extensions

LASeR defines extensions over SVG, but as the design of the uDOM is generic, there is no need for uDOM extensions to cover the access of a scene tree with LASeR extensions. However, as LASeR defines a binary encoding, a uDOM extension is needed in order to provide an equivalent of the parseXML method. The new method is defined in clause 6.9 of [1]:

Node parseLASeRBinaryElement(in sequence<octet> data, in Document contextDoc);

with the following definition : Given a chunk of binary data and a Document object, parse the binary data as a LASeR element and return a Node representing it. If the binary data is not well-formed, this method must return a null value.
9 Remote Interaction

During a rich media presentation, the client can often request for more information, update the content, or even send some information back to the server.
9.1 Feedback Format Transport
The feedback format transport depends on DIMS scenario:
· Browsing DIMS

· Streaming DIMS

· Combine Browsing/Streaming DIMS (e.g. Broadcast)
9.1.1 Browsing DIMS
No particular feedback information is provided for rich media. The LASeR feedback information is transmitted in a simple HTTP Request (GET/POST) using “query” (see clause 3.2.2 of [15]). The response will be transmitted over HTTP.

[image: image7.emf]HTTP Request

HTTP Response

HTTP server

User

Interaction

Figure 6: User Interaction

9.1.2 Streaming DIMS
9.1.2.1 Using RTSP
RTSP [16] shall be used for transporting the request from the user. DIMS servers and clients should implement the SET_PARAMETER method (see clause 10.9 in [6]).

The response is encapsulated in the RTP stream.

[image: image8.emf]RTP Stream

Streaming Server

User

Interaction

Request in RTSP

9.1.3 Combine Browsing/Streaming DIMS
The user interaction is carried over HTTP as defined in clause 9.1.1. The HTTP server receiving the request transmits the response to the streaming server which encapsulates the response in the RTP Stream.

[image: image9.emf]HTTP Request #1

HTTP server

User

Interaction

Streaming server

RTP Stream

HTTP

Request

#2

10 Data formats

DIMS shall be encoded using one of the three following ways:
· XML using the UTF-8 character encoding
· XML using the UTF-8 character encoding compressed with gzip or deflate.
· LASeR binary format
10.1 XML
LASeR content may be delivered in XML form.
10.2 Gzipped and Deflated XML
Gzip (GNU zip) [27] and Deflate [28] may be used as compression mechanisms.
10.3 LASeR Binary Format

LASeR Binary Format is defined in [1][2].
LASeR binarisation format provides:

· Fast parsing
· Optimizing compression ratio even for small contents
· Prevalidated representation format

· Lightweight footprint implementation

· Genericity and extensibility.

10.4 Signalling the encoding

The encoding type is signalled in the “encoding” attribute of the LASeRHeader defined in clause 12.1.1.1.
Four encoding types are defined:

· LASeR Binary format

· XML document (UTF-8)

· XML document compressed with gzip.

· XML document compressed with deflate.

11 Codecs
DIMS supports media defined in 3GPP PSS/MMS/ MBMS. Continuous or real time media elements define their own timelines within their time container.

11.1 Media Types

The media elements are audio, video and animation. However, particular platforms may have restrictions on the number of audio voices or channels that can be mixed, or the number of video streams that may be presented concurrently.
All the media codecs defined in PSS [5] , MMS [6] , MBMS [7] are supported:
· Speech : AMR Codec

· Audio: Enhanced aacPlus, Extended AMR-WB, MPEG-4 AAC Low Complexity (AAC-LC), and MPEG‑4 AAC Long Term Prediction (AAC-LTP)

· Synthetic Audio
· Video:

· H.263 Profile 3 Level 45 decoder

· MPEG-4 Visual Simple Profile Level 0b decoder (PSS/ MMS)
· H.264 (AVC) Baseline Profile Level 1b decoder

· Still images: JPEG (with constraints [5], [6], [7])
· Bitmap graphics:

· PNG,

· GIF87a

· GIF89A
11.2 Referencing Media
The real time media elements are audio and video, and are referenced as follows in LASeR:

· media are external:

<audio xlink:href=” movie.3gp#trackID=1” volume=”0.7” type= "audio/AMR-WB+" begin=”mybutton.click” repeatCount=”3” />

<video xlink:href=” movie.3gp#trackID=2” volume=”.8” type="video/H264" x=”10” y=”170”/>

· media and scene description are in the same 3GPP File (see clause 12.1):

<audio xlink:href=”#trackID=1” volume=”0.7” type= "audio/AMR-WB+" begin=”mybutton.click” repeatCount=”3” />

<video xlink:href=”#trackID=2” volume=”.8” type=" video/H264" x=”10” y=”170”/>
Discrete media such as images are referenced in LASeR using the ‘image’ element, such as:

<image x="200" y="200" width="100px" height="100px" xlink:href="myimage.png">

Furthermore, LASeR can also reference other LASeR documents, which in turn can reference yet more LASeR documents through nesting. The referenced media elements can be linked through internal or external URLs in the LASeR content. Here, internal URLs may refer to files inline the host document or within the container format. This applies to external URLs in a similar fashion.

The animation element specifies an external referenced LASeR document or a LASeR document fragment providing synchronized animated vector graphics. Like the video element, the animation element is a graphical object with size determined by its x, y, width and height attributes. For example:

<animation begin="1" dur="3" repeatCount="1.5" fill="freeze" x="100" y="100" xlink:href="laser.3gp#trackID=1"/>
Also, LASeR is capable of embedding media, like using Base64 encoding to embed images.
11.3 Fonts

11.3.1 Font Representation Format
DIMS is agnostic of the font representation format.

DIMS shall support the transmission and encoding of both SVG font and Open Type font.

11.3.2 Font Transmission

The font data shall be transmitted in the following ways:

· For SVG fonts, font data shall be encapsulated within the scene data as described in [3].

· For Open Type fonts:

· Font data shall be encapsulated within the scene using the following mechanism:

[image: image10]
Figure 7: Encapsulation of Open Type Font Data
Open Type font data are Base64-encoded and placed as the ‘xlink:href’ attribute of ‘font-face-uri’ element.
· or font data shall be transmitted in a separate stream as described in [1].

11.3.3 Font Encoding

Open Type fonts shall be described using the format described in [4].

SVG fonts shall be encoded as part of the whole scene in the data format described in clause 10.

12 Container/Delivery format/ Packaging Format
12.1 Storage Format
LASeR supports media defined in 3GPP PSS/MMS/ MBMS The continuous media elements in particular, contain their own pre-defined frame based timing. The server is responsible for generating and transmitting packets containing rich media data to the clients in a temporally compliant manner with low delay request.

A container format would help in efficiently packaging the different media, providing timing synchronization, and enabling clients to realize, play, or render rich media content. The actual container used for rich media services, would however depend on the type of media (whether it is just LASeR based technologies, or contains other time based media such audio, video, etc.) and the nature of the application (download, progressive download, streaming for example).

ISO defines ISO Base Media File Format [8] as a basis for developing a media container with various usages (download, progressive download and streaming). 3GPP [9] and 3GPP2 derive file formats from the ISO Base File Format with differences being in the types of codecs supported in these formats. An extension the file format is provided in following clause by adding relevant boxes to incorporate LASeR/SVG as a new media. By adding an additional media track, leveraging the use of time synchronization along with existing audio and video track information, the solution is relatively simple and is extensible to other media formats if needed.
 LASeR Track Structure

In the terminology of the ISO Base Media File Format specification, LASeR tracks are scene tracks. They therefore use:

a) a handler_type of ‘sdsm’ in the HandlerBox;

b) a video media header ‘vmhd’;

c) and, as defined below, a derivative of the SampleEntry.

An access unit that starts with a ‘replace scene’ or ‘refresh scene’ command is a Sync Sample, and is marked as such in the sync sample table. ‘Refresh scene’ commands may be placed into a ‘switch pictures’ track as defined in the AVC file format, as they are logically equivalent to AVC SI pictures. The use of shadow sync is deprecated, having been superseded by the new switch pictures facility.

The timescale for the LASeR stream should be suitably chosen to achieve the desired accuracy of timing of access units.
 Resources

A LASeR track may contain a meta-data atom (‘meta’) with resources in it. Those resources ‘shadow’ data in the same directory as the ISO file itself came from.

If there is no primary meta-data, then the handler_type in the handler box of the meta-data should be set to the code ‘null’.

It is also permitted to store a single access unit of LASeR as the primary item in a meta-box. In that case, the handler_type is set to ‘lsr1’. The actual LASeR access unit is stored in a binary XML box inside the meta box, or is referenced as the primary item. In this case (there is a ‘static’ LASeR scene as the primary item) the meta-box may be at file-level. Otherwise, if it is used as to store resources for the LASeR scene, the meta-box would be stored within the LASeR track.

Items within the meta-box can be referred to using the URL forms documented in subclause 8.44.7 of [8]. If a URL form for tracks within the same ‘moov’ atom as the LASeR track is needed, the fragment syntax “#trackID=<n>” where <n> is the desired track identifier, may be used.

12.1.1 Composition

LASeR tracks in an ISO file that has other audio or video tracks are composed with those tracks. The composition falls into two classes: temporal composition, and audio and visual composition.

As defined in ISO/IEC 14496-14 [10], the default behavior is that time-parallel tracks (streams) in ISO-family files have their time-lines ‘locked together’ unless ‘sync’ track references are used. Therefore an ISO file with two (or more) tracks, one of which is a LASeR track, and no ‘sync’ references, has the timelines of those tracks synchronized. The LASeR scene cannot set the time of those other tracks independently of the time of the LASeR track. If this is not desired, an embedded stream (or ISO container) should be used or the time-lines ‘unlocked’ by using ‘sync’ track references.

The visual and audio composition of the other tracks may be defined by the LASeR stream. If the LASeR stream does not reference those tracks, then the audio/visual composition of those tracks with the LASeR stream or with each other is not defined by this specification. LASeR refers to these tracks by streamID, which is the same as the TrackID in ISO family files.

 LASeR Stream Definition

This clause defines the sample entry and sample format for LASeR elementary stream.
12.1.1.1 LASeR Sample Entry
LASeRSampleEntry box

The LASeRSampleEntry Box is defined as follows:

LASeRSampleEntry ::=
BoxHeader

Reserved_6

Data-reference-index

LASeRConfigurationBox

MPEG4BitRateBox (optional)

MPEG4ExtensionsDescriptorsBox (optional)

LASeRSampleEntry fields

	Field
	Type
	Details
	Value

	BoxHeader.Size
	Unsigned int(32)
	
	

	BoxHeader.Type
	Unsigned int(32)
	
	'lsr1’

	Reserved_6
	Unsigned int(8) [7]
	
	0

	Data-reference-index
	Unsigned int(16)
	Index to a data reference that to use to retrieve the sample data. Data references are stored in data reference boxes.
	

	LASeRConfigurationBox
	
	
	

	MPEG4BitRateBox
	
	Optional
	

	MPEG4ExtensionsDescriptorsBox
	
	Optional and Obsolete in 3GPP context, defined in [1]
	

An optional MPEG4BitRateBox may be present in the LASeR sample entry to signal the bit rate information of the LASeR stream. Extension descriptors that should be inserted into the Elementary Stream Descriptor, when used in MPEG-4, may also be present (These two boxes are identical to those in [11]).
LASeRConfigurationBox

The LASeRConfigurationBox is defined as follows:

LASeRConfigurationBox::=
BoxHeader

LASeRHeader
LASeRConfigurationBox fields

	Field
	Type
	Details
	Value

	BoxHeader.Size
	Unsigned int(32)
	
	

	BoxHeader.Type
	Unsigned int(32)
	
	'lsrC’

	LASeRHeader
	LASeRHeader
	
	

struct LASeRHeader {

Unsigned int(8)
profile

Unsigned int(8)
level

bit(3)

encoding

bit(2)

pointsCodec

bit(4)

pathComponents

bit(1)

useFullRequestHost

bit(1)

hasTimeResolution

if (hasTimeResolution)

{

Unsigned int (16)

timeResolution;

}

bit(4)

colorComponentBits_minus_1

bit(4)

resolution

bit(5)

coordBits

bit(4)

scaleBits_minus_coordBits

bit(1)

newSceneIndicator

bit(1)

hasStringIds

bit(1)

hasPrivateData

bit(1)

hasExtendedAttributes

bit(4)

extensionIDBits

bit(1)

hasExtensionDescriptor

if (hasExtensionDescriptor)

{

vluimsbf5

len

byte[len]

extensionDescriptor

}

bit(1)

hasExtension;

if (hasExtension) {

attr_custom_extension
ext;

}

}

struct attr_custom_extension {

vluimsbf5

len;

 byte[len]

privateData;

}
The definitions of LASeRHeader members are as follows:
· profile: this value signals the profile of LASeR that the scene segment starting with this LASeRHeader adheres to.

· level: this value signals the level of LASeR which this scene segment starting with this LASeRHeader adheres to.
· encoding: this attributes specifies the type of encoding used in the LASeR stream. Possible values are listed in Table 2.
	Encoding Name
	Encoding Type

	LASeR Binary Format
	0

	XML
	1

	XML + Gzip
	2

	XML + Deflate
	3

	Reserved for future use
	4-7

Table 2 — Encoding type values
· pointsCodecType: this attribute specifies which strategy is used to encode point lists. Possible values are in Table 3.

	Point sequence encoding strategy
	Code

	ExpGolombPointsCodec
	0

	ISO Reserved
	0x1-0x3

Table 3 — pointsCodecType values
· pathComponents: this integer attribute indicates how much of the source path is used. If this takes the value 0, then the “service” is not associated with a path, and if it takes the special value 15 (or any value equal to or greater than the number of components in the path) then the entire path is used up to but excluding the final file-name. For example, if the source was “/user/laser-expert/demo/art.mp4” then a value of 4 or greater selects “/user/laser-expert/demo/art.mp4” as the path, the value 2 selects “/user/laser-expert” and the value zero sets no path. Together with useFullRequestHost, this attribute defines the “service”.

· useFullRequestHost: this Boolean attribute indicates whether the full domain name of the request-host is used (1) or the first component of the domain name is elided (0). For example, if the source material came from “www.laser.com”, then this differentiates between associating the “service” with “www.laser.com” and “.laser.com”. (Note the definition of local names in the RFC, and the possibility to associate the “service” with locally loaded files, and that the domain name may be either “<hostname>.local” or “.local” in that case.). Together with pathComponents, this attribute defines the “service”.

· timeResolution: this attribute is a 16-bits positive integer defining a resolution for time values (e.g. clock values). When reading a time value from the bit stream, the encoded value shall be divided by this number to obtain a time value in seconds. The default value for timeResolution is 1000.
· colorComponentBits: this attribute defines the number of bits used for encoding color components.

· resolution: this attribute is a number between -8 and 7 defining the coordinate resolution as 2-resolution. When reading a coordinate, the encoded value shall be multiplied by the coordinate resolution to obtain the coordinate value expressed in pixels.

Example:
When resolution is 0, 4 or -2, the coordinate resolution is 1, 0.0625 or 4 respectively, and a encoded coordinate value of 100 yields 100, 6.25 and 400 pixels respectively.

· coordBits: this attribute defines the number of bits used for encoding coordinates. The default value is 12.

· scaleBits_minus_coordBits: this attribute defines the number of bits above coordBits used for encoding scaling factors. The default value is 0.

· newSceneIndicator: this Boolean indicates if this scene segment starts with a NewScene command. When it is set, the first LASeR command in this scene segment shall be a NewScene; otherwise, the first LASeR command in this scene segment shall not be a NewScene.

NOTE : the terminal may remove (parts of) the existing scene tree, for resource optimization, when it receives a LASeRHeader with this Boolean set to true.
· hasStringIds: this Boolean attribute defines whether ids are carried as strings, allowing XML canonical reconstruction.

· extensionIDBits : this attribute defines the number of bits of extension tags
· extensionDescriptor: this attribute can be used by a BiM decoder has specified in Annex A of [1].
MPEG4BitRateBox

The MPEG4BitRateBox is defined as follows:

MPEG4BitRateBox::=
BoxHeader

bufferSizeDB

maxBitRate

avgBitRate
MPEG4BitRateBox fields

	Field
	Type
	Details
	Value

	BoxHeader.Size
	Unsigned int(32)
	
	

	BoxHeader.Type
	Unsigned int(32)
	
	‘btrt’

	bufferSizeDB
	Unsigned int(32)
	the size of the decoding buffer for the elementary stream in bytes
	

	maxBitrate
	Unsigned int(32)
	the maximum rate in bits/second over any window of one second
	

	avgBitrate
	Unsigned int(32)
	the average rate in bits/second over the entire presentation
	

12.1.1.2 Sample Format
A LASeR sample is a LASeR access unit [1].
12.2 SAF: Simple Aggregation Format
12.2.1 Overview

The Simple Aggregation Format (SAF) defines the binary representation of a compound data stream composed of different data elementary streams (ES) such as LASeR scene description, video, audio, image, font, and metadata streams. Data from these various data elementary streams result in one SAF stream by multiplexing them for simple, efficient and synchronous delivery (see clause 7 of [1]).
Functionality provided by SAF at the interface between media/scene description and existing transport protocols cover:
· Simple aggregation of any type of stream, file or fragment.

· Dynamic addition of new streams/files after the start of the delivery.

· Media interleaving,

· Precise synchronization mechanisms support.

· Signalling of MPEG and non-MPEG streams,

· Optimized packet headers for bandwidth-limited networks to guarantee a very low overhead,

· Easy mapping to popular streaming formats,
· Enhanced support for progressive download.

· Real time transmission/delivery.

· Cache management capability.

· Extensibility such as adding new packet types or new stream types.

To efficiently carry elementary data streams synchronously as one logical SAF stream, a basic entity to be carried is defined as a SAF Access Unit (SAF AU), encapsulated into a basic entity for synchronization defined as a SAF Packet, (SAF packet).
12.2.2 Time and terminal model specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by SAF streams. The concept of a clock is used to convey the notion of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving terminal decodes the SAF Packet.

Each SAF Packet has an associated nominal composition time, the time at which it must be available for composition. The decoded data contained in a SAF Packet is not guaranteed to be available for composition before this time. Some SAF Packets may have a composition time stamp set to 0; in that case the SAF Packet is decoded and executed as soon as it is received. Otherwise the SAF Packets are decoded and executed at their nominal composition time and in the receiving order. When a SAF Packet is received “late” according to the scene time, the SAF Packet is processed as soon as possible.

12.2.3 SAF Payload
The SAF payload is an aggregation of SAF Packets. The SAF Packet consists of a SAF packet header (defined in clause 7.4 of [1]) and a SAF packet payload (defined in clause 7 of [1]). The SAF packet header carries the coded representation of the time stamps and associated information.
13 Error Resilience
LASeR provides the usage of random access points signalled by NewScene or RefreshScene commands (see clause 6.1.2).
The error detection is insured by Real-Time Transport Protocol (RTP) over UDP. The client checks the sequence numbers in the RTP headers, sequence number increase by one for each RTP packet transmitted.
DIMS is compatible with error recovery mechanism described in:

· PSS: RTP retransmissions (see clause 6.2.3.3 of [5]), the RTP retransmission is described in the following sub-section.
· MBMS: FEC Mechanism (see clause 8.2.2 of [7]).
13.1 RTP retransmission

A DIMS client should implement RTP retransmission. A DIMS client or server implementing RTP retransmission shall implement the payload format, SDP signalling and mechanisms of the RTP retransmission payload format [19]. In addition to the specifications and recommendations in [19], a DIMS client and server supporting RTP retransmission shall follow the definitions in the following clauses.

13.1.1 RTCP retransmission request

DIMS clients shall use the NACK feedback message format defined in the "Extended RTP Profile for RTCP-based Feedback (RTP/AVPF)" [20] for requesting the retransmission of RTP packets.

Before requesting the retransmission of RTP packets the client should assess whether a requested packet can be decoded in time by checking the latest receiver buffer status. If the client sends RTCP APP packets for client buffer feedback, as defined in section 6.2.3.2 of [5], the same assessment should be performed by the server, according to the latest RTCP APP packet it has received.

13.1.2 Congestion control and usage with rate adaptation

To avoid network congestion due to the additional bandwidth required for the retransmission of lost packets, the available link rate shall be estimated and the total transmission rate of the RTP session including retransmissions shall be adapted to the available link rate. Rules and information sources for the estimation of the available link rate are described in clause 10.2.1 of [5]. To adapt the total transmission rate including retransmissions, a DIMS server can e.g. skip retransmissions, use the transmission rate adaptation described in clause 10.2.2 of [5] or use any other suitable method.

If the server uses multiple streams for rate adaptation, the server may receive retransmission requests for a stream that is different from the one it is currently using. The server should thus not flush its retransmission buffer after switching streams.

13.2 FEC Mechanism

The DIMS RTP Payload Format defines in clause 16.2 is compatible with the FEC mechanism define in clause 8.2.2 of [7].

14 Resynchronization and Tune-In

During a rich media service, it is important for the clients to be able to connect and access the current streamed content with minimal latency and data inaccuracy. LASeR has several mechanisms to aid this purpose:

· Usage of random access points: A new LASeR Scene (signalled by a NewScene or RefreshScene command, see clause 6.1.2) is a random access point opposed on the scene updates.
· Transmission of the whole current scene: This method to transmission of active scene content in order for the client to reach a stable state. In other words, at this state the client will be able to synchronize with the content that is inline with the intent of the service provider. At key interval, the whole current scene will be transmitted as a RefreshScene command (see clause 6.1) as per a carouseling process. Already connected client will ignore it but new client will be capable of starting decoding the scene and render the content.
· Time Synchronization: Packets of data received by the client are associated with timestamps relative to the overall presentation time container. Further, the sequence numbers associated with the packets determine the relative ordering. This information helps the client to decode and sample the data correctly and using discretion (e.g. ignoring late packets) regarding packets arriving later than the scheduled sample time.
15 Data Management

LASeR defines an interface to persistent storage. The LASeR engine has the ability to cache selected scene information, using specific LASeR commands, on a best effort basis. The principles behind this caching closely follow the state caching mechanism in HTTP, commonly called cookies [21].
LASeR provides Save/Restore functionalities through LASeR Commands defined in clause 6.1.3.
Here are some examples of attributes which may be saved and restored:

· the value of a background colour (as a skin preference),

· the login/password of the user.
SAF provides a cache object mechanism using SAF Cache Unit (see clause 7.10 of [1]). If a terminal requests an url, and a SAF Cache Unit matching the requested url is already present in the terminal, then the terminal may directly load the corresponding data, without requesting the data referred to by this url from the server.
SAF defines two kinds of streams:

· Transient: this indicates that the stream shall be used once and by only one media element. Continuous media should be marked as transient.
· Non Transient: in other cases (images used in a skin for instance).
This allows a smart management of resources.
The cookies mechanism is available and usable over any transport layer (rtp, http) and not only with http.

16 Transport

16.1 Download
The LASeR Stream may be transported over HTTP (PSS) or FLUTE (MBMS) encapsulated in 3GPP File Format or in SAF stream.
16.2 Streaming

By default MPEG4 part 20 could be used along with the RFC 3640. We define in the following section a payload format for DIMS.
16.2.1 Overview

The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP). For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in streaming mode is more challenging with UDP being unreliable. Therefore, the RTP design should provide some error resilience tools (see clause 13) to help the media decoder cope up with unreliable transport.
Rich media is a combination of continuous media and discrete media, so rich media streaming should uses relevant transport mechanisms for these two media types. Rich media streaming is thus naturally realized by (a) streaming continuous media like (b) downloading the discrete media like images.
The following sub-sections provide a specification of an RTP payload format that enables live streaming and the streaming of rich media content. Here, rich media content is encapsulated in RTP packets based upon the payload format at the sender.
16.2.2 RTP Payload Syntax
This subsection specifies the RTP payload format to enable rich media streaming. The RTP payload format defines three basic packet structures; single access units, fragmentation units and aggregation units. An access unit can be a LASeR access unit or SAF Packet [1][2] or encoding information. Depending on the underlying network and the LASeR scene size, it may be desirable to split LASeR access units or aggregate them. Fragmentation and aggregation units have been defined for this purpose.

A LASeR Access Unit MUST contain one complete unit of the types defined in TYPE2 below. A TYPE1 unit contains one or more than one sample description. A TYPE2 unit contains a complete scene sample or scene update sample. Aggregation units are defined in TYPE3 and contain two or more LASeR Access Units as defined above. Fragmentation units are defined in TYPE4 and contain a fragment of a LASeR Access Unit.

	Type
	Type of rtp payload

	0
	Reserved

	1
	Sample Description

	2
	Single Access Unit

	3
	Aggregation Packet

	4
	Fragmentation Unit

	5-7
	Reserved

Table 4: Summary of payload types and descriptions

Note: An aggregation or fragmentation unit MUST NOT contain other aggregation of fragmentation units.

16.2.2.1 RTP Header Usage
The RTP header is defined in RFC3550 [22] and its use in this payload format is described below
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P|X| CC |M| PT | sequence number |

+-+

| timestamp |

+-+

| synchronization source (SSRC) identifier |

+=+

| contributing source (CSRC) identifiers |

| |

+-+
Figure 5: RTP HEADER

Marker (M) bit: The M bit is set to 1 to indicate that the RTP packet payload contains either the final fragment of a fragmented Access Unit or one or more complete Access Units.

Timestamp: 32 bits - The timestamp indicates the sampling instant of the LASeR sample. In the case of TYPE1 units (Sample Descriptions), the timestamp is to be ignored by the client. A typical way to assign a timestamp for packets that do not have an inherent time property is to associate the packet to the preceding or succeeding packet and copy its timestamp.

The usage of the remaining RTP header fields follows the rules of RFC 3550 [22]
16.2.2.2 Common Packet Header
The RTP payload comprises of a set of common fields followed by specific fields for each header type and sample data. The first octet contains the fields, common to all payload headers and has the following format:

+---------------+

|0|1|2|3|4|5|6|7|

+-+-+-+-+-+-+-+-+
|Type |A| R |

+---------------+

Figure 6: COMMON PAYLOAD HEADER
Type (3 bits) - The payload type as defined in Table 4.

A (1 bit) - When set to one, the A bit indicates that the packet either is, or contains, a random access point. If a random access unit is to be fragmented, the A bit is set in the first of the fragmented packets, and zero in the remaining packets. Sample Description (SD) packets are per definition not random access packets, and in such cases the A bit MUST be zero.

R (4 bits) - The Reserved bits may be used for further release and should be ignored by the receiver.

16.2.2.3 TYPE1 Unit – Sample Descriptions

Sample Descriptions SHOULD be sent reliably, asynchronously, and in advance of the RTP packet stream that requires these descriptions. This section defines a way of sending this information in RTP packets for applications that do not have such a transport channel appropriate for this purpose. Sample descriptions are typically placed in the SDP file (see clause 16.2.4). Sample Description (SD) units contain one or more complete sample descriptions. The RTP payload is defined as follows.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|TYPE1 Indicator| SDID 1| SD Size | |
+-+ |

: Sample Description Configuration 1 :
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+

| SDID n| SD Size | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

: Sample Description Configuration n :

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+

Figure 7: TYPE1 PAYLOAD FORMAT

SDID (4 bits) - The sample description ID is the identification of the following Sample Description.

SD Size (12 bits) - The Sample description size.

A Sample Description Configuration is a LASeR Header defined in 12.1.1.1. In case of the RTP stream is multiplexed, the Sample Description is a TransientStreamHeader or NonTransientStreamHeader as defined in [2].

16.2.2.4 TYPE2 Unit – Single Access Unit
TYPE2 units contain a single access unit.

The RTP payload is presented below.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|TYPE2 Indicator| SDID | R | LASeR Access Unit |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

: :

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |...OPTIONAL RTP padding |

+-+

Figure 8: TYPE2 PAYLOAD FORMAT

SDID (4 bits) - The sample description ID contains a reference to the sample description that must be used to decode the scene description contained in the current packet.

R (4 bits) - The Reserved bit MUST be equal to zero (0x0) and MUST be ignored by the receiver.

16.2.2.5 TYPE 3 Unit - Aggregation Packets
An aggregation packet contains 2 or more aggregation units (AU), i.e. LASeR units with header information. An aggregation packet MUST NOT contain a fragmentation packet or another aggregation packet.

Each AU consists of an unsigned 16 bit size field and an unsigned 16 bit timestamp offset followed by the payload of the unit as if it was sent in its own RTP packet. The size field refers to the payload size in octets. The TS offset enables units with otherwise differing timestamps to be sent in a single RTP packet. The timestamp offset MUST be zero for the “earliest” aggregation unit. The timestamps of the remaining packets are calculated using (RTP timestamp + TS offset) % 4294967296, in which % denotes the modulo operation.

Note: Earliest refers to the aggregation unit with the lowest extended timestamp if the aggregation units were sent as separate RTP packets. An extended timestamp is greater than 32 bits and can account for wraparound.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|TYPE3 Indicator| AU 1 Size | AU 1 TS offset

+-+

| AU 1 TS offset| AU 1 HDR | AU 1 DATA |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :

:
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | AU 2 Size |

+-+

| AU 2 TS offset | AU 2 HDR |

 ​|
+-+ ​​|
| AU 2 DATA |

: :

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+

Figure 9: A TYPE3 RTP PAYLOAD FORMAT CONTAINING TWO AGGREGATION UNITS

16.2.2.6 TYPE4 Unit - Fragmentation Packets
Frames that exceed the networks maximum transmission unit (MTU) need to be fragmented before transmission. By fragmenting at the RTP level one need not rely on lower layer fragmentation, e.g. IP. The payload format defines fragmentation of a TYPE1-2 packet into two or more RTP packets. A fragmentation packet may not contain another fragmentation packet or aggregation packet.

Note: Fragmentation on the RTP level should however be seen as a solution only when fragmentation on the LASeR level is not possible. Fragmentation can be performed by splitting for example a scene into a scene and a number of scene updates. In this way packets can be created that are smaller than MTUs and can be decoded individually which gives better error resilience when packets are lost.

The first octet in the payload of a fragmentation packet is, as is the case for all types, the payload header.

The second octet is a FU header and is defined as follows:

+---------------+

|0|1|2|3|4|5|6|7|

+-+-+-+-+-+-+-+-+

| Type|S|E| R |

+---------------+

Figure 10: FRAGMENT UNIT HEADER
Type (3 bits) - The payload type of the packet before fragmentation, defined in Table 4.

S (1 bit) - This bit is set to 1 for the first packet of a fragmented unit, and zero otherwise.

E (1 bit) - This bit is set to 1 for the last packet of a fragmented unit, and zero otherwise.

R (3 bits) - The Reserved bits MUST be equal to zero (0x0) and MUST be ignored by the receiver.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|TYPE4 Indicator| FU header | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

| |

| FU payload |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+

Figure 11: TYPE 4 FRAGMENTATION PACKET FORMAT
16.2.2.7 Access units Duplication
Duplication of Access Units may be used in order to improve error resilience. If two complete Access Units are received with the same timestamp, then they are functional duplicates of each other, and one MUST be discarded and not used.

The duplication of access units MAY be used on TYPE 2 and TYPE 3 RTP Packets but MUST not be used with TYPE 4 RTP Packets.

· TYPE 2 Unit example:

· RTP packet(sequence#=1, timestamp=AU1, contents=AU1)

· RTP packet(sequence#=2, timestamp=AU1, contents=AU1)

In this example, if the both RTP Packets are received, the 2nd RTP Packet MUST be discarded.

· TYPE 3 Unit example

· RTP packet(sequence#=1, timestamp=AU0, contents={[AU0, ts offest 0], [AU1, ts offest 1], [AU2,ts offset 2]})

· RTP packet(sequence#=2, timestamp=AU1, contents={[AU1, ts offest 1], [AU2, ts offest 2], [AU3,ts offset 3]})

In this example, if the both RTP Packets are received, the Access Units AU1 and AU2 from the 2nd RTP Packet are discarded but the Access Unit AU3 is preserved.

Note: (informative)

· TYPE 4 Unit example

· RTP packet(seq#=10, content={AU8/fragment0}, flag=initial-fragment)

· RTP packet(seq#=11, content={AU8/fragment1})

· RTP packet(seq#=12, content={AU8/fragment2})

· RTP packet(seq#=13, content={AU8/fragment3}, flag=final-fragment)

· RTP packet(seq#=14, content={AU8/fragment0}, flag=initial-fragment)

· RTP packet(seq#=15, content={AU8/fragment1})

· RTP packet(seq#=16, content={AU8/fragment2})

· RTP packet(seq#=17, content={AU8/fragment3}, flag=final-fragment)

If RTP Packets 10, 11, 16, 17 are lost, it is not possible to reconstruct the complete Access Unit AU 8. Even if all fragments are received once, the order of reconstruction is unknown. The duplication of access units is therefore disallowed in this case.
16.2.3 MIME Parameters
Required parameters:

Version-profile - Specifies the profile of LASeR used, at this time only LASeR AMD1 full is defined
Optional parameters:

Sample-descriptions – This parameter may be used to convey a group of sample descriptions. Each sample description contains a comma (",") separated list of "/SDID/|/config/" patterns, where:

· /SDID/ is the sample description identifier, coded as a single Hexadecimal character.

· /config/ is the LASeR header.
16.2.4 SDP Parameters

The Session Description specifies the LASeR format, its clock rate, version profile, base profile and optionally a set of sample descriptions. The fields in the Session Description Protocol (SDP) are defined as follows:

· The media name in the "m=" line of SDP MUST be “laser+xml” or “laser”

· The encoding name in the "a=rtpmap" line of SDP MUST be X-LASER+XML or X-LASER.

· The clock rate in the "a=rtpmap" line is not specified in this document. The resolution of the clock must be sufficient for the desired synchronization accuracy and for measuring packet arrival jitter. The clock rate of the referenced continuous media files within the presentation needs to be considered. For example, if the presentation contains referenced video which is to be synchronized with the presentation, the clock rate should be no less than 90,000.

The MIME parameters, when present, MUST be included in the "a=fmtp" line of SDP. These parameters are expressed as a MIME media type string, in the form of a semicolon separated list of “parameter=value pairs”.

An example of a media-level description in SDP format is shown below. In this case, two H.263 video media with the same format are referenced in the presentation. Each (“a=fmtp”, “a=-rtpmap”) pair describes one source location.

m= laser+xml 12345 RTP/AVP 96

a=rtpmap:96 X-LASER+XML /100000

a=fmtp:96 version_profile=2; Sampledescriptions=1|F64AEBC2434512498,2|F04AEBC2AD4345124;

m=video 49234 RTP/AVP 98 99 100 101

a=rtpmap:98 h263-2000/90000

a=fmtp:98 box=moov;track_ID=1;profile=3;level=10

a=rtpmap:99 h263-2000/90000

a=fmtp:99 file_name=video2.h263;profile=3;level=10

16.2.5 Transmission of discrete referenced media

The discrete referenced media files (e.g. images) can be transmitted by either (1) sending them to the UE in advance via a FLUTE session; (2) sending the discrete media to each client on a point-to-point bearer before the streaming session, in a manner similar to the way security keys are sent to clients prior to an MBMS session; (3) having a parallel FLUTE transmission session independent of the RTP transmission session, if enough radio resources are available, or (4) having non-parallel transmission sessions to transmit all of the data due to the limited radio resources. Each transmission session contains either FLUTE data or RTP data. In the option 4 above, the data inside of each transmission session is relatively independent from the data from other transmission session.

The Session Description information is provided for only internally referenced discrete media or LASeR content. For a FLUTE session, the receiver may explicitly download the externally referenced discrete media or LASeR content from the server. The URLs of the internally referenced media are indicated in the file delivery table (FDT) field inside of the FLUTE session, rather than in Session Description. The syntax of the SDP description for FLUTE has been defined in the Internet-Draft: SDP Descriptors for FLUTE [23].

17 Resource usage and Device capabilities

17.1 MIME Type
This clause registers three new MIME media types, "application/laser+xml", "application/laser" and “application/saf”.
17.1.1 LASeR+XML
MIME media type name:

application

MIME subtype name:

laser+xml

Required parameters:

None.

Optional parameters:

None
17.1.2 LASeR

MIME media type name:

application

MIME subtype name:

laser

Required parameters:

None.

Optional parameters:

None

17.1.3 SAF

MIME media type name:

application

MIME subtype name:

saf
Required parameters:

None.

Optional parameters:

None

17.2 UAPROF
Both new MIME Type, defined in clause 17.1, SHOULD be added into the UAPROF file of DIMS compatible terminals.
18 Carriage of DIMS in existing sub-systems

18.1 MBMS

LASeR MUST be registered as a new codec for dynamic and interactive multimedia scene in clause 10 of [7].
The DIMS RTP payload format define in clause 16.2 MUST be added in clause 8.2.1 as the RTP Payload format for LASeR in MBMS.
18.2 PSS

LASeR MUST be registered as a new codec for dynamic and interactive multimedia scene in clause 7 of [5].
The DIMS RTP payload format define in clause 16.2 MUST be added in clause 8.2.1 as the RTP Payload format for LASeR in PSS.
18.3 MMS

LASeR MUST be registered as a new codec for dynamic and interactive multimedia scene in clause 4 of [6].
19 Annex A: DOM Level 3 event (normative)
	Event Identifier

{event-namespace, event-localname}
	Description
	DOM3 event category
	Animation event name
	uDOM interface

	{"http://www.w3.org/2001/xml-events", "DOMFocusIn"}

SVG 1.2 alias: {"http://www.w3.org/2001/xml-events", "focusin"} (see Notes below).
	Occurs when an element receives focus.
	UIEvent
	focusin
	UIEvent

	{"http://www.w3.org/2001/xml-events", "DOMFocusOut"}

SVG 1.2 alias: {"http://www.w3.org/2001/xml-events", "focusout"} (see Notes below).
	Occurs when an element loses focus.
	UIEvent
	focusout
	UIEvent

	{"http://www.w3.org/2001/xml-events", "DOMActivate"}

SVG 1.2 alias: {"http://www.w3.org/2001/xml-events", "activate"} (see Notes below).
	Occurs when an element is activated, for instance, thru a mouse click or a keypress. A numerical argument is provided to give an indication of the type of activation that occurs: 1 for a simple activation (e.g. a simple click or Enter), 2 for hyperactivation (for instance a double click or Shift Enter).
	UIEvent
	activate
	UIEvent

	{"http://www.w3.org/2001/xml-events", "click"}
	Occurs when the pointing device button is clicked over an element. A click is defined as a mousedown and mouseup over the same screen location. The sequence of these events is: mousedown, mouseup, click. If multiple clicks occur at the same screen location, the sequence repeats with the detail attribute incrementing with each repetition.
	MouseEvent
	click
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mousedown"}
	Occurs when the pointing device button is pressed over an element.
	MouseEvent
	mousedown
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mouseup"}
	Occurs when the pointing device button is released over an element.
	MouseEvent
	mouseup
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mouseover"}
	Occurs when the pointing device is moved onto an element.
	MouseEvent
	mouseover
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mousemove"}
	Occurs when the pointing device is moved while it is over an element.
	MouseEvent
	mousemove
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mouseout"}
	Occurs when the pointing device is moved away from an element.
	MouseEvent
	mouseout
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "textInput"}
	One or more characters have been entered.
	TextEvent
	none
	TextEvent

	{"http://www.w3.org/2001/xml-events", "keydown"}
	A key is pressed down. (The normative definition of this event is the description in the DOM3 Events specification.)
	KeyboardEvent
	none
	KeyboardEvent

	{"http://www.w3.org/2001/xml-events", "keyup"}
	A key is released. (The normative definition of this event is the description in the DOM3 Events specification.)
	KeyboardEvent
	none
	KeyboardEvent

	{"http://www.w3.org/2001/xml-events", "load"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGLoad"} (see Notes below).
	The event is triggered at the point at which the user agent has fully parsed the element and its descendants and is ready to act appropriately upon that element, such as being ready to render the element to the target device. Referenced external resources that are required must be loaded, parsed and ready to render before the event is triggered. Optional external resources are not required to be ready for the event to be triggered.
	HTMLEvent
	load
	Event

	{"http://www.w3.org/2001/xml-events", "resize"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGResize"} (see Notes below).
	Occurs when a document view is being resized. This event is only applicable to 'svg' elements and is dispatched after the resize operation has taken place. The target of the event is the 'svg' element.
	HTMLEvent
	resize
	Event

	{"http://www.w3.org/2001/xml-events", "scroll"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGScroll"} (see Notes below).
	Occurs when a document view is being shifted along the X or Y or both axis, either through a direct user interaction or any change on the 'currentTranslate' property available on SVGSVGElement interface. This event is only applicable to 'svg' elements and is dispatched after the shift modification has taken place. The target of the event is the 'svg' element.
	HTMLEvent
	scroll
	Event

	{"http://www.w3.org/2001/xml-events", "zoom"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGZoom"} (see Notes below).
	Occurs when the zoom level of a document view is being changed, either through a direct user interaction or any change to the 'currentScale' property available on SVGSVGElement interface. This event is only applicable to 'svg' elements and is dispatched after the zoom level modification has taken place. The target of the event is the 'svg' element.
	DOM3's SVG Events
	zoom
	Event

	{"http://www.w3.org/2001/xml-events", "beginEvent"}
	Occurs when an animation element begins. For details, see the description of the Events and event model in SMIL 2.0.
	DOM3's Timing Events
	beginEvent
	TimeEvent

	{"http://www.w3.org/2001/xml-events", "endEvent"}.
	Occurs when an animation element ends. For details, see the description of the Events and event model in SMIL 2.0.
	DOM3's Timing Events
	endEvent
	TimeEvent

	{"http://www.w3.org/2001/xml-events", "repeatEvent"}
	Occurs when an animation element repeats. It is raised each time the element repeats, after the first iteration. For details, see the description of the Events and event model in SMIL 2.0.
	DOM3's Timing Events
	repeat
	TimeEvent

	{"http://www.w3.org/2001/xml-events", "wheel"}
	Occurs when a rotational input device has been activated.
	UIEvent
	none
	WheelEvent

	{"http://www.w3.org/2000/svg", "preload"}
	A load operation has begun.
	none
	none
	ProgressEvent

	{"http://www.w3.org/2000/svg", "loadProgress"}
	Progress has occurred in loading a given resource.
	none
	none
	ProgressEvent

	{"http://www.w3.org/2000/svg", "postload"}
	A load operation has completed.
	none
	none
	ProgressEvent

	{"http://www.w3.org/2001/xml-events", "timer"}
	Occurs when the specified timer interval has elapsed for a timer. This event is triggered only by 'enabled' timers in the current global execution context of the SVG document (i.e. for timers which have been instantiated via the SVGGlobal interface and started via the start() method of the SVGTimer interface).
	none
	none
	Event

	{"http://www.w3.org/2000/svg", "connectionConnected"}
	Occurs when a connection has been established. No context information is available.
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionClosed"}
	Occurs when a connection has been closed. No context information is available
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionError"}
	Occurs when an error happens during the lifetime of a connection. Additional context information is available in the errorCode field.
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionDataSent"}
	Occurs when data has been successfully transmitted. No context information is available.
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionDataReceived"}
	Occurs when data has been received on the connection. Additional context information is available on the receivedData field.
	none
	none
	ConnectionEvent

Open Type Binary Data Base 64 encoded

	<font-face>

		<font-face-src>

			<font-face-uri xlink:href= 	

			/>

		</font-face-src>

 	</font-face>

[image: image11.png]LASeR data

SVGTiny Data

LASeR-encoded :

Media Data

o
e
o
us
o
O
<
L
<
)

5

=)

£

O
fa}

APls

T
LASeR Scene Tree

2 e><[_
5|3
2 || 5| SGV Tiny 1.2
> E Scene Tree
S Rendering
gle SVG Tiny1.2
b

|
o | 21| XML parser

o [—

gzip

Video /

Audio /

Image
Decoders

UDOM

LASeR [2] part

LASeR Scene Tree extensions
LASeR Commands
LASeR binary decoding

Stream demux

Font decoding

AN decoders

& uDOM extensions

Common with SVGT1.2

SVG scene tree management
SVG renderer
UDOM interfaces

_1204636827.vsd
Rich Media Server

Rich Media Content (LASeR / SVG scenes and scene updates, discrete and continuous media)

Container Format

Transport Mechanisms

_1208073532.ppt

HTTP Request #1

HTTP server

User Interaction

Streaming server

RTP Stream

HTTP Request #2

_1208091610.ppt

HTTP Request

HTTP Response

HTTP server

User Interaction

_1207036967.doc

Reassembly

Media

decode

server

User Interaction

server

Incremental Delivery Format

Scene Update Transfer Decoding

Feedback

PTM

PTP

Scene Management including timing

Delivery Format

Scene Transfer Decoding

Rendering

_1191220454.ppt

Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport

Ending viewport

_1191220535.ppt

Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport

Ending viewport

_1172664490.ppt

Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport

After clicking 2

After clicking RIGHT

